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Reward Value Revealed by Auction in Rhesus Monkeys
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Economic choice is thought to involve the elicitation of the subjective values of the choice options. Thus far, value estimation
in animals has relied on stochastic choices between multiple options presented in repeated trials and expressed from averages
of dozens of trials. However, subjective reward valuations are made moment-to-moment and do not always require alterna-
tive options; their consequences are usually felt immediately. Here, we describe a Becker–DeGroot–Marschak (BDM) auction-
like mechanism that provides more direct and simple valuations with immediate consequences. The BDM encourages agents
to truthfully reveal their true subjective value in individual choices (“incentive compatibility”). Male monkeys reliably placed
well-ranked BDM bids for up to five juice volumes while paying from a water budget. The bids closely approximated the av-
erage subjective values estimated with conventional binary choices (BCs), thus demonstrating procedural invariance and
aligning with the wealth of knowledge acquired with these less direct estimation methods. The feasibility of BDM bidding in
monkeys paves the way for an analysis of subjective neuronal value signals in single trials rather than from averages; the fea-
sibility also bridges the gap to the increasingly used BDM method in human neuroeconomics.
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Significance Statement

The subjective economic value of rewards cannot be measured directly but must be inferred from observable behavior. Until
now, the estimation method in animals was rather complex and required comparison between several choice options during
repeated choices; thus, such methods did not respect the imminence of the outcome from individual choices. However, human
economic research has developed a simple auction-like procedure that can reveal in a direct and immediate manner the true
subjective value in individual choices [Becker–DeGroot–Marschak (BDM) mechanism]. The current study implemented this
mechanism in rhesus monkeys and demonstrates its usefulness for eliciting meaningful value estimates of liquid rewards. The
mechanism allows future neurophysiological assessment of subjective reward value signals in single trials of controlled animal
tasks.

Introduction
In 1797, Goethe wanted to sell his epic poem Hermann und
Dorothea, while also revealing how much the publisher
truly valued it (Moldovanu and Tietzel, 1998). To achieve
this, Goethe set a secret reserve price below which he would
not sell the poem and asked the publisher for an offer. If the
offer was above Goethe’s secret price, Goethe would sell it
for that price. The publisher’s optimal strategy was to bid

an amount equal to their value; thus, Goethe’s auction
achieved the property of truthful value elicitation or “incen-
tive compatibility” (Milgrom and Weber, 1982; Karni and
Safra, 1987). By bidding more than their value, the pub-
lisher allowed the possibility of winning the poem at a price
greater than their value, thus making a loss. By bidding less
than their value, they allowed the possibility of losing the
poem even if Goethe’s reserve price was less than their
value; and would not reduce the cost, as the cost would
always equal the reserve price.

Goethe’s method was a “second-price” auction, whose various
forms are staples of experimental economics (Lusk and Shogren,
2007). The Becker–DeGroot–Marschak (BDM) mechanism
(Becker et al., 1964) is an equivalent “incentive compatible” auc-
tion that directly reveals the subjective value of the good for the
bidder. In BDM, the bidder’s stated value for a good is compared
against a random computer price or bid: the auction is won if the
stated bid equals or exceeds the computer bid and is lost other-
wise. The BDM is increasingly used in human neuroimaging and
allows experimenters to elicit true reward valuations and corre-
lated brain activity (Plassmann et al., 2007; Chib et al., 2009;
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Linder et al., 2010; Harris et al., 2011; Tang et al., 2014; Tyson-
Carr et al., 2018).

Other incentive compatible means of value elicitation have
depended on repeated binary choice (BC) between various
goods, whereby subjective values of individual goods are inferred
from observed choices (Platt and Glimcher, 1999; Padoa-
Schioppa and Assad, 2006; Kobayashi and Schultz, 2008; Lak et
al., 2014). In BC tasks the chosen option is inferred to have the
highest value within the set of competing options or, with indif-
ference, the same value as other options. As fruitful as this
approach has been, it may not be without problems. In primates,
rational choice is frequently violated (Tversky, 1972; Knetsch
and Sinden, 1984; Tversky and Simonson, 1993; Bateman et al.,
1997; Rieskamp et al., 2006), neuronal reward signals adapt to
current distributions (Tobler et al., 2005; Kobayashi et al., 2010;
Louie et al., 2011; Soltani et al., 2012; Padoa-Schioppa and
Rustichini, 2014), and choice might involve simple heuristics
rather than value comparison (Brandstätter et al., 2006; Vlaev et
al., 2011; Piantadosi and Hayden, 2015).

These results suggest that the method of value elicitation may
impact on the decision-making process and valuation. It is there-
fore useful to have multiple value elicitation mechanisms which
engage decision-making differently. In perhaps the most striking
difference, the agent directly states the subjective value for the
good in each BDM trial, while the value in BCs is only inferred
from multiple choices. The direct value statement removes
potential BC confounds, like complexity of presentation of mul-
tiple options, comparison between viable options, and satiety.
Although invasive neurophysiology allows for finer mechanistic
resolution, animal experiments have thus far been confined to
BC tasks, and a neuronal basis of BDM bidding is missing.

We investigated the feasibility of using the BDM with mon-
keys. Two rhesus monkeys bid different water volumes for the
chance to obtain specific juice volumes in individual BDM trials.
They used a joystick to move an on-screen cursor, thus specify-
ing the volume of water they would “pay” for specific juice vol-
umes represented by unique visual stimuli. Both monkeys
reliably expressed well-ranked bids, with distinct water values,
for each of the five different juice volumes offered. Moreover,
subjective values in the BDM were like those inferred from an
equivalent BC task.

Materials and Methods
Animals and materials
Two purpose-bred and group-housed male rhesus monkeys (Macaca
mulatta), A (weighing 10.8 kg) and B (weighing 7.9 kg), were used for
this study. Both animals were trained, via several intermediate tasks, on
the BDM and a closely related BC task over a period of 24 and
36months, respectively. The animals participated in experiments for 1–2
h every weekday.

This research has been approved and supervised by the United
Kingdom Home Office, United Kingdom Animals in Science
Committee, and United Kingdom National Center for Replacement,
Refinement and Reduction of Animal Experiments (NC3Rs), and
locally at the University of Cambridge by its Animal Welfare and
Ethical Review Body (AWERB), Governance and Strategy
Committee, Biomedical Service (UBS) Certificate Holder, Welfare
Officer, Named Veterinary Surgeon (NVS), and Named Animal
Care and Welfare Officer (NACWO).

General experimental design
During experimental sessions, monkeys sat in a primate chair (Crist
Instruments) positioned 60 cm from a computer monitor. They made
choices in the BDM and BC tasks using a custom-built joystick
(Biotronix Workshop, University of Cambridge). The joystick allowed

for both forward/backward movement to move the bid cursor up/down
in the BDM task and left/right movement to choose between the options
in the BC task. The joystick also had a touch sensor that detected
whether the monkey was holding it.

Joystick position data and digital task event signals were sampled at
2 kHz and stored at 200Hz (joystick) or 1 kHz (task events). Liquid
reward was delivered by a computer-controlled solenoid liquid valve
(;0.006 ml/ms opening time), with a SD of droplet size approximately
equal to 0.06 ml. Behavioral tasks were controlled by custom-made soft-
ware (MATLAB; The MathWorks) running in conjunction with the
Psychophysics toolbox (Brainard, 1997) on a Microsoft Windows 7
computer.

BDM task design
On each BDM trial, the monkey competed with a randomly set com-
puter bid for obtaining a specific volume of fruit juice (the same 10%
apple and mango concentrate was used as the juice reward in all tasks).
If the monkey’s bid equaled or exceeded the computer bid, it received
the specified fruit juice volume and paid the price indicated by the com-
puter bid from the water budget that reset in each trial to 1.2 ml. If the
monkey’s bid was lower than the computer bid, it did not receive the
fruit juice volume but kept the water budget that was delivered at trial
end.

Monkeys bid with a forward-backward moveable joystick for specific
volumes of fruit juice. The procedure involved five fractals, each indicat-
ing one of five specific volumes of the same fruit juice (Fig. 1A). Only
one fractal was shown on any given trial. A gray rectangle represented
the water budget (Fig. 1B). A red bar on the gray rectangle indicated the
joystick position, and thus the monkey’s bid, on a computer monitor in
front of the monkey, and a green bar on the same gray rectangle indi-
cated the computer bid (higher was more). The left side of the computer
monitor displayed the fractal, and the right side displayed a gray rectan-
gular “budget bar” whose total area represented the 1.2 ml of water with
which the monkey could bid on each trial (Fig. 1C). The monkey placed
a bid by moving the red cursor up/down by pushing/pulling the joystick.
Following the monkey’s bidding period, the computer-bid appeared
(green line). If winning the BDM (Fig. 1C, top), a volume of water equiv-
alent to that remaining above the green line was delivered first, followed
later by the juice volume indicated by the fractal; thus, the water volume
occluded below the computer’s bid was the price paid for the juice
gained. If losing the BDM (Fig. 1C, bottom), then the fractal represent-
ing the juice reward disappeared and the full 1.2-ml water budget was
delivered, but this was not followed by any juice.

Trials were independent of one another, and each monkey completed
200 correct BDM trials in each daily session of testing. Because the mon-
keys’ bidding behavior might be explained by motor vigor or simple con-
ditioned motor responses, we trained them using three different starting
positions for their bid cursor; either at the bottom (B), top (T), or at a
random position (R) on the budget bar. Monkeys completed 10 sessions
under each of these three conditions, for a total of 30 BDM sessions for
each monkey.

BDM trial structure
The beginning of each BDM trial was signaled to the monkey by a yellow
cross at the center of the monitor during a 0.5-s Preparation epoch (Fig.
2A). This was followed by an Offer epoch with presentation of the juice
volume to bid for, represented by a specific fractal image, and the rectan-
gular budget bar stimulus whose total gray area indicated 1.2 ml of
water. A dark-red horizontal bar (bid cursor) also appeared within the
confines of the budget bar. The Offer epoch was presented for a variable
time, mean 2 6 1 s with a flat hazard rate, as such temporal uncertainty
is known to encourage attention to stimulus changes.

After the Offer epoch, monkeys used the joystick to move the bid
cursor up/down within the confines of the budget bar. The beginning of
this Bidding epoch was indicated by a color change of the bid cursor.
Monkeys had 6 s to place a bid and did so by maintaining a given bid
cursor position for .0.25 s. Following stabilization of the bid cursor’s
position, it could no longer be moved. The monkey waited until the end
of the 6-s bidding period regardless of when it had finalized its bid.
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Thus, the monkey could not manipulate reward rate or
temporal reward discounting by making bids more/less
quickly. Failure to stabilize their bid cursor within the 6-s
Bidding epoch resulted in abortion of the trial. Bidding was
followed by a Computer Bid epoch in which a green hori-
zontal bar (computer bid cursor) appeared within the
budget bar at a position corresponding to the randomly
generated computer-bid for that trial. Trials were inter-
leaved with intertrial intervals of random duration (46 1 s,
conforming to a truncated exponential function).

Computer bid distribution
Following extensive modeling, we selected a b distribution
of computer bids over a uniform (flat) distribution to en-
courage more accurate bidding. A b distribution does not
compromise the crucial incentive compatibility of the BDM
(obtaining optimal outcome by truthfully bidding accord-
ing to own value) but incurs a higher cost of inaccurate bid-
ding (“cost of misbehavior”) compared with a uniform
distribution without changing the points of maximal
expected and observed payoff (Lusk and Shogren, 2007;
Tymula et al., 2016). Thus, we generated computer bids
from a pseudo-normal b distribution, with support [0,1]
and parameters (a = 4, b = 4), mean= 0.5 and
variance= 0.028; the random number thus generated was
simply multiplied by the maximum bid of 1.2 ml to gener-
ate a bid between 0 and 1.2 ml. Presentation of the com-
puter bid was followed by a 1.5-s Budget epoch: if the
monkey’s bid was higher than the computer’s, then the
water budget to be paid was represented by occluding the
area between the bottom of the budget bar and the com-
puter’s bid cursor; otherwise, there was no change in the
display as no payment was required. In either case the
remaining volume of water was delivered at the end of the
Budget epoch. Finally, trials ended with a 0.5-s Juice epoch
which followed the onset of water delivery by 0.5 s. If the
monkey had made a winning bid, then the fractal was sur-
rounded by a red border and the indicated volume of juice
was delivered. Otherwise, the fractal disappeared, and no
juice was delivered at the end of the Juice epoch.

