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The Brain Selectively Tunes to Unfamiliar Voices during Sleep
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The brain continues to respond selectively to environmental stimuli during sleep. However, the functional role of such
responses, and whether they reflect information processing or rather sensory inhibition, is not fully understood. Here, we
present 17 human sleepers (14 females) with their own name and two unfamiliar first names, spoken by either a familiar
voice (FV) or an unfamiliar voice (UFV), while recording polysomnography during a full night of sleep. We detect K-com-
plexes, sleep spindles, and microarousals, and assess event-related and frequency responses as well as intertrial phase syn-
chronization to the different stimuli presented during nonrapid eye movement (NREM) sleep. We show that UFVs evoke
more K-complexes and microarousals than FVs. When both stimuli evoke a K-complex, we observe larger evoked potentials,
more precise time-locking of brain responses in the delta band (1-4 Hz), and stronger activity in the high frequency (>16
Hz) range, in response to UFVs relative to FVs. Crucially, these differences in brain responses disappear completely when no
K-complexes are evoked by the auditory stimuli. Our findings highlight discrepancies in brain responses to auditory stimuli
based on their relevance to the sleeper and propose a key role for K-complexes in the modulation of sensory processing dur-
ing sleep. We argue that such content-specific, dynamic reactivity to external sensory information enables the brain to enter
a sentinel processing mode in which it engages in the important internal processes that are ongoing during sleep while still
maintaining the ability to process vital external sensory information.
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Previous research has shown that sensory processing continues during sleep. Here, we studied the capacity of the sleeping
brain to extract and process relevant sensory information. We presented sleepers with their own names and unfamiliar names
spoken by either an FV or a UFV. During NREM sleep, UFVs elicited more K-complexes and microarousals than FVs. By con-
trasting stimuli that evoked K-complexes, we demonstrate that UFVs evoked larger, more synchronized brain responses as
well as stronger power at high frequencies (>16 Hz) relative to FVs. These differences in brain responses disappeared when
no K-complexes were evoked. Our results suggest a pivotal role for K-complexes in the selective processing of relevant infor-
mation during NREM sleep. /

ignificance Statement

Introduction
During sleep, the brain continues to respond to auditory

Received Sep. 16, 2020; revised Oct. 14, 2021; accepted Nov. 5, 2021.

Author contributions: M.S. and C.B. designed research; C.B. performed research; M.S.A. and D.P.J.H.
contributed unpublished reagents/analytic tools; M.S.A. analyzed data; and M.S.A. wrote the paper.

This work was supported by the Austrian Science Fund (FWF; Project Y777). M.S.A. was supported by the
FWF (Doctoral College “Imaging the mind”; W1233-B) and the Austrian Academy of Science. C.B. was
supported by a fellowship from the FWF (J-4243), a grant from the University of Basel, and funds from the
Freiwillige Akademische Gesellschaft, the Novartis Foundation for Biological-Medical Research, and the
Psychiatric Hospital of the University of Basel. We thank Renata del Giudice for support with data collection
and Kerstin HoedImoser and Malgorzata Wislowska for input throughout the process.

*D.P.J.H. and C.B. contributed equally to this work.

The authors declare no competing conflict of interests.

Correspondence should be addressed to Manuel Schabus at manuel.schabus@shg.ac.at.

https://doi.org/10.1523/JNEUR0SCI.2524-20.2021
Copyright © 2022 Ameen et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0
International license, which permits unrestricted use, distribution and reproduction in any medium provided
that the original work is properly attributed.

stimuli in a selective fashion (Portas et al., 2000; Andrillon
et al., 2016; Blume et al., 2017, 2018). Previous studies have
demonstrated, for instance, that the subject’s own name
(SON) evokes stronger brain responses than other names
during sleep (Oswald et al., 1960; Perrin et al., 1999; Pratt et
al., 1999). Blume et al. (2018) showed that during all stages
of sleep, brain responses to SON and other unfamiliar
names (UNs) did not differ; however, names uttered by an
unfamiliar voice (UFV) evoked stronger brain responses
compared with a familiar voice (FV).