For a given bid on an individual trial, the probability of
winning the BDM, as well as the expected remaining water
budget, are determined by the distribution from which the computer bid
has been drawn. Thus, BDM bidding involves uncertainty. The bidder
may learn the probability distribution of winning and losing the BDM in
each trial; this aspect can be described as being essentially risky. With
on-going experience, the uncertainty of computer bids changes gradually
from initial ambiguity (when the distribution is only incompletely
known) toward risk (when the distribution of computer bids becomes
completely known), although it may reasonably be doubted that an ani-
mal can learn the distribution completely given the various demanding
factors of the BDM task. Thus, an element of ambiguity (true uncer-
tainty) may always remain present in animals performing in a BDM
task. Such elements of ambiguity and risk are not present in equivalent
BC tasks (unless they have been specifically designed so). This character-
istic may make BDM performance cognitively more demanding and,
depending on ambiguity and risk attitude, potentially less desirable than
BC tasks (Platt and Huettel, 2008).

Error trials
Monkeys were required to maintain hold of the joystick from the
Preparation epoch to the end of the Bidding epoch, and to always main-
tain the joystick in a central position, except during the Bidding epoch.
Failure to comply with these restrictions was considered an error and led
to abortion of the trial. All errors resulted in the same blue error moni-
tor, error sound, and a delay of 3 s plus the remaining trial time with no
further reward delivery.

Across the 30 sessions of BDM testing, Monkey A made 433 errors
out of 6433 trials (6.73%), and Monkey B made 2692 errors out of 8692

trials (30.97%; Extended Data Figs. 2-1, 2-2). However, most of Monkey
B’s errors consisted of long strings of consecutive trials during which the
animal failed to attend to the task, which may have been facilitated by
the lack of some constraints: the animals were free to move their head
and/gaze away from the monitor.

Specifically, Monkey A made an average of 14.436 20.04 errors per
session (range 0–97), giving a mean error rate of 6.086 7.23% across all
sessions (range 0–23.66%). In the B-BDM, Monkey A’s errors were pre-
dominantly because of not maintaining hold of the joystick and made up
55.096 36.11% of all errors in these trials, while these accounted for
only 2.956 7.88% of errors in the T-BDM and 126 17.79% of errors in
the R-BDM. Overall, Monkey A’s error rate improved over the course
of the sessions. In the first 10 sessions (B-BDM), Monkey A’s mean
overall error rate was 12.886 8.89% but over the last 10 sessions (R-
BDM) the overall error rate was 1.656 1.68%. Accordingly, for
Monkey A there was a significant negative Pearson’s correlation
between the number of errors made in a session and the session num-
ber: Rho = �0.60, p = 4.25� 10�4.

Monkey B performed significantly worse than monkey A and did
not appear to make any such improvement over the course of the 30 ses-
sions; there was no correlation between the number of errors made in a
session and the session number for Monkey B, with Pearson’s Rho =
�0.066, p=0.73. Overall, monkey B made a mean average of
89.736 49.42 errors per session (range 17–199), giving a mean error
rate of 29.096 11.61% across all sessions (range 7.83–49.87%).

For Monkey A, errors tended to occur on individual trials, with few
trials with consecutive errors; the average length of consecutive errors
for monkey A (i.e., including only errors that were followed by another

Figure 1. A BDM task for monkeys. A, Five fractals indicating five specific volumes of same fruit juice. B,
Gey rectangles indicating pay-out of water budget. Each trial started with a new water budget of 1.2 ml.
Monkey bids and computer bids are indicated by red and green bars, respectively (higher = more). Top,
Winning the auction (monkey bid � computer bid) resulted in receiving the water volume remaining above
the green bar (second-price auction) plus the desired fruit juice volume 0.5 s later. Bottom, Losing the auction
(monkey bid, computer bid) resulted in receiving the full water budget but no fruit juice. C, Bidding task.
The monkey placed a bid by moving the red cursor up-down via pushing-pulling a joystick. Then the com-
puter bid appeared (green bar). Then the BDM result was paid out as described in B.
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error) was 1.266 1.25 across all sessions, and this animal never had .5
consecutive error trials. By contrast, Monkey B at times failed to attend
to the task for long strings of consecutive trials; reflecting this, the aver-
age length of consecutive errors for Monkey B was 3.116 1.04, with up
to 30 consecutive error trials in one session (session 23).

Analysis of joystick movement also suggested that most errors were
because of inattention to the task for both monkeys. For Monkey A,
there was no movement of the joystick in 400 of 433 error trials (92.4%
of error trials), and for Monkey B there was no movement of the joystick
in 2266 of 2655 error trials (85.35% of error trials).

BC procedure
The most important factor motivating the design of our stochastic
BC task was the elicitation of value for comparison with BDM bids
while maintaining a perceptual and economic equivalence between
the tasks. Thus, the same stimuli and rewards were used in both
tasks, and the timings of analogous stimulus changes, choice

periods, behavioral requirements, and reward events were the
same between them (Fig. 2B).

The beginning of each BC trial was signaled by a white cross at the
center of the monitor during a 0.5-s Preparation epoch. This was fol-
lowed by an Offer epoch with presentation of two options on either side
of the monitor: one of the options consisted of a bundle formed of a spe-
cific juice volume (indicated by a specific fractal) together with a variable
volume of water budget (quantitatively indicated by the gray area above
the green line), and the other option consisted of the fixed full water
budget (BT; indicated by the full gray rectangle). The side on which each
of these options appeared was randomized on each trial. A dark-red
circle (choice cursor) also appeared at the center of the monitor. The
Offer epoch was presented for a variable time, with mean 26 1 s with a
flat hazard rate.

After the Offer epoch, the monkey used the joystick to move the
choice cursor left/right within the confines of the monitor. The begin-
ning of this Choice epoch was indicated by a color change of the choice

Figure 2. Timeline of BDM and BC tasks. A, BDM task. A cross during the Preparation epoch prompts the monkey had to maintain grasp of a joystick (blue line, Hold) and keep it in a central
position (left green line, Center). In the subsequent Offer epoch, the monkey was presented with a fractal image indicating the volume of juice to bid for; the full water budget; and the bid cur-
sor’s starting position. The Bidding epoch began after a variable delay governed by a flat hazard function. Now the monkey was free to move the red bidding cursor via the joystick within the
gray vertical rectangle. Each bid was made by the monkey stabilizing the cursor at the desired position for .250 ms after it had moved it there to place a bid (orange line, Stabilization).
Failure to make a bid within the 6-s bidding period, or joystick release before the end of this period, resulted in trial termination and constituted an error (for tabulated numbers, see Extended
Data Figs. 2-1, 2-2). Joystick movement outside the Bidding epoch also constituted an error. The computer bid was displayed after the Bidding epoch (and the monkey turned the joystick-cur-
sor back to the central position and held it there without moving the cursor, right green line, Center). If the monkey’s bid was higher than the computer’s (win), the budget bar below the com-
puter bid was occluded and the monkey received the remaining water budget at the end of the Budget epoch, and the juice at the end of the Juice epoch. Otherwise (loss), the full 1.2-ml
water budget was delivered at the end of the Budget epoch, but no juice was delivered. Trials were separated by a variable intertrial interval (ITI) of 46 1 s. B, BC control task. Stimuli,
rewards, delays after stimuli and movements were the same as in the BDM. The same behavioral requirements applied at equivalent epochs (blue, orange, and green lines): centering of joy-
stick in the Offer epoch; stabilizing of bid cursor position in the Bidding epoch; and no joystick movement allowed outside of the Bidding epoch.
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cursor. The monkey had 6 s to make a choice and did so by maintaining
a given choice cursor position for.0.25 s, choices also had to fall within
the rightmost/leftmost third of the monitor, where the choice cursor
changed color from red to blue. Following stabilization of the choice cur-
sor’s position, it could no longer be moved. The monkey had to wait
until the end of the 6-s choice period regardless of when they had stabi-
lized the choice cursor, and so could not alter reward rate or temporal
reward discounting by making choices more/less quickly. Failure to sta-
bilize their choice cursor within the 6-s Choice epoch resulted in abor-
tion of the trial with an error.

The Choice epoch was followed by a 1-s Outcome epoch, which
began with the unchosen option disappearing from the monitor. After
this, the 1.5-s Budget epoch began: if the bundle was chosen then the
water budget difference between the bundle and BT was occluded at the
beginning of this epoch, otherwise, if the monkey had chosen BT, then
no further stimulus changes took place. In either case the volume of
water indicated by the chosen option was delivered at the end of the
Budget epoch.

Finally, trials ended with a 0.5-s Juice epoch which immediately fol-
lowed water delivery. If the monkey had chosen the bundle, then the

fractal was surrounded by a red border and the indicated volume of juice
was delivered. Otherwise, no stimulus change took place, and no juice
was delivered at the end of the Juice epoch.

Trials were interleaved with intertrial intervals of random duration
(46 1 s, conforming to a truncated exponential function). The monkeys
were required to maintain hold of the joystick from the Preparation
epoch to the end of the Choice epoch, and always had to maintain the
joystick in a central position, except during the Choice epoch; all other
behaviors were considered as errors and led to the trial being aborted.
All errors resulted in the same blue error monitor, error sound, and a
delay of 3 s plus the remaining trial time without further liquid delivery.

Monkey A made 378 errors in 2378 BC trials (15.90%) and Monkey
B made 721 errors in 2721 trials (26.50%). For both monkeys most errors
were because of long strings of consecutive trials during which they did
not engage in the task.

Stimulus training
We trained each monkey to associate fractal visual cues with different
volumes of the same juice over a period of twomonths of daily training
(Fig. 3A). At this stage, the monkeys were also trained to maintain hold

Figure 3. Stepwise learning of stimulus-juice associations. A, Initial learning to associate each of five unique fractal images with five specific juice volumes. Fractals were surrounded by a
red border 0.5 s before juice delivery, as in the final BDM and BC tasks. At this point, the monkey was also taught to maintain hold of the joystick throughout Preparation and Offer epochs
(blue line, Hold); otherwise trials were considered erroneous and aborted. Monkeys each completed 20 of these training sessions to learn the stimuli associated with each of the five juice vol-
umes used. B, Subsequent learning to associate the budget bar with water budget volumes. The monkey was presented with a gray bar stimulus whose full area represented 1.2 ml of water.
Then a green cursor, as later used to indicate the computer bid in the BDM, appeared at a random location on the vertical rectangle, and the area of the rectangle below was occluded. The
monkeys received the remaining volume of water (% of remaining gray area� 1.2 ml) at 1.5 s after occlusion of the rectangle below the computer bid cursor, as in the final BDM and BC tasks.
Monkeys each completed 20 of these training sessions to learn the budget bar stimulus contingencies. C, Learning the relative timing of delivery of water budget and juice. The monkey was
presented with both stimuli concurrently. Both the BDM and BC tasks had identical timing of water delivery (from the point at which the budget bar was occluded below the green cursor) and
juice delivery (0.5 s later). Monkeys each completed 20 sessions of these training sessions.
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of the joystick for each trial to progress to juice delivery. This hold
requirement was used in all subsequent training procedures and both
the BDM and BC tasks as detailed above.

The monkeys then learnt to associate the gray area of the budget bar
with a corresponding volume of water over another month of training
(Fig. 3B). On each trial, the green cursor stimulus used to indicate com-
puter bids in the BDM task appeared at a random location on the budget
bar, and the area of the bar below this was occluded. The monkeys
received a volume of water proportional to the remaining gray budget
area, with the full area predicting 1.2 ml of water.

We then trained the monkeys in sessions in which both the juice and
water budget appeared concurrently over a period of approximately
onemonth (Fig. 3C). The indicated volumes of water and juice were
then delivered in the same order and with the same delay that would be
used in the BDM task.

Joystick training
After the monkeys had learnt the stimulus-reward associations, they
were trained to operate the joystick over a period of threemonths. For
left/right movement, monkeys were first trained on a BC task, with
budget bars presented on either side of the monitor (Fig. 4A). On each
trial, monkeys had to move a red circular cursor from the center of the
monitor to their preferred side within a 6-s choice epoch. The cursor
changed color from red to blue at the rightmost or leftmost third of the
monitor to indicate that the cursor had been moved far enough to
choose the offer on that side. The monkeys then had to stabilize the cur-
sor in a given position to indicate that a choice had been made, otherwise
the trial would end with an error. We started by presenting budget bars
offering large differences in water volume and gradually reduced the dif-
ference in volume between the two offers as the animals came to reliably
choose the option with the most water. This task taught the monkeys

Figure 4. Joystick training tasks. A, Horizontal movement. Monkeys moved a red circle on the monitor by making left/right movements of the joystick from a central holding position. The
monkey moved the circle into the left or right third of the monitor and stabilized its location for 250 ms, by recentering the joystick, to state its choice. Each monkey performed this task with
two different water volumes on either side, as such this task also confirmed that monkeys’ understanding of the budget bar stimulus. On a subset of these trials, we eliminated any possible
choice bias by adjusting the gain of joystick movement on either side until identical water volumes were chosen with equal probability. Monkeys each completed 20 of these training sessions
to learn left/right movement of the joystick for performance of the BC task. Monkeys were considered to have learnt the task to a sufficient degree when they chose the strictly better option
.95% of the time in each direction. B, Vertical movement. With similar task epochs and task requirements as the initial choice task (blue, orange, and green lines). The monkey was taught
to move a cursor vertically on the monitor with forward/backward movements of the joystick. The monkey had to move a red cursor into a randomly positioned blue target area. If it placed
the cursor successfully into the target area, the computer bid appeared, and the monkey received the juice and water after the same delay and with the same contingencies as in the BDM task
(i.e., only receiving the juice and paying losing some water if their bid was greater than the computer’s bid). If the cursor was not secured within the target area in the Move epoch, then no
further stimulus change took place until trial end, and all rewards were withheld. The height of the blue target area was progressively reduced as the monkey’s performance improved, until
the target area was 1/10th of the height of the budget bar. Note that these training sessions were essentially equivalent to the final BDM task but with forced bids. Monkeys each completed
40 of these training sessions to learn accurate up/down movement of the joystick for use in the BDM task. Monkeys were considered to have learnt the task to a sufficient degree when they
could accurately place their bid in the target region.95% of the time for each location in the budget bar (targets appeared across the budget bar in each of 10 equally sized target areas).
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left/right movement of the joystick for the final BC task and confirmed
that they understood the significance of the gray area of the budget bar.
We also trained the monkeys in a version of this task in which both stim-
uli offered the same volumes of water, such that neither should be pre-
ferred. Given the lengthy periods of joystick training, we had time to
eliminate any side bias, and we altered the joystick gain in left/right
directions such that each of the left and right equally rewarded options
were chosen with equal probability.

Finally, the monkeys were trained to move the bid cursor by moving
the joystick forwards/backwards. They performed a task in which there
were both juice and budget bar cues, like the final BDM task, however,
in this case they had 6 s to move the bid-cursor into a blue target area
which appeared at a random location on the budget bar (Fig. 4B). The
bid cursor had to be stabilized within the target area, otherwise the trial
would end because of failure to meet the stabilization requirement. This
would therefore act as a forced bid, and the rest of the trial proceeded as
in the BDM task, with the appearance of a green cursor at a random
height and receipt of either some water and juice or the full volume of
water, depending on the relative locations of the monkey’s red cursor
and the randomly generated green cursor. As monkeys’ performance
improved, we gradually decreased the size of the blue target’s height,
until they could reliably perform the task with a target that was 1/10th of
the total budget bar height.

Joystick control
Voltage outputs for joystick movement in both axes were separate, and
in the central position the voltage output was 0 V. A maximal forward or
rightward movement produced an output of 5 V, and a maximal back-
ward or leftward movement produced an output of �5 V. The positions
of on-monitor cursors were modulated by the following equations,
where G is the gain or amplification applied to the voltage modulation,
V, and P is the pixel position of the center of the cursor at time T:

DT ¼ GV
PT ¼ PT�11DT

.
Thus, the value of P changes more quickly with greater deflections of

the joystick. In the BDM, forward and backward deflections of the joy-
stick move the bid cursor up and down the budget bar, with the maxi-
mum and minimum values of P being limited to the top and bottom
pixel positions of the budget bar. In the BDM, the value of G was the
same for movements in both directions.

In the BC task, the value of G depended on whether V took a positive
or negative value, thus the gain could be set differently for rightward/
leftward joystick movements. This feature counteracted the effects of
side-bias on the animal’s choices. Values of G were set for each direction
such that the monkeys made choices without a statistically significant
side-bias when both the left and right-hand-side offers were the same.

The monkeys found it difficult to hold the joystick perfectly still in
the central position, so a window of tolerance for slight movements was
necessary to prevent small erratic deflections of on-monitor cursors dur-
ing choice/bidding epochs. A minimum threshold of 2% of the maximal
voltage displacement was applied in every direction, such that any out-
put with an absolute magnitude of 0.1 V or less was treated as a 0 V
modulation and did not produce any deflection of on-monitor cursors.

For tight control of monkeys’ movements, we enforced three behav-
ioral requirements relating to joystick control, failure of which led to a
blue error monitor for a duration equal to the remaining trial time plus
3 s, and with no reward for that trial: (1) hold requirement: the monkeys
had to maintain hold of the joystick throughout choice/bidding epochs
and in all epochs preceding them, as detected by a built-in touch sensor;
(2) center requirement: the monkeys had to maintain the joystick in a
central position outside of the choice/bidding epochs, such that only
deflections leading to voltage outputs less than or equal to 0.1 V were tol-
erated in all other epochs; and (3) stabilization requirement: the mon-
keys had to stabilize on-monitor bid and choice cursors in their desired
final position for 250 ms, such that the voltage output was less than or
equal to 0.1 V for 500 consecutive samples at 2 kHz. This indicated a

purposeful choice and had to be completed within the 6 s allocated to
the choice/bidding epochs.

Statistical analysis of BDM bids
To evaluate how well monkeys’ bids reflected increasing juice volumes
on individual days of BDM testing, or “sessions,” we used Spearman
rank correlation (MATLAB: corr) between bids and juice volumes that
assumes a monotonic, but not necessarily linear, relationship between
the two variables. The bids in BDM reflect the subjective reward value of
the item the agent bids for or, more formally, the economic utility of the
item. However, the metric of utility in our BDM was the physical
amount (milliliters) of the water the animal “paid” from the budget,
rather than being utils. To express subjective value properly in utils
would have required estimation of a utility function for water separately
for each animal. While our monkeys show different degrees of nonli-
nearity in riskless and risky utility functions for various liquids (Stauffer
et al., 2014; Genest et al., 2016; Bujold et al., 2021), the current absence
of an empirically estimated utility function for water would render the
utility of the measured bids basically uninformative. Nevertheless, we
aimed to obtain supplementary confirmatory information on the bid-
juice relationship by using other models, including a linear function, two
power functions and a two-parameter Prelec function (Prelec, 1998). As
we pooled across different sessions for these preliminary analyses, we
used mixed-effects models with a fixed-effect of reward volume and a
random-effect of session number (we performed further analyses on
individual sessions, as values and preferences may vary from between
days of testing). We tested both linear mixed-effects models (MATLAB:
fitlme) and nonlinear mixed-effects models (MATLAB: fitnlm).

We also wanted to assess how distinct monkeys’ mean bids were for
different juice volumes in individual sessions. We used one-way
ANOVAs (MATLAB: anova1) to test whether mean bids for different
juice volumes were different to one another in each of the 30 BDM ses-
sions. For these and all other ANOVAs, we also present the v2 measure
of effect size for different factors. Post hoc Bonferroni tests for multiple
pairwise comparisons (MATLAB: multcompare) were performed to find
which juice volumes received mean bids that were significantly different
to one another, thus reflecting how well monkeys’ bids discriminated
different juice volumes.

Within those sessions in which monkeys’ mean bids reliably discri-
minated all five juice volumes (i.e., all sessions for Monkey A and 21/30
sessions for Monkey B), we identified how quickly they achieved this.
We found the first trial, Tn, for which a one-way ANOVA and
Bonferroni-corrected multiple comparisons tests over mean bids were
significantly different for all juice volumes and had also been significant
for the 10 trials preceding this, Tn-10 – Tn.

We performed an unbalanced two-way ANOVA (MATLAB:
anovan) on monkeys’ bids with main factors of juice volume and bid
starting position condition to explore the relative influence of motor
contingencies, which vary with starting position. To interrogate the
effects of the starting location of the bid cursor on monkeys’ final bids
more closely, we performed a multiple regression analysis (MATLAB:
fitlm) on bids, with regressors for the juice volume (JV) and the interac-
tion between each juice volume and the bid cursor’s exact starting posi-
tion (SPJV=Xml), according to Equation 2. For each animal, this
regression analysis was conducted separately for each of the 10 random
starting position sessions, finding the mean value of the coefficient for
each regressor across sessions. As bid cursor position was expressed in
terms of the corresponding bid volume, all regressors had the same units
and scale and could therefore be compared directly (see Results). For
Monkey A, B0 = 0.056 0.1 (mean 6 SD); B1 = 1.386 0.14; B2 =
�0.116 0.12; B3 = �0.176 0.1; B4 = �0.046 0.06; B5 = 0.026 0.05;
B6 = �0.026 0.04. For Monkey B, B0 = �0.036 0.07; B1 = 1.426 0.24;
B2 = 0.046 0.07; B3 = �0.026 0.05; B4 = 06 0.05; B5 = 0.026 0.1; B6 =
06 0.16.

Statistical analysis of BC value estimation
We used choices the BC task to estimate the water equivalents of differ-
ent apple and mango juice volumes. Using a logistic regression model,
we estimated regression by fitting the probability of choosing the full
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1.2-ml water budget, P (B choice), for each of the bundles, which con-
tained variable water volumes, Bx. Each bundle in this analysis was
expressed in terms of the difference in water volume between it and the
full budget option, DB = B – Bx.

For each of the five volumes of juice, we fitted the logistic function
(MATLAB: fitglm) of the following form onto the choice data from the
BC task:

PðBchoiceÞ ¼ 1=ð11 e–ða1bðDBÞÞÞ:

The value of DB at which P (B choice) is equal to 0.5 is an estimate of
the monkey’s water-value for the volume of juice which appeared in that
set of bundles. In this case, a is a measure of choice bias and b is a mea-
sure of the monkey’s sensitivity to changes in the volume of water avail-
able in the budget options. Note, even if DB is replaced by the ratio of
water volumes in the bundle and full budget option, as is the case in
some BC analyses, we arrive at the same estimates of water value because
the volume of water in the budget-only option is constant in this task.

We conducted this analysis on each of the 10 BC sessions for each
monkey, but choices were too variable and trials too few to attain reliable
value estimates using individual sessions. The monkeys were tested in
five BC sessions preceding BDM testing and five BC sessions after BDM
testing to detect any change in the values of the juice volumes across the
period of BDM testing. No significant change in mean value estimates
was detected. We therefore pooled all 10 BC sessions for each animal to
acquire better estimates of their average values for these five juice vol-
umes, using the method described above. These acted as our best esti-
mates of the monkeys’ values.