The discrepancy in brain responses to different stimuli
implies the presence of an initial, presumably low-level, sensory
processing during sleep that enables the brain to differentiate
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between sensory signals (Blume et al., 2018). However, knowl-
edge about the functions of such responses is still lacking. That
is, the selective brain responses to specific sounds during sleep
might reflect inhibitory processes that protect sleep from disrup-
tions. Conversely, they might indicate further, higher level proc-
essing that ensures the connectedness of the sleeping brain to the
surrounding.

In this study, we investigated the purpose of such selective
brain responses to sounds presented during nonrapid eye move-
ment (NREM) sleep. We focused on sleep-specific events that
have been previously linked to information processing, sensory
inhibition, or both. That is, we focused on three cardinal sleep-
specific electroencephalography (EEG) events, namely, the K-
complex (KC), sleep spindles, and microarousals.

KCs are ~1 Hz oscillations and a hallmark of Stage 2 NREM
(N2) sleep (Loomis et al., 1938; Colrain, 2005; Halasz, 2005).
KCs occur either spontaneously or in response to sensory stim-
uli. Spontaneous KCs appear in the EEG signal as a well-defined
sharp negative wave followed by a positive component with a
total duration of at least 0.5 s (Rechtschaffen and Kales, 1968;
Hori et al., 2001). Following sensory perturbation, KCs appear to
have two main components, a sharp negative (N) deflection at
~550 ms (N550) followed by a longer-lasting positive (P) wave
at ~900 ms (P900; Bastien and Campbell, 1992; Cote et al., 1999;
Colrain, 2005; Haldsz, 2005). Some studies have considered an
early positive peak that appears ~200 ms (P200; Laurino et
al., 2014, 2019) and another negative peak ~350 ms (N350;
Bastien and Campbell, 1992; Cote et al., 1999) to be parts of
the KC, albeit these components can occur without a KC
being elicited. Relevant stimuli have a higher propensity to
trigger KCs (Haldsz, 2005). Theories suggest that KCs can
serve both sleep-protecting as well as arousal-inducing
processes (Haldsz, 2005; Jahnke et al., 2012; Forget et al, 2011;
Laurino et al., 2014; Blume et al., 2017, 2018; Legendre et al., 2019;
Latreille et al., 2020).

Sleep spindles are also characteristic of N2 sleep. Spindles are
thalamocortical oscillations of 11-15 Hz that last ~0.5-2 s (De
Gennaro and Ferrara, 2003; Fernandez and Liithi, 2020) and can
be triggered by sensory stimuli (Antony and Paller, 2017). They
have been repeatedly shown to inhibit sensory processing during
sleep (McCormick and Bal, 1994; Schabus et al., 2012; Blume et
al., 2018; Fernandez and Liithi, 2020). However, some work chal-
lenges this notion (Sela et al., 2016) and even associates spindles
with the processing of memory-related sounds presented during
NREM sleep (Cairney et al., 2018).

Finally, microarousals are abrupt shifts in the EEG signal to-
ward theta, alpha, and/or high beta (>16Hz) frequencies
(Halasz et al., 1979; American Sleep Disorders Association, 1992;
Haldsz et al., 2004) that appear in all sleep stages and are consid-
ered windows of information processing during sleep (Haldsz et
al., 2004; Haldsz, 2005; dos Santos Lima et al.,, 2019). Micro-
arousals are usually preceded by KCs (Colrain, 2005; Halasz,
2005), yet they have been shown to be correlated with a lower
incidence of sleep spindles in the preceding 10 s of EEG signal
(Ehrhart et al., 1981).

Here, we reanalyzed the dataset used in Blume et al.
(2018), who recorded polysomnography while presenting
SONs and two UNs spoken by either an FV or a UFV during
a whole night of sleep. We detected KCs, spindles, and
microarousals in response to these sounds during NREM
sleep and hypothesized that the selective auditory-evoked
responses support the extraction and processing of relevant
sensory information.
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Materials and Methods

Participants

We recruited 20 healthy participants with no reported history of neuro-
logical or psychological problems as well as no reported sleep disorders.
However, one participant dropped out after the adaptation night, and
we had to exclude two participants because of technical problems during
EEG acquisition. Therefore, we performed the analyses we report here on
17 participants (14 females) with a median age of 22.6 * 2.3 years. Before
beginning the experiment, all participants signed written informed con-
sents. The experiment was approved by the Ethics Committee of the
University of Salzburg.