If BC value estimates are taken as the monkeys’ true values for each
juice volume, then the optimal bid should be equal to the BC value esti-
mate, except where the estimated value is greater than the maximum bid
of 1.2 ml, in which case the optimal bid is equal to this maximal volume.
This was only the case for Monkey A’s value for the 0.75-ml apple and
mango juice.

How well monkeys’ bids reflected the BC value estimates was deter-
mined using a simple linear regression (MATLAB: fitlm) on bids with
the BC value estimates for each juice volume as the sole predictor (see
Results).

The BC value estimates were also used to compute each monkey’s
total payoff in terms of water for each trial, as well as the payoffs of opti-
mal and random simulated bidders (see Results and following section on
simulation methods, Simulated bidding). This was not possible for the
0.75-ml juice volume, for which Monkey A’s value could not be identi-
fied, and as such trials for that juice volume were excluded from those
analyses.

Simulated bidding
We simulated four types of decision-maker for the BDM task: an opti-
mal decision-maker who always bid the monkey’s exact BC value for
each juice volume; a random decision-maker who always made a com-
pletely random bid drawn from a uniform distribution with support
[0,1.2]; an overbidding decision-maker who always bid the monkey’s
exact BC value plus 0.2 ml; and an underbidding decision-maker who
always bid the monkey’s exact BC value minus 0.2 ml.

These simulated bidders were presented with the same juice presen-
tations that each monkey faced over 30 BDM sessions of 200 trials each
(although trials in which the 0.75-ml juice was presented were excluded
for Monkey A as his value for that juice volume and therefore the pay-
offs, could not be computed; see above at end of section ‘Statistical anal-
ysis of BC value estimation’). The computer bids for each juice volume
were the same as those that each animal faced. BC values were substi-
tuted for juice volumes so that payoffs were always expressed in terms of
the equivalent volume of water. The mean per-trial payoff was then cal-
culated for each juice volume by dividing the total payoff for that reward
by the number of times that reward was presented. This process was
repeated separately for each animal.

These simple simulations provided an idea of how each monkey per-
formed in terms of behaviorally relevant outcomes, on a spectrum from
completely random behavior to mechanically perfect rational bidding

(i.e., with no motor or decision noise), taking the BC values as our best
independent estimate of the monkey’s water value for each juice reward.

Juice-delivery error
To deliver juice and water in our tasks we used a solenoid delivery sys-
tem, with opening time controlled by voltage pulses. There was an
approximately linear relationship between solenoid opening time and
the volume of water/juice delivered, and we tested and calibrated the
opening times so that we could deliver the appropriate volumes of the
different liquids in the task. Calibration of the solenoid systems showed
a mean SD of 0.06 ml at any given opening time.

This degree of variability in the volume of liquid delivered at a given
solenoid opening time could limit the animal’s ability to discriminate the
small differences in expected payoffs that result from different bids in
the BDM, as these variations in liquid volume may be indistinguishable
from the variability of the solenoid itself.

Increasing water budget volume and juice volume reduces the rela-
tive magnitude of the solenoid’s variability in liquid delivery, as the SD
of the delivered volume is the same regardless of the mean volume
delivered.

These considerations motivated the use of larger liquid volumes in
the BDM task. With a larger water budget volume, expected losses are
greater for the same pixel distance displacement of the bid cursor from
the optimal bid, and the relative contribution of variability in the sole-
noid delivery is reduced. Thus, monkeys should be able to discriminate
differences in expected payoff at smaller relative distances between the
actual and optimal bids.

Results
Analysis of BDM bids
Rank ordered bidding
Once BDM training was concluded, we advanced to testing per-
formance in the BDM task using the final version of the task
design detailed above. Figure 5 shows mean bids from all ses-
sions in both monkeys and post hoc comparisons of means (for
earlier task versions, see Fig. 6). For both animals, there were sig-
nificant differences between bids for the five juice volumes with
all three starting positions of the bid cursor (bottom: B-BDM;
top: T-BDM; random: R-BDM; one-way ANOVA in each of the
30 sessions, p, 0.05: Monkey A: F= 176.42–392.36; Monkey B:
F= 40.17–166.76; Extended Data Fig. 5-1). Post hoc t tests
(Bonferroni-corrected for multiple comparisons) confirmed sig-
nificant differences in all pairwise comparisons of mean bids for
the five juice volumes in each of the 30 BDM sessions for
Monkey A (all p, 0.05), and in 21 of the 30 sessions for Monkey
B (p, 0.05). With Monkey B, bids differed significantly with all
but one pair of juice volumes in eight sessions and two pairs in
one session. There were no specific factors explaining Monkey
B’s low, although still mostly differential, bids in the early ses-
sions with the top cursor starting position (Fig. 5B, T-BDM, ses-
sions 11–14). Possibly the low bidding was carried over from the
preceding sessions with cursor starting positions at the bottom
(B-BDM); the bids recovered subsequently with increasing expe-
rience from the more frequent BDM loss from underbidding
(sessions 15–20). Taken together, the monkeys made distinct but
noisy bids for different rewards.

Both animals consistently placed monotonically increasing
bids for the five juice volumes (Fig. 7A,B). This positive mono-
tonic relationship between bids and juice volume was significant
in each of the 30 BDM sessions for both monkeys (Monkey A,
Spearman Rho= 0.916 0.02; mean 6 SD; Monkey B, Spearman
Rho=0.816 0.05; all p, 0.05; Table 1). Thus, the animals
appropriately ranked the five juice volumes, and thus stated
increasing subjective value for increasing juice volumes. More
refined analyses in terms of juice utility revealed by the bids
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would have required estimation of the specific utility functions
for the water the animals “paid” for obtaining the desired juice
(see Materials and Methods). Nevertheless, to substantiate
the results from the Spearman analysis on the relationship
between bids and juice volume, we found better fits with a
linear function compared with nonlinear power and Prelec
functions, thus confirming the bidding monotonicity
(Extended Data Fig. 7-1).

Moreover, whenever the animals achieved complete separa-
tion of all bids, they also achieved this before the end of the 200
correct trials that constituted a single testing session. On average,
Monkey A needed 105.76 38.4 trials (n= 30 sessions), and
Monkey B needed 1486 30.1 trials (n=21 sessions) to achieve
complete separation of bids (Fig. 7C,D).

We applied stringent and conservative criteria to detect
adequate separation of bids. We labeled the trial by which this
was achieved as the 10th trial in a row for which all mean bids
had been statistically significantly different (a level of 0.05; with
Bonferroni correction for multiple comparisons; see Materials

and Methods, Statistical analysis of BDM bids); at this point, bids
had been consistently well separated for some time.

Furthermore, we tested the animals with five distinct rewards
in each session. In many tasks animals discriminate only between
two or three different rewards. To approximate how well the
BDM might be used to discriminate smaller sets of rewards, we
performed the above analysis but taking combinations of two
rewards, three rewards, and four rewards only, ignoring data for
other rewards. For each session we again found the first trial by
which mean bids for these rewards could be statistically discrimi-
nated in each session (Fig. 9), revealing an expected linear rela-
tionship between the number of rewards tested and the point at
which all means differed significantly for 10 consecutive trials.

Thus, the BDM could be used with fewer rewards to reliably
distinguish bids using fewer trials. To further characterize the
relationship between bid differentiation and number of bids for a
given reward, we next looked at the first N trials for each of the
five rewards for every session and used only these to perform
Spearman’s rank correlation of bids on reward volumes, as well

Figure 5. BDM bids in individual sessions. For tabulated numbers, see Extended Data Figure 5-1. Sessions are numbered chronologically. A, Monkey A. All mean bids for each of the five juice
volumes differed significantly in all 30 sessions. Error bars are 95% confidence intervals of the mean. In sessions 1–10, the bid cursor started at the bottom of the budget bar (B-BDM); for ses-
sions 11–20, the cursor started at the top of the budget bar (T-BDM); and for sessions 21–30, the cursor started at a random position on the budget bar (R-BDM). Each session was composed
of 200 correct trials. B, Monkey B. Mean bids differed significantly in 21 of the 30 sessions. In eight sessions (1 B-BDMs; 4 T-BDMs; 3-RBDMs), the mean bids for two juice volumes differed
insignificantly. In session 6 (B-BDM), the mean bid for the 0.30-ml juice differed insignificantly from those of either the 0.15- or 0.45-ml juice volumes; * in brackets indicates insignificant dif-
ference of mean bids after Bonferroni correction for multiple comparisons (a = 0.05).
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as one-way ANOVA and post hoc t tests,
to identify significant differences in bids
across the five juice volumes. Figure 10
shows the mean Spearman’s Rho (and p
value) across sessions and the mean
number of significantly different pairwise
comparisons between all five reward vol-
umes (and their mean p values) for every
value ofN between 2 and 20.

These analyses show that a significant
positive monotonic correlation between bids
and reward volumes was achieved in as few
as two trials for each of the five rewards for
both monkeys (Fig. 10A,B). However far
more trials were required to increase the
number of significantly different pairwise
comparisons of mean bids between the
five different reward volumes (Fig. 10C,D),
reflecting the greater difficulty of separating
noisy bids for five different rewards. Indeed,
as suggested by the preceding analysis of
smaller reward sets, reducing the number of
rewards in the task would counter this.

Beyond such a significant positive cor-
relation between bids and reward vol-
umes, we were interested in how quickly
monkeys could correctly rank all rewards
with their bids. Within each session, both
monkeys’ bids ranked all five rewards

according to their reward volumes long before the end of the ses-
sion. For Monkey A, this was typically achieved by trial
18.56 11.8, with a significantly positive correlation between bids
and reward volumes at this point (Spearman’s Rho=0.876 0.08).
Similarly, Monkey B typically required only 19.66 12.4 trials to
achieve this (Spearman’s Rho=0.746 0.14).

Thus, the monkeys were both consistent in their ranking of
rewards and in the precision of their bidding such that bids reli-
ably reflected preferences and distinct subjective values for differ-
ent rewards relatively early in each session, and within a single
session of testing. These results demonstrate that monkeys were
able to use the BDM to truthfully express reward values.

Development of final BDM task
We used several successive steps to train both animals in the
BDM task. First, they learned to associate different fractals on a
computer monitor with different juice volumes. Then they
learned to associate the budget bar on the computer monitor
with different volumes of water. We also accustomed them to the
sequential delivery of the water budget and the offered juice.
They then learned to use a joystick to move the bid cursor and
receive the different outcomes (win/loss) depending on the posi-
tion of the computer bids relative to their own.

We then introduced the monkeys to various preliminary BDM
task versions, using essentially similar types of fractal stimuli for jui-
ces but different volumes of juice reward and different volumes of
water budget. We limited initially the reward volume in each trial
such that the animal completed as many trials as possible on a test
day. In earlier, reduced versions of the task with only three juice vol-
umes and a lower budget volume, the monkeys ordered their bids
according to their preferences, but their bids were inconsistent and
poorly differentiated (Fig. 6). We reasoned that while the relative
cost of deviating from the optimal bid is unchanged by changing
the budget volume, the absolute cost of a given deviation in terms

Figure 6. Performance in early BDM task versions. Juice volumes were selected from performance in a preceding BC task such that
their values covered a wide range of possible bids. All bids started at the bottom. Error bars show 95% confidence intervals of the
mean. Data shown for Monkey A. A, Early version of BDM task with small water budget volume (0.6 ml) and three small juice volumes
to be bid for. Small volumes maximized the number of trials in each session before satiety set in; however, bids were not well differ-
entiated, and the correlation between juice volumes and bids was weaker than in later task versions (mean Spearman
Rho= 0.456 0.25). Asterisks indicate insignificantly varying mean bids after Bonferroni correction for multiple comparisons (a =
0.05). B, We hypothesized that an increase in the water budget and juice volumes would lead to more careful bidding as the absolute
losses for a given deviation in terms of distance from the optimal bid would be increased. We therefore doubled the water budget vol-
ume to 1.2 ml and used larger juice volumes, such that the range of juice reward values covered this wider range of possible bids.
This led to a marked performance improvement, with mean bids for all juice volumes being significantly different to one another in
every session. Moreover, the correlation between juice volumes and bids was markedly and consistently stronger than in the lower
budget volume version of the task shown in A (mean Spearman Rho= 0.806 0.03).