Experimental design

Before the start of the experiment, participants were advised to maintain
a regular sleep/wake cycle (~8 h of sleep) for at least 4 d, which we
monitored via actigraphy (Fig. 1A). Subsequently, participants spent two
nights in the sleep laboratory of the University of Salzburg. The first
night was an adaptation night, during which we recorded polysomnog-
raphy (PSG) data with no auditory stimulation. The second night was an
experimental night, during which we recorded PSG data while present-
ing sounds via loudspeakers throughout the night. In both nights, partic-
ipants were tested during wakefulness before and after sleep. Briefly, the
wakefulness testing consisted of two sessions, a passive-listening session
and an active-listening session. Passive listening entails the participants’
listening to the repeatedly presented auditory stimuli, whereas active lis-
tening means they had to count the number of presentations of one spe-
cific stimulus chosen by the experimenters. Before the wakefulness
testing, participants were stimulated with either a bright (blue enriched)
light or an inactive (sham) light for 1 h. The order of the light-stimula-
tion conditions was counterbalanced between the adaptation and the ex-
perimental nights across participants. However, the light condition is
irrelevant to this study as we grouped our data over both light condi-
tions. For the purpose of this article, we focus primarily on the sleep part
of the experimental night. For more details on the wakefulness part of
the experiment, please refer to Blume et al. (2018). During the experi-
mental night, participants went to bed around their habitual bedtime
(8:30 P.M. to 11:30 P.M.). Time in bed (TIB) was ~8 h. After 8 h TiB,
we waited for light NREM or REM sleep before waking up the partici-
pants (median sleep duration = 480 * 2.5 min). The auditory stimula-
tion started directly after participants went to bed and continued
throughout the whole night. We presented auditory stimuli continuously
for 90min (Stimulation periods) then paused the presentation for
30min (No-stimulation periods) to allow for periods of undisturbed
sleep. This resulted in a 120 min cycle that we repeated four times
throughout the night (Fig. 1B).

Stimuli

We presented six different auditory stimuli (Fig. 1C) that we personal-
ized for each participant. The stimuli were the SON and two UNs spo-
ken by either an FV or a UFV. An FV was the voice of someone close to
the participant, for example, one of the parents. An UFV was the voice
of someone unknown to the participant. We did not control for the sex
of the voices, but they were matched; that is, the familiar and unfamiliar
voices were always both either male or female. We chose UNs that
matched the SON in the number of syllables and the frequency of occur-
rence in the population. The volume for stimulus presentation was
adjusted individually for each participant so that the participant could
clearly hear the stimulus and still be able to fall asleep. Each stimulus
was presented 690 times, and the mean duration was 808 * 110 ms.
Stimuli were presented in a pseudorandom order, and no stimulus was
presented twice in a row. The interstimulus intervals during sleep were
jittered between 2800 and 7800 ms in 500 ms steps. Stimulus preprocess-
ing, that is, denoising and normalization, was performed using Audacity
software (https://audacityteam.org/). Stimulus delivery was controlled by
MATLAB (MathWorks).

Brain data acquisition
We recorded ongoing brain activity using a high-density EEG 256-chan-
nel GSN HydroCel Geodesic Sensor Net (Electrical Geodesics) and a Net
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Figure 1.

Experimental design. A, Protocol. Participants were invited for an initial screening interview during which they were given the wrist-worn actigraphy and advised to keep a regular

sleep-wake cycle. Participants slept in the sleep laboratory during two nights, an adaptation night during which polysomnography (PSG) was recorded but no stimuli were presented, and an
experimental night during which we recorded PSG and presented auditory stimuli throughout the night. B, Procedure of the experimental night. Participants slept for ~8 h with PSG and audi-
tory stimulation. All participants went through one stimulation session in the evening before sleep (Awake - pre) and one in the morning after waking up (Awake- post); however, these ses-
sions are irrelevant to the current analysis. The auditory stimuli started directly after participants went to bed and continued for 90 min, then paused for ~30 min to allow for a period of
undisturbed sleep. This cycle was repeated four times for the whole duration of the night. C, Top, Stimuli. We presented the subject’s own name (SON) and two unfamiliar names (UN1 and
UN2) spoken by either a familiar voice (FV) or an unfamiliar voice (UFV). Bottom, An exemplary sequence of stimulus presentation. Stimuli were presented in a pseudorandom order; each stim-

ulus was presented 690 times, and the interstimulus intervals ranged between 2800 and 7800 ms.

Amps 400 amplifier. The PSG recordings included two electrooculogra-
phy (EOG) and two chin electromyography (EMG) channels. Data were
acquired at a sampling rate of 250 Hz, and Cz served as the online
reference.

Sleep staging

Sleep staging was performed on 30 s epochs using the computer-assisted
sleep classification system developed by the SIESTA Group (Somnolyzer
24 x 7; Anderer et al., 2005, 2010) following the standard criteria recom-
mended by the American Association for Sleep Medicine (Iber, 2007).
We have previously shown that the level of agreement between this algo-
rithm and expert human scorers is similar to the level of agreement
between human experts (Ameen et al., 2019).

The detection of sleep microstructures

KC detection. We detected KCs automatically with a wavelet-detec-
tion algorithm that was developed by the SIESTA Group. The develop-
ment and validation procedures have been described in detail in
Parapatics et al. (2015) and Schwarz et al. (2017), respectively. Briefly, 12
experienced human scorers visually scored KCs in 873 epochs of 10 min
of PSG recordings from 189 control subjects and 90 patients. The fea-
tures of the visually scored KCs were used to set the criteria for detection
as well as to create a template KC that worked as a gold standard for the

automatic detection. The detection itself is a two-step process; first, the
algorithm detects possible KCs via an approach that combines a
matched-filtering detection method and a slow-wave detection method
(Woertz et al., 2004). Accordingly, the detection criteria for possible KCs
were the following: (1) a minimum negative-to-positive peak-to-peak
amplitude of 50 uV and (2) a duration between 480 and 1500 ms.
Second, all possible KCs are matched to the prototypical KC template
via wavelet analysis, and the results are submitted to a linear discrimi-
nant analysis (LDA) to select only real KCs. For our analysis, we consid-
ered real KCs to be events that have an LDA score (how likely a specific
EEG segment is a KC) of 0.8 or higher. This LDA score corresponds to
61.87% * 9.14 of all detected KCs and a mean correlation to the tem-
plate of 0.87 % 0.007 over all subjects and is a compromise between reli-
able detections and a sufficient number of detected events for our
analyses. Note that an LDA score of 1.7 reflects 98% detection specificity.
Before running the detection algorithm, raw data were downsampled to
128 Hz and rereferenced to the contralateral mastoid. We detected KCs
at C3 and C4. We only report results from C3 as the detections were
similar between C3 and C4. We only considered events that occurred
during N2 and N3 (Slow-wave) sleep and fulfilled the standard criteria
for KC detection (Rechtschaffen and Kales, 1968; Hori et al., 2001). For
N3 detections, however, we applied a stricter amplitude criterion as we
only selected events with a peak-to-peak amplitude of 751V or higher
(Cote et al., 1999; Nir et al., 2011). We marked the start of KC events as
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Figure 2.

K-complex detection and examples. A, LDA scores for all detected K-complexes for all subjects. The dashed line represents our minimum cutoff at an LDA value of 0.8, which is the

threshold used for the selection of reliable K-complex events. Bottom, The percentage of the events used in our analyses from all the detected events for each subject are indicated in red. B,
Examples of the detected K-complexes at channel (3 referenced to the contralateral mastoid. We show the standard EEG montage that we used for sleep staging as well as event detections.
Specifically, we used the following channels (from top to bottom): F3, F4, (3, (4, 01, and 0, referenced to the contralateral mastoid. Moreover, we show one EMG and two EOG channels
(hEOG_R and hEOG_L) channels as well as the average of both mastoids (A1-A2). Examples 1 and 2 show K-complexes detected in N2 sleep from one subject, whereas examples 3 and 4 are

K-complexes detected during N3 in a different subject.

the point of the negative-going zero crossing of the signal before the neg-
ative peak. We defined evoked KCs as those events that occurred
(started) in the 2000 ms poststimulus-onset window. Figure 2 demon-
strates the LDA distribution of the detected KCs and contains some
examples of the detected events.