Table 1. Spearman rank correlation between bids and juice volume

Monkey A Monkey B

Condition Session Rho p Rho p

Bottom
start BDM

1 0.87 1.44 � 10�63 0.81 3.26 � 10�47

2 0.91 1.27 � 10�75 0.84 6.30 � 10�55

3 0.90 6.00 � 10�74 0.84 1.88�10�55

4 0.91 2.77 � 10�77 0.77 8.62 � 10�41

5 0.92 3.55 � 10�80 0.73 6.65 � 10�34

6 0.90 2.31 � 10�71 0.74 1.57 � 10�36

7 0.89 1.15 � 10�69 0.82 6.52 � 10�51

8 0.91 1.24 � 10�76 0.80 3.90 � 10�45

9 0.93 5.42 � 10�91 0.72 5.84 � 10�33

10 0.91 8.48 � 10�76 0.77 4.62 � 10�41

Top start BDM 11 0.91 4.98 � 10�79 0.72 6.99 � 10�33

12 0.93 2.79 � 10�88 0.76 2.45 � 10�39

13 0.92 2.24 � 10�82 0.77 3.69 � 10�41

14 0.91 1.54 � 10�76 0.81 3.31 � 10�47

15 0.89 4.89 � 10�69 0.86 1.98 � 10�58

16 0.92 2.95 � 10�83 0.80 1.60 � 10�45

17 0.93 1.17 � 10�89 0.83 8.79 � 10�52

18 0.92 7.82 � 10�83 0.87 3.79 � 10�62

19 0.92 4.56 � 10�85 0.83 1.39 � 10�52

20 0.93 2.29 � 10�85 0.87 4.72 � 10�63

Random
start BDM

21 0.89 6.81 � 10�68 0.85 1.32 � 10�57

22 0.89 2.68 � 10�71 0.75 4.49 � 10�38

23 0.89 6.28 � 10�70 0.74 1.87 � 10�36

24 0.89 3.26 � 10�68 0.81 1.59 � 10�47

25 0.94 2.55 � 10�94 0.67 1.25 � 10�27

26 0.90 3.18 � 10�72 0.81 3.30 � 10�47

27 0.93 5.74 � 10�88 0.80 1.02 � 10�45

28 0.91 1.25 � 10�76 0.85 6.03 � 10�57

29 0.93 3.82 � 10�87 0.86 5.06 � 10�59

30 0.92 1.73 � 10�83 0.88 1.12 � 10�65

Juice volume was measured in ml. Each of the 30 sessions in each animal is comprised of 200 trials.
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of distance on the monitor, or movement of the joystick,
is increased when larger rewards are on offer (Fig. 8).
With successively larger volumes of juice and water, bid-
ding behavior improved, both in terms of correlation
strength between bids and juice magnitude, as measured
by Spearman rank correlation, and in terms of separation
of bids for different juice volumes. For example, in an
earlier task version with 0.6 ml of water as budget,
Monkey A’s mean Spearman Rho for the correlation
between bids and juice magnitude was 0.466 0.085,
compared with 0.916 0.02 in the final task. Similarly, for
Monkey B, using 0.9 ml of water as the budget resulted
in a mean Spearman Rho of 0.316 0.26 for this correla-
tion, compared with 0.816 0.05 in the final BDM ver-
sion. The larger volume limited the daily total trial
numbers to 200.

Because of time constraints in testing earlier versions
of the task, we changed several parameters at once
(including juice type, magnitude and timing of stimulus
presentation and reward delivery) and were unable to
implement each change alone followed by a significant
period of testing. This made it difficult to attribute any
improvement in performance to a single parameter
change or manipulation of the task structure.
Nevertheless, the improvements we observed using
larger budget volumes in these unstructured prelimi-
nary tests guided our approach in using a larger budget
volume for the final BDM task presented here.

Control for action effects
Both monkeys’ bids discriminated all juice volumes regardless of
initial cursor position (Fig. 7E,F). Two-way unbalanced ANOVAs

with factors of juice volume, bid cursor starting condition, and their
interaction demonstrated a highly significant effect of juice volume
on the monkeys’ bids (Monkey A: F(4,5985) = 6889.46, p, 0.001, v2

= 0.82; Monkey B: F(4,5985) = 2353.17, p, 0.001, v 2 = 0.58; Table 2).
Bid cursor starting position had a smaller but still significant effect
(Monkey A: F(2,5985) = 7.18, p, 0.001, v 2 = 3.67� 10�4; Monkey

Figure 7. Increasing BDM bids with increasing juice volume, regardless of bid cursor starting position. Top panels show session 28 for Monkey A, and bottom panels show session 27 is
shown for Monkey B (sessions chosen as Rho for these was closest to mean Rho across all sessions for each monkey). For tabulated numbers, see Table 2 and Extended Data Figure 7-1. A, B,
Monotonic increase of bids with juice volume in single sessions. Boxplots center lines show the median and notches show 95% confidence intervals of the median, boxplot edges mark inter-
quartile range. Colors for juice volumes apply to all panels. C, D, Development of differential bidding across consecutive trials (same sessions as shown in A, B). Mean bids for all juice volumes
became significantly different by trial 114 (Monkey A) and 170 (Monkey B; p, 0.05, Bonferroni corrected t test; gray dashed lines). Solid lines show mean bids, shaded areas show 95% confi-
dence intervals. E, F, Similar discrimination of juice volumes by bids regardless of bottom (B), top (T), or random (R) starting position (means of mean bids across all 10 sessions (N= 2000 trials
in each monkey) for each starting position). G, H, Mean b coefficients from regression on juice volume and random starting position of bid cursor, for all five juice volumes (all 10 sessions in
each monkey; N= 2000 trials in each monkey; Eq. 2). Bids varied significantly with cursor starting position only for the two smallest juice volumes with Monkey A (G; maroon, green). Error
bars: 95% confidence intervals of the mean.

Figure 8. Increasing the number of rewards increases the number of trials required to achieve consistent
statistical separation of bids. We generated different combinations of two, three, or four rewards and found
the first trial by which bids for these different rewards differed statistically significantly to one another for 10
consecutive trials. Here, we show the mean trial number, across sessions, by which this was achieved for two,
three, and four rewards for both Monkeys A and B. The data using all five rewards are shown for comparison.
There was a significant positive relationship between the number of rewards being bid for and the number of
trials required to achieve such separation of bids (Pearson’s R= 0.79, p=6.17� 10–27 for Monkey A;
Pearson’s R= 0.88, p=7.58� 10–27 for Monkey B). Error bars are 95% confidence intervals of the mean.

1520 • J. Neurosci., February 23, 2022 • 42(8):1510–1528 Al-Mohammad and Schultz · Monkey Auction

https://doi.org/10.1523/JNEUROSCI.1275-21.2021.f7-1


B: F(2,5985) = 148.94, p, 0.001, v2 = 0.018). The interaction between
juice volume and starting position was also significant (Monkey A:
F(8,5985) = 13.55, p, 0.001, v 2 = 3� 10�3; Monkey B: F(8,5985) =
55.86, p, 0.001, v 2 = 0.027). Thus, while the starting position of
the bidding cursor affected bidding to some extent, differential bid-
ding for juice volume remained significant regardless of the starting
position and the juice volume accounted for most of the variance in
bids.

To interrogate the influence of motor contingencies on bid-
ding more closely, we further analyzed the bids from the 10
sessions in which the cursor’s starting position varied randomly
(R-BDM). In these sessions, the bid cursor appeared at a random
vertical position, requiring different joystick movements to
achieve the same bids from trial to trial. We regressed the mon-
keys’ bids on both juice volume (JV) and cursor starting position
(SP) for each of the 10 R-BDM sessions individually, such that:

Bid ¼ b 0 1 b 1 � JV1 b 2 � SP (1)

Across these 10 sessions, we found that the monkeys’ bids var-
ied significantly with the juice volume (Monkey A: b 1 =
1.536 0.12; Monkey B: b 1 = 1.406 0.10), with a far smaller effect
of the cursor’s starting position for monkey A (b 2 was signifi-
cantly smaller than zero; b 2 = �0.066 0.05) but with no effect of
starting position for monkey B (b 2 = 0.016 0.05). To investigate
for any variable effect of starting position with different juice vol-
umes, we then performed a regression of the monkeys’ bids on

both juice volume (JV) and cursor starting position separately for
each of the five juice volumes (SPJV=Xml), such that:

Bid ¼ b 0 1 b 1 � JV1 b 2 � SPJV¼0:15 1 b 3 � SPJV¼0:30 1 b 4

� SPJV¼0:45 1 b 5 � SPJV¼0:60 1 b 6 � SPJV¼0:75

(2)

The results from this analysis confirmed a small but sig-
nificant effect of starting position for the two smallest juice
volumes for Monkey A (b 2 = �0.116 0.12, mean 6 SD; b 3

= �0.176 0.10), but none of the position coefficients dif-
fered significantly from zero for Monkey B (Fig. 7G,H). For
Monkey A this may have reflected reduced motivation to
bid precisely on trials that promised lower juice volumes.
Nevertheless, juice volume had a far greater influence on
the final bid than cursor starting position, for both monkeys
(Monkey A: b 1 = 1.386 0.14; Monkey B: b 1 = 1.426 0.24).

These results suggest that the animals were not merely respond-
ing with greater vigor to larger juice volumes, or just learning condi-
tioned motor responses. Their bids reflected the value of the juice
regardless of the specifics of the required joystick movement.

Comparison of BDM bids and BC values
Values inferred using the BC task
While the positive monotonic relationship of BDM bids to juice
volumes in both monkeys suggests systematic value estimation,

Table 2. Effects of starting bid position and juice volume on BDM bids

Factor SS df MS F p v 2

Monkey A Start 0.3 2 0.15 7.18 8 � 10�4 3.67 � 10�4

JV 576.38 4 144.09 6889.46 0 0.82
Start � JV 2.268 8 0.28 13.55 1.24 � 10�19 3 � 10�3

Error 125.177 5985 0.021
Total 703.84 5999

Monkey B Start 10.41 2 5.21 148.94 7.49 � 10�64 0.018
JV 329.01 4 82.25 2353.17 0 0.58
Start � JV 15.62 8 1.95 55.86 3.94 � 10�88 0.027
Error 209.2 5985 0.035
Total 566.41 5999

Starting bid position was at bottom, top, or random on budget bar. For Monkey A, overall, bids were significantly lower in the top-start BDM than in either the bottom-start (p= 6.35� 10�4; unbalanced two-way ANOVA)
or random-start versions of the task (p= 0.034); for Monkey B, bids were significantly greater in the bottom-start BDM than in either the top-start (p= 2.1� 10�53) or random-start versions of the task (p= 1.95� 10�44).
However, a comparison of effect sizes (v 2) reveals that for both monkeys the size of any effect because of starting position, or the interaction of starting position and juice volume, was negligible when compared with that
of juice volume alone. Start: starting bid position, JV: juice volume, df: degree of freedom, SS: sum of squares, MS: mean square, F: F statistic, p: p value, v 2: v 2 effect size.

Table 3. Differences in average per-trial payoff between the simulated optimal bidder and each other bidder

Monkey A

Reward volume (ml)

0.15 0.3 0.45 0.6

Bidder Monkey 0.0059 (0.030) 0.011 (0.036) 0.028 (0.063) 0.018 (0.064)
Random 0.13 (0.18) 0.085 (0.14) 0.069 (0.12) 0.15 (0.20)
Over 0.024 (0.053) 0.034 (0.059) 0.019 (0.044) 0.0014 (0.011)
Under 0.0024 (0.014) 0.015 (0.039) 0.038 (0.061) 0.02 (0.05)

Monkey B

0.15 0.3 0.45 0.6 0.75

Bidder Monkey 0.028 (0.081) 0.053 (0.11) 0.031 (0.07) 0.018 (0.052) 0.026 (0.093)
Random 0.19 (0.23) 0.13 (0.18) 0.057 (0.10) 0.075 (0.13) 0.22 (0.27)
Over 0.016 (0.05) 0.029 (0.057) 0.034 (0.059) 0.015 (0.039) 0
Under 0.00016 (0.0022) 0.0031 (0.017) 0.026 (0.051) 0.035 (0.060) 0.0064 (0.031)

The mean difference in payoff is shown for each reward and each bidder separately. The SD is shown in parentheses. Note, data are not shown for the 0.75-ml reward for this animal as the BC value for this reward was out-
side of the bidding range, and so overall payoffs could not be calculated.
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it is important to know whether these
results were specific for the BDM mech-
anism or were independent of the elic-
iting mechanism. A different eliciting
mechanism would also provide inde-
pendent estimates for assessing opti-
mality in BDM bidding. Therefore, we
compared the values inferred from
BDM bids with estimates from a con-
ventional value eliciting method com-
monly used in animals. (Note that while
the study’s goal was to assess subjective
juice value in single BDM trials, compari-
son with value estimation by conventional
BC required repeated measures.)

We implemented a BC task with
repeated trials that used the same
options, visual stimuli and juice and
water outcomes as the BDM task and dif-
fered only in the choice aspect (Fig. 11A).
Option 1 contained a bundle comprised
of one of the five juice volumes and a
varying, partial water amount, equivalent
to the outcome when winning the BDM.
Option 2 contained the full water budget,
equivalent to the outcome when losing
the BDM. Thus, when choosing the
juice-water bundle, the monkey forewent
some of the full water budget to obtain
the juice (like winning in the BDM);
when choosing the other option, they
received the full water budget but no
juice (like losing in the BDM). We per-
formed 10 of these BC sessions, and each
session consisted of 200 trials. In each
session every reward volume appeared
in one of 10 possible bundles (i.e.,
with 10 different possible volumes of
water in the bundle), and each of
these combinations was repeated four
times per session, such that there
were 40 trials per reward volume in each session, for a total
of 200 trials.

Choice preference among the two options varied system-
atically (Fig. 11B). The monkeys showed little choice of the
full water budget (option 2) when the alternative juice-water
bundle (option 1) contained substantial water amounts in
addition to the juice; apparently the slight loss in water vol-
ume was overcompensated in value by the added juice (Fig.
11B, left). Choice of the full water budget increased gradually
with more water foregone in the juice-water bundle (DB
against the full water budget). At some specific volume of
water foregone, the monkey preferred the full water budget
as much as the juice-water bundle [P (choice) = 0.5; choice
indifference; Fig. 11B, center]. At this point, the juice to-
gether with the remaining water was valued as much as the
full water budget alone; hence the juice compensated fully
for the water foregone and was valued as much as that water
volume (DB). Thus, the value of the juice can be expressed
on a common currency basis in ml of water volume foregone
at choice indifference (DB). In this way, psychophysics
allowed us to estimate the value for each specific juice vol-
ume being tested.

Mechanism independence
In both monkeys, the choice indifference points in the BC task fol-
lowed the same rank order as the BDM bids for the five juice vol-
umes (Figs. 11C,D, 12A–C; see Extended Data Fig. 11-1 for BDM
and BC values). We performed five BC sessions before and 5 after
the 30 BDM sessions and found the BC estimates of value were
stable across this period of BDM testing (Fig. 12E,F). We therefore
pooled choices across all 10 sessions of the BC task to infer an esti-
mate of value for each juice reward in terms of water volume
across sessions. Thus, each value estimate we used in subsequent
analyses was inferred from 400 pooled trials of the BC task (10 ses-
sions, with each reward presented 40 times per session).
Accordingly, Pearson correlation coefficients between the bids eli-
cited across all 30 BDM sessions and the value estimates from all
10 BC sessions were high (Monkey A: 0.916 0.02; Monkey B:
0.796 0.05). To confirm these results and provide more detail, we
performed a least-squares regression of BDM bids on the values
estimated by the BC task, such that:

Bid ¼ B0 1 B1 � BCPredictedBestBid: (3)

The PredictedBestBid inferred from performance in the BC
task is equal to the water value of the chosen option in the BC

Figure 9. Relationship between number of trials for each reward and BDM performance. A, B, Spearman’s Rho for correla-
tions between bids and reward volumes, taking only the first N trials for each reward (x-axis). Monkeys A (A) and B (C)
required only two bids for each reward to demonstrate statistically significant positive monotonic relationship between reward
volume and bids (Spearman’s rank correlation). C, D, Results from t tests between bids for all rewards on the first N trials for
each reward (x-axis), and mean number of significantly different pairwise comparisons at each value of N across all sessions.
Increasing the number of trials for each reward increased the number of significantly different pairwise comparisons, suggesting
more reliable differentiation of rewards using BDM bids. The requirement of complete separation of means for all rewards was
more stringent than the requirement of a significant positive relationship (Spearman’s rank) or some difference in means (one-
way ANOVA); even with 20 trials per reward, the monkeys, on average, did not achieve significance in all possible pairwise
comparisons (for 5 rewards there are 10 possible pairwise comparisons). Mean p values for Spearman’s rank correlation (A, B)
and t tests (C, D) are shown in red and relative to the right-sided y-axis of each panel, using a logarithmic scale. Dashed line
shows the p value for a = 0.05, corrected for multiple comparisons.
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task, except when the BC value is greater than the maximum
possible bid of 1.2 ml of water, in which case the best possible
bid is equal to 1.2 ml, as was the case for the 0.75-ml reward
for Monkey A. An optimal bidder’s BDM bids should per-
fectly reflect the value for the commodity (B1 = 1) without
any bias in bidding (B0 = 0; the value may, for example, be
modulated by the mental and/or motor effort of placing a
bid). BDM bids correlated closely with the BC estimates for
both Monkey A (mean B1 = 0.886 0.09, and mean R2 =
0.836 0.03) and Monkey B (mean B1 = 0.666 0.15, mean R2

= 0.636 0.08; Fig. 11E,F). Monkey A did not have any signif-
icant bidding bias (B0 = 06 0.09), but monkey B had a signif-
icant bias which accounted for overbidding for low juice
volumes (B0 = 0.276 0.10).

In showing good correlations between single BDM bids
and conventional binary stochastic choices with both numer-
ical methods, these data suggest that value estimation by
BDM largely reflects the same underlying value also elicited
by the BC task and is not simply determined by the specific
elicitation method. Previous experiments using the BDM
method have not attempted to compare values thus elicited
with those elicited by any other means and have simply taken
the BDM validity as a given. Here, we show a high degree of
concordance between the BDM task and the standard BC
method of value elicitation in animals. Thus, the BDM in
monkeys appears to provide a novel and valid mechanism for
estimating subjective economic value in animal subjects.

Optimality of bidding in the BDM
The incentive compatibility of the BDM rests on the notion
that bidders benefit most by stating their value accurately for
a given reward. However, unlike human subjects in the
BDM, animals cannot be made explicitly aware of the opti-
mal strategy for maximizing reward value. Instead, they
adjust their bidding behavior according to the experienced
outcome. Further, performance in the BDM provides less in-
tuitive assessments because of its second-price nature, and

Figure 11. Mechanism independence: comparison with value estimation in BC task. A, BC
task. Choice between [bundle of specific juice volume (fractal) combined with a specific water
volume (gray area above green line); option 1] and [full water budget (full gray vertical rectan-
gle); option 2]. The monkey indicated its choice by moving a horizontal joystick-driven red dot
onto the preferred option. At left, the gray rectangle below the green line (bundle, option 1)
represented the water foregone (DB) from the full budget and is blackened after the monkey’s
choice (see Choose bundle at right). Left and right option positions alternated pseudorandomly.
B, Psychophysical value estimation of juice value in the currency of water during BC. Decrease
of water in option 1 increased the choice probability of option 2. At choice indifference [P
(choice) = 0.5, gray line], the water foregone in the bundle (DB) indicated the value of the
juice volume in units of ml of water. A logistic regression (red) was fitted to the monkey’s
choices (blue). More preferred (�); indifferent (;); less preferred (p). C, D, BC value esti-
mates for each of the five juice volumes used in the BDM. Choices were pooled across all 10 BC
sessions (n= 2000 trials) for each monkey. Shaded areas are 95% confidence intervals of the
fitted logistic function. See Extended Data Figure 11-1 for BDM and BC values. E, F, Regression
of monkeys’ bids on the best bid as predicted by the BC task. The best bid was equal to the BC
task value estimate, or, the maximum bid of 1.2 ml, whichever was smaller. The identity line is
dashed. The mean from the fits of all individual sessions is shown in red, and the red shaded
area shows the 95% confidence interval; fits for individual sessions are shown in gray.

Figure 10. Increasing expected suboptimal bidding cost with increasing juice and water budget.
The optimal BDM bid is equal to the value of the juice volume being bid for and will lead to the
highest expected payoff compared with all other bids. The lower expected payoff of other bids consti-
tutes an expected cost relative to the optimal bid. In the two BDM payoff settings shown in Fig. 6,
the 0.3- and 0.75-, 0.2- and 0.6-, and 0.1- and 0.15-ml juice volumes elicited optimal bids that were
similarly positioned on the 0.6- and 1.2-ml budget bars used in each task, respectively. This can be
seen by the fact that the minimum costs for these pairs of juice volumes are at similar positions on
the budget bar. For a given deviation of the final bid in terms of distance on the budget bar, the cost
is higher in the 1.2-ml budget task than in the 0.6-ml budget task. This effect is more pronounced
the further bids are away from the center of the bidding range, because the mean computer bid was
at the center of this range. Moreover, the effect is exaggerated for lower bids for higher juice volumes,
as the cost of losing a higher juice volume by bidding less than its value is greater.
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Figure 12. Choice probabilities in BC task, and pre-BDM and post-BDM comparison. A, Lines of best fit for logistic regression of choice probability of full budget, p(B choice), on water vol-
ume foregone in each bundle (DB). Monkey A, individual sessions. B, as A, but Monkey B, individual sessions. C, D, As A, B, respectively, but pooled from five sessions before BDM (pre-BDM)
and five sessions after all 30 BDM sessions (post-BDM). E, F, Comparison of mean predicted optimal bids for each juice volume from five BC task sessions before BDM (pre-BDM; solid lines) and
five sessions after BDM (post-BDM; dotted lines), for Monkeys A and B, respectively. Changes in predicted optimal bid for any of the juice volumes was insignificant for either monkey (two-
tailed Student’s t tests, all p. 0.05). Error bars are 95% confidence intervals of the mean.
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BDM outcomes are risky because they depend on the com-
puter bid drawn from a fully specified probability distribu-
tion. By contrast, stimuli in the BC task display the options
in a direct and explicit manner, and the animal gets exactly
what it has chosen. Therefore, we used the economic values
estimated in the BC task to assess optimal bidding for each
juice volume. Specifically, the optimal bid is equal to the
PredictedBestBid stated above and is derived from the com-
bined value of both the juice and the water budget, as
expressed in common currency units of milliliters of water.

To assess the optimality of BDM bidding, we compared each
monkey’s payoffs to those of hypothetical bidders: an optimal bidder,
who always bids the BC value for each juice volume according to the
best BDM strategy; a random bidder, whose bids are drawn from the
same uniform distribution for all juice volumes; and over/underbid-
ders, consistently bidding 60.2 ml for each reward (Materials and
Methods, Simulated bidding). These simulated bidders faced the same
6000 juice presentations and computer bids as the monkeys did across
30 sessions of BDM testing (200 correct trials each). We used pairwise
t tests, corrected for multiple comparisons (a = 0.5), to detect

significant differences in payoffs between
the different types of bidders for each juice
reward.

The differences between the average
per-trial payoffs for the simulated opti-
mal bidder and for monkey A were
small across all rewards (Fig. 13A).
These ranged from a difference of only
0.00596 0.03 ml for the 0.15-ml
reward, to a difference of 0.0286 0.063
ml for the 0.45-ml reward; however, the
optimal bidder only secured a signifi-
cantly greater payoff than Monkey A
for the 0.3- and 0.45-ml rewards (all
p, 0.01). The systematic overbidders
and underbidders performed similarly
to Monkey A, and never secured a sig-
nificantly greater payoff, but the over-
bidder had a significantly smaller
average per-trial payoff for the 0.15-
and 0.3-ml rewards (all p, 0.01). The
random bidder consistently secured sig-
nificantly smaller payoffs (all p, 0.01)
than all other bidders (all results sum-
marized in Table 3; payoffs could not
be computed for the 0.75-ml juice for
this animal as the value for this volume
was above the possible bidding range).

For Monkey B (Fig. 13B), the absolute
differences in average per-trial payoff
between the optimal bidder and Monkey
B were again small and ranged from
0.0186 0.052 ml for the 0.6-ml reward to
a difference of 0.0536 0.11 ml for the 0.3-
ml reward; the optimal bidder secured a
significantly greater payoff for the 0.15-,
0.3-, and 0.45-ml rewards (all p, 0.01).
Monkey B secured significantly smaller
payoffs than the underbidder for the 0.15-
and 0.3-ml rewards, and less than the
overbidder for the 0.3-ml reward (all
p, 0.01). Again, the random bidder
secured significantly smaller payoffs than
all other bidders for all rewards (all
p, 0.01; Table 3).

These small differences in average per-trial payoff were
comparable to the juice delivery system’s error because of the
variability of droplet size (SD = 0.06 ml per trial; Materials and
Methods, Juice-delivery error), which may have been too
small to be perceived by the monkeys. Moreover, bidders that
deviate as much as 0.2 ml (1/sixth of the range of possible
bids, from 0 ml to 1.2 ml) from their value are evidently still
rewarded with payoffs of similar magnitude to an optimal bid-
der. Together, these factors limit performance in the BDM
task, as difficulty discriminating small differences in payoffs
limits learning of the optimal bid, and the cognitive and motor
effort costs of placing precise bids may outweigh the benefits
of doing so.

To better appreciate the relationship between bids and payoffs,
we can calculate the payoff for every possible bid, and for each
reward, given the water values found in the BC task. The expected
profit, E½p �, for a given bid, b, and value, v, against a computer
drawing a price, p, from a probability density function, f(p) with a
cumulative distribution function, F(p), is given by the following
equation (Lusk et al., 2007):

Figure 13. Optimality of BDM bids. Average individual trial payoffs are shown for each monkey (A, B) and expressed in equiv-
alent water value, for the actual monkey bidder (black) and the simulated optimal bidder (green), random bidder (red), overbid-
der (magenta), and underbidder (cyan; for tabulated numbers, see Table 3). Significant differences of pairwise comparisons are
shown with an asterisk and lines indicating which pairs had a significant difference. Payoffs for the random bidder were always
significantly lower than for all other bidders. Error bars show 95% confidence intervals.

Al-Mohammad and Schultz · Monkey Auction J. Neurosci., February 23, 2022 • 42(8):1510–1528 • 1525



E½p � ¼ ½v�
ðb

�1

f ðpÞ
FðbÞ

� �
pdp�

�
FðbÞ

�
:

The overall expected payoff on a given
trial is the starting budget in addition to
the above “profit” (which may be nega-
tive). The maximum expected payoff is
always found where the bid is equal to
the value; elsewhere, the relationship
between a given bid and expected payoff
is determined by the distribution from
which computer bids are drawn. Figure
14 shows the modeled expected payoffs
given the b (4,4) distribution we used
(magenta) for all possible bids and for
each reward separately for both mon-
keys. It is apparent that payoffs may be
similar over a wide range of bids close to
the reward’s value; for example, for the
0.15-ml reward for monkey A, all bids
lower than 0.5 ml grant an expected pay-
off between 1.15 and 1.2 ml. Thus, the
0.2 ml overbidding and underbidding of
simulated bidders are unlikely to experi-
ence dramatically different payoffs when
compared with an optimal bidder. The
red crosses in Figure 14 demonstrate that
the monkey’s actual bidding fell within
this optimal window.

Figure 14 also shows the payoffs given
by bids drawn from a modeled uniform
distribution (cyan). We used a b (4,4)
distribution, which has a lower expected
payoff for all bids and thus may help to
increase the number of trials in neuronal recording experiments.
Moreover, a b (4,4) distribution is associated with a steeper
decline in payoff with less accurate bidding (Fig. 15) than the
uniform distribution across most of the bidding range; the
decline is particularly prominent in the center of the bidding
range where the monkeys suboptimally tended to cluster their
bids in an earlier task version (Fig. 6A). In conclusion, the
b (4,4) distribution results in a steeper relationship between
bids and payoffs in this range as compared with a uniform distri-
bution; this characteristic of our b distribution increases the cost
of deviating from the optimal bid and therefore encourages
learning of the optimal strategy and hence optimal bidding.

Discussion
This study shows that monkeys can truthfully report their inter-
nal, subjective economic value of rewards in individual trials by
placing bids in a BDM auction-like bidding mechanism. The
monkeys reliably and systematically ranked their preferences
over five juice volumes, and their bids correlated well with values
inferred from choices in an equivalent BC task, in keeping with
the theoretical incentive compatibility of both methods. While
the monkeys’ bids were noisy, they nevertheless achieved a level
of performance that approximated that of a simulated optimal
bidder and well exceeded that of a random bidder. One of the
difficulties in comparing behavior between BDM and BC tasks
may lie in the inadvertent, unintended but unavoidable inclusion

of ambiguity and risk in BDM that is not a necessary component
in BC tasks but likely affects performance and adds uncertainty
attitude to the choices. These experiments contribute a novel
method of value elicitation for research on economic decision-
making in monkeys and show the capacity of monkeys to per-
form auction-like bidding in resemblance to human behavior;
indeed, human bids are also noisy and, unlike the results pre-
sented here, have not previously been compared with values eli-
cited in BC tasks.

Subjective value elicitation in animals has thus far relied on
the use of repeated choices (Platt and Glimcher, 1999; Padoa-
Schioppa and Assad, 2006; Kobayashi and Schultz, 2008), infer-
ring an average, single subjective value from dozens of decisions
that are performed with some degree of stochasticity (whether in
making the decision or executing it). However, decisions are typ-
ically made in single instances, weighing subjective values on a
moment-to-moment basis, and usually have immediately tangi-
ble consequences. Accordingly, human experimental economics
research considers decisions and assesses values in individual
trials.

To better understand the underlying processes in animals and
achieve a greater degree of concordance in research across spe-
cies, we need methods that elicit values within single choices.
Moreover, while the BDM requires the decision-maker to gener-
ate a bid, and thus acceptable cost, in a continuous manner, BC
tasks involve a more constrained discrete choice between only
two possibilities. Thus, the BDM directly elicits a value, while the

Figure 14. Modeled expected payoffs of all bids. The magenta curves show the expected payoffs (y-axis; ml of water) for
the currently used b (4,4) distribution (magenta) for generating the BDM computer bids; the cyan curves show the analogous
payoffs for a uniform distribution (cyan). Each panel shows the payoffs for a separate reward (labeled at the top of each panel).
The monkey’s mean bid and mean payoff intersect at the red cross. The horizontal red line shows the interquartile range of
bids, and the vertical line shows the 95% confidence intervals for the mean payoff. Data are shown for both monkeys (A, B).
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BC task only allows to derive value secondarily from measurable
choices. It is unclear whether the valuation processes during
choice between two options, and the underlying neuronal mech-
anisms, are the same as, or different to, those required to actively
state a value for oneself as in BDM.

These features of the BDM make it worth investigating in
animals, but they also present unique limitations and chal-
lenges. Our BDM task required more extensive training than
an equivalent BC task. First, because the placement of bids
on a continuous scale is a complex motor task compared
with simple left/right choices. And second, because the
BDM’s second-price nature means that deviating from the
optimal strategy is not strongly punished; for example, many
bids that are too high still result in the bidder paying less
from the budget than they think the item is worth, as long as
the computer bid is lower than their value for that item. Thus, on
any given BDM trial, overbidding or underbidding may not lead to
a loss relative to bidding one’s value (although it would lead to a
loss in the long run). Conversely, choosing the less desired option in
the BC task always leads to a definite loss relative to the preferred
option. Therefore, up to a point, decision costs may even outweigh
the benefits of precise bidding in the BDM; introducing an element

of decision noise which may not be present,
or as impactful, in BC tasks.

The BDM provides a rich decision-mak-
ing scenario which brings the scope of ani-
mal studies of decision-making closer to
those in humans. At the same time, the com-
plexity of the BDM offers new opportunities
for study. Monkeys, at a basic level of reward
function, have a globally similar brain orga-
nization to humans, and the feasibility of a
behavioral task used frequently in humans
could provide unprecedented information
about the role of single reward and decision
neurons in auction-like mechanisms.

Using a theoretically equivalent method
to verify the values elicited by the BDM can
only provide a best approximation, as any
two differing methods are likely to be con-
founded by psychological differences. On
the other hand, these differences may be
the subject of future research. For example,
while ambiguity has been introduced into
BC tasks by occluding information in the
two choice options (Hayden et al., 2010), it
is unclear to what extent animals are averse
to ambiguity when they have some degree
of control over this. In the BDM the mon-
key could reduce ambiguity by its own
actions; by increasing or reducing its bid,
the monkey makes the outcome of a trial
more certain. Moreover, the effects of am-
biguity on valuation in the BDM could be
interrogated by changing the variance of
the computer bid distribution, as reducing
the variance about the mean increases the
certainty of a given computer bid and
reduces the ambiguity in outcomes for
monkey bids that are distant from this
mean computer bid.

It is not enough to interrogate the ac-
tivity of neurons in the presence of
rewards; rather, for understanding reward

processing, animals should reveal their preferences by making
choices (Platt and Glimcher, 1999; Stauffer et al., 2014). Besides
conventional BC tasks, experimenters may now benefit from
eliciting truthful valuation by different means while examining
neuronal processes underlying those choices. It would also be
interesting to see the extent to which the existing data from con-
ventional BC tasks depend on their specific eliciting mechanism.
For example, neurons encoding action-specific reward values
have been identified in the striatum (Samejima et al., 2005), but
it is not known whether these reward values were specific to the
decision rules and contexts in which they were elicited.

Because monkeys in the BDM report values on a trial-by-trial
basis, the task provides a closer temporal relationship to the activity
of single neurons and allows to capture trial-by-trial fluctuations in
value not visible with choices across many trials. The suitability of
BDM bidding for neuronal recordings in monkeys is further sup-
ported by the current finding that action only affects reward valua-
tion to a very limited extent; different actions, as required by
different bidding start positions, did not substantially affect reward
valuation in our task. Thus, the BDM task as presently designed
might be an alternative to standard BC tasks when searching for

Figure 15. Differences in payoff decline between different modeled computer bid distributions. In the b (4,4) distribution
(magenta), the payoff declines more rapidly with increasing distance from optimal bid compared with the uniform distribu-
tions (cyan). This steeper decline encourages accurate bidding. The payoff for every bid is expressed as a proportion of the
maximum expected payoff for that reward. The b (4,4) distribution can be seen to be relatively less rewarding than the uni-
form distribution for a given deviation away from the optimal bid (where the maximum payoff is found and is equal to 1
here) in the center of the bidding range, whereas the uniform distribution payoffs are relatively lower at the extremes of the
bidding range. In an earlier version of the task (Fig. 6A) the monkey was observed to cluster bids toward the center of the
bidding range. A b (4,4) distribution was used to encourage optimal bidding by increasing the monkey’s relative costs of
deviating from their value in the central part of the bidding range. Payoffs are shown for both monkeys (A, B). The payoffs
shown here are expressed as proportion of the maximum payoffs; the absolute payoffs are shown in Figure 14.
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fine-grained single-trial neuronal variations related to rapid sponta-
neous changes of subjective reward value.

The reported meaningful BDM performance was obtained with
substantial experimental constraints. Natural wildlife does not pre-
pare monkeys for explicitly stating their values against some odds,
although animals always need to make some form of commitment
to satisfy their needs. Their good performance highlights their
adaptive cognitive abilities. One contributing factor might have
been the seating for several hours in a primate chair that may have
helped the animals to focus onto the task. Our use of tangible, eco-
logically relevant and familiar liquids may have also been beneficial,
whereas it is unclear how the monkeys would have performed
when bidding for more abstract items, such as tokens used in neu-
rophysiological BC experiments (Seo and Lee, 2009). Thus, future
work may help to delineate the conditions in which rhesus monkeys
are able to successfully perform a BDM task.

The primate BDM makes the link to human studies in several
ways. Apparently, the relative closeness in cognitive functions
between human and monkey would not only explain their success-
ful BDM bidding but also allow for more direct comparisons with
human neuroimaging studies, as the BDM is commonly used in ex-
perimental work (Plassmann et al., 2007; Chib et al., 2009; Harris et
al., 2011; Tang et al., 2014; Tyson-Carr et al., 2018) as well as in con-
sumer economics (Linder et al., 2010). Whereas human neuroimag-
ing provides a larger overview of brain processes, single-neuron
electrophysiology provides better cellular resolution for distinction
of valuation functions in different neuron types. In this way, the
current BDM data provide both an evolutionary and methodologi-
cal link between the two primate species.

References
Bateman IJ, Munro A, Rhodes B, Starmer C, Sugden R (1997) Does part-

whole bias exist? An experimental investigation. Econ J 107:322–332.
Becker GM, DeGroot MH, Marschak J (1964) Measuring utility by a single

response sequential method. Behav Sci 9:226–232.
Brainard DH (1997) The psychophysics toolbox. Spat Vis 10:433–436.
Brandstätter E, Gigerenzer G, Hertwig R (2006) The priority heuristic: mak-

ing choices without trade-offs. Psychol Rev 113:409–432.
Bujold PM, Ferrari-Toniolo S, Chi U Seak L, Schultz W (2021) Comparing

utility functions between risky and riskless choice in rhesus monkeys.
Anim Cog in press. DOI: 10.1007/s10071-021-01560-x.

Chib VS, Rangel A, Shimojo S, O’Doherty JP (2009) Evidence for a common
representation of decision values for dissimilar goods in human ventro-
medial prefrontal cortex. J Neurosci 29:12315–12320.

Genest W, Stauffer WR, Schultz W (2016) Utility functions predict variance
and skewness risk preferences in monkeys. Proc Natl Acad Sci USA
113:8402–8407.

Harris A, Adolphs R, Camerer C, Rangel A (2011) Dynamic construction of
stimulus values in the ventromedial prefrontal cortex. PLoS One 6:e21074.

Hayden BY, Heilbronner SR, Platt ML (2010) Ambiguity aversion in rhesus
macaques. Front Neurosci 4:166.

Karni E, Safra Z (1987) “Preference reversals” and the observability of prefer-
ences by experimental methods. Econometrica 55:675–685.

Knetsch JL, Sinden JA (1984) Willingness to pay and compensation
demanded: experimental evidence of an unexpected disparity in measures
of value. Quart J Econ 99:507–521.

Kobayashi S, Schultz W (2008) Influence of reward delays on responses of
dopamine neurons. J Neurosci 28:7837–7846.

Kobayashi S, Carvalho OP, Schultz W (2010) Adaptation of reward sensitiv-
ity in orbitofrontal neurons. J Neurosci 30:534–544.

Lak A, Stauffer WR, Schultz W (2014) Dopamine prediction error responses
integrate subjective value from different reward dimensions. Proc Natl
Acad Sci USA 111:2343–2348.

Linder NS, Uhl G, Fliessbach K, Trautner P, Elger CE, Weber B (2010) Organic
labeling influences food valuation and choice. Neuroimage 53:215–220.

Louie K, Grattan LE, Glimcher PW (2011) Reward value-based gain control:
divisive normalization in parietal cortex. J Neurosci 31:10627–10639.

Lusk JL, Shogren JF (2007) Experimental auctions: methods and applications in
economic and marketing research. Cambridge: Cambridge University Press.

Lusk JL, Alexander C, Rousu MC (2007) Designing experimental auctions
for marketing research: the effect of values, distributions, and mecha-
nisms on incentives for truthful bidding. Rev Mark Sci 5., pp. 000010220
2154656161059.

Milgrom PR, Weber RJ (1982) A theory of auctions and competitive bidding.
Econometrica 50:1089–1122.

Moldovanu B, Tietzel M (1998) Goethe’s second-price auction. J Polit Econ
106:854–859.

Padoa-Schioppa C, Assad JA (2006) Neurons in the orbitofrontal cortex
encode economic value. Nature 441:223–226.

Padoa-Schioppa C, Rustichini A (2014) Rational attention and adaptive cod-
ing: a puzzle and a solution. Am Econ Rev 104:507–513.

Piantadosi ST, Hayden BY (2015) Utility-free heuristic models of two-option
choice can mimic predictions of utility-stage models under many condi-
tions. Front Neurosci 9:105.

Plassmann H, O’Doherty J, Rangel A (2007) Orbitofrontal cortex encodes
willingness to pay in everyday economic transactions. J Neurosci
27:9984–9988.

Platt ML, Glimcher PW (1999) Neural correlates of decision variables in pari-
etal cortex. Nature 400:233–238.

Platt ML, Huettel SA (2008) Risky business: the neuroeconomics of uncer-
tainty. Nat Neurosci 11:398–403.

Prelec D (1998) The probability weighting function. Econometrica 66:497–527.
Rieskamp J, Busemeyer JR, Mellers B (2006) Extending the bounds of ration-

ality: evidence and theories of preferential choice. J Econ Lit 44:631–661.
Samejima K, Ueda Y, Doya K, Kimura M (2005) Representation of action-

specific reward values in the striatum. Science 310:1337–1340.
Seo H, Lee D (2009) Behavioral and neural changes after gains and losses of

conditioned reinforcers. J Neurosci 29:3627–3641.
Soltani A, De Martino B, Camerer C (2012) A range-normalization model of

context-dependent choice: a new model and evidence. PLoS Comput Biol
8:e1002607.

Stauffer WR, Lak A, Schultz W (2014) Dopamine reward prediction error
responses reflect marginal utility. Curr Biol 24:2491–2500.

Tang DW, Fellows LK, Dagher A (2014) Behavioral and neural valuation of
foods is driven by implicit knowledge of caloric content. Psychol Sci
25:2168–2176.

Tobler PN, Fiorillo CD, Schultz W (2005) Adaptive coding of reward value
by dopamine neurons. Science 307:1642–1645.

Tversky A (1972) Elimination by aspects: a theory of choice. Psychol Rev
79:281–299.

Tversky A, Simonson I (1993) Context-dependent preferences. Manag Sci
39:1179–1189.

Tymula A, Woelbert E, Glimcher P (2016) Flexible valuations for consumer
goods as measured by the Becker-DeGroot-Marschak mechanism. J
Neurosci Psychol Econ 9:65–77.

Tyson-Carr J, Kokmotou K, Soto V, Cook S, Fallon N, Giesbrecht T, Stancak
A (2018) Neural correlates of economic value and valuation context. J
Neurophysiol 119:1924–1933.

Vlaev I, Chater N, Stewart N, Brown GDA (2011) Does the brain calculate
value? Trends Cogn Sci 15:546–554.

1528 • J. Neurosci., February 23, 2022 • 42(8):1510–1528 Al-Mohammad and Schultz · Monkey Auction

http://dx.doi.org/10.1111/j.0013-0133.1997.160.x
http://dx.doi.org/10.1002/bs.3830090304
https://www.ncbi.nlm.nih.gov/pubmed/5888778
https://www.ncbi.nlm.nih.gov/pubmed/9176952
http://dx.doi.org/10.1037/0033-295X.113.2.409
https://www.ncbi.nlm.nih.gov/pubmed/16637767
http://dx.doi.org/10.1007/s10071-021-01560-x
http://dx.doi.org/10.1523/JNEUROSCI.2575-09.2009
https://www.ncbi.nlm.nih.gov/pubmed/19793990
http://dx.doi.org/10.1073/pnas.1602217113
https://www.ncbi.nlm.nih.gov/pubmed/27402743
http://dx.doi.org/10.1371/journal.pone.0021074
https://www.ncbi.nlm.nih.gov/pubmed/21695081
http://dx.doi.org/10.2307/1913606
http://dx.doi.org/10.2307/1885962
http://dx.doi.org/10.1523/JNEUROSCI.1600-08.2008
https://www.ncbi.nlm.nih.gov/pubmed/18667616
http://dx.doi.org/10.1523/JNEUROSCI.4009-09.2010
https://www.ncbi.nlm.nih.gov/pubmed/20071516
http://dx.doi.org/10.1073/pnas.1321596111
https://www.ncbi.nlm.nih.gov/pubmed/24453218
http://dx.doi.org/10.1016/j.neuroimage.2010.05.077
https://www.ncbi.nlm.nih.gov/pubmed/20570738
http://dx.doi.org/10.1523/JNEUROSCI.1237-11.2011
https://www.ncbi.nlm.nih.gov/pubmed/21775606
http://dx.doi.org/10.2307/1911865
http://dx.doi.org/10.1086/250032
http://dx.doi.org/10.1038/nature04676
https://www.ncbi.nlm.nih.gov/pubmed/16633341
http://dx.doi.org/10.1257/aer.104.5.507
https://www.ncbi.nlm.nih.gov/pubmed/25484369
http://dx.doi.org/10.3389/fnins.2015.00105
https://www.ncbi.nlm.nih.gov/pubmed/25914613
http://dx.doi.org/10.1523/JNEUROSCI.2131-07.2007
https://www.ncbi.nlm.nih.gov/pubmed/17855612
http://dx.doi.org/10.1038/22268
https://www.ncbi.nlm.nih.gov/pubmed/10421364
http://dx.doi.org/10.1038/nn2062
https://www.ncbi.nlm.nih.gov/pubmed/18368046
http://dx.doi.org/10.2307/2998573
http://dx.doi.org/10.1257/jel.44.3.631
http://dx.doi.org/10.1126/science.1115270
https://www.ncbi.nlm.nih.gov/pubmed/16311337
http://dx.doi.org/10.1523/JNEUROSCI.4726-08.2009
https://www.ncbi.nlm.nih.gov/pubmed/19295166
http://dx.doi.org/10.1371/journal.pcbi.1002607
https://www.ncbi.nlm.nih.gov/pubmed/22829761
http://dx.doi.org/10.1016/j.cub.2014.08.064
https://www.ncbi.nlm.nih.gov/pubmed/25283778
http://dx.doi.org/10.1177/0956797614552081
https://www.ncbi.nlm.nih.gov/pubmed/25304885
http://dx.doi.org/10.1126/science.1105370
https://www.ncbi.nlm.nih.gov/pubmed/15761155
http://dx.doi.org/10.1037/h0032955
http://dx.doi.org/10.1287/mnsc.39.10.1179
http://dx.doi.org/10.1037/npe0000057
http://dx.doi.org/10.1152/jn.00524.2017
https://www.ncbi.nlm.nih.gov/pubmed/29442556
http://dx.doi.org/10.1016/j.tics.2011.09.008
https://www.ncbi.nlm.nih.gov/pubmed/21983149

	Reward Value Revealed by Auction in Rhesus Monkeys
	Introduction
	Materials and Methods
	Results
	Discussion