Spindle detection. Sleep spindles were detected using an algorithm
developed by the SIESTA Group (AskAnalyzer; Gruber et al., 2015).
First, we filtered the raw data between 11 and 16 Hz and then detected
spindle events at frontal (F3, F4, Fz) and central (C3, C4, Cz) channels
rereferenced to the average of mastoids. We used the criteria described
in Schimicek et al. (1994).Only events with an amplitude >12 uV and a
duration between 500 and 2000 ms were considered. Further validation
of the detected spindles was done using LDA in which the detected spin-
dles were compared with a template that is generated based on the visual
scoring of sleep spindles in 8730 min of PSG data from 189 healthy par-
ticipants and 90 participants with sleep disorders. For our analyses, we
only considered events that occurred during N2 and N3 sleep with an
LDA score of 1.7 or higher (Anderer et al., 2005). To identify the fre-
quency of each spindle event, the algorithm preforms period-amplitude
analysis of the bandpass-filtered signal in the time domain. We subdi-
vided spindles into slow (11-13 Hz) and fast (13-15 Hz) spindles based
on the dichotomy in their topography and functions (Schabus et al.,
2007). We report results from fast spindles detected at C3 and slow spin-
dles detected at F3.

Microarousal detection. We detected microarousals semiautomati-
cally using an algorithm developed by the SIESTA Group, which has
been described in detail in Anderer et al. (2010). Briefly, the algo-
rithm was developed using the scoring of 12 PSG recordings by six in-
dependent experts. It incorporates information from central and
occipital channels. First, the algorithm compares the absolute and rel-
ative power of nine frequency bands including theta, alpha, and high
beta (>16 Hz) frequencies between a 3 s test window and a moving
10 s baseline via a series of LDA separately for each channel. Second,
the start and end of each event are determined by combining the pos-
terior probabilities of all channels so that the number of microar-
ousals per total sleep time is the same for both automatic and visual
detections. Although EMG increases are not necessary for the identi-
fication of microarousals that occur during NREM sleep, some of the
detected microarousals showed a concurrent increase in the ampli-
tude of the EMG signal; however, this increase in EMG activity was
not time locked to the high-frequency shifts of the EEG signal. The
algorithm detects microarousals in all sleep stages; however, for the
purpose of this study we selected microarousals that occurred during
N2 and N3 only (Fig. 3, detected microarousals).

The detection of transient microstates (micromeasures of alertness).
The detection of sleep microstates provides a more fine-grained scoring
that detects transient changes in sleep architecture in 4 s epochs rather
than 30 s, using an algorithm described in Jagannathan et al. (2018). The
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Examples of the detected microarousals. We show the standard EEG montage that is used for sleep staging as well as event detections. Specifically, we used the following channels

(from top to bottom): F3, F4, (3, (4, 01, and 0, referenced to the contralateral mastoid. Moreover, we show one EMG and two EQG channels (hEOG_R and hEOG_L) as well as the average of
both mastoids (A1-A2). Examples 1 and 2 are events detected in N2 sleep from one subject. Example 2 shows a microarousal that is preceded by a K-complex. Example 3 is from an N3 epoch

from a different subject.

algorithm uses the Hori scale (Tanaka et al., 1996) to classify the epochs
into either awake, drowsy (N1), or N2 based on the signal from a subset
of 14 electrodes distributed over frontal, central, parietal, occipital, and
temporal regions. We extracted stimuli from N2 sleep only and removed
stimuli with interstimulus intervals of <4000 ms. Then we filtered the
data between 0.1 and 30 Hz before running the algorithm on an equal
number of epochs in all conditions.

EEG preprocessing and analyses

Preprocessing. We performed all the preprocessing steps in EEGLAB,
version 14.1.1b (Delorme and Makeig, 2004). First, we excluded face and
neck channels and downsampled the raw data from 183 EEG channels
to 128 Hz. Then, we filtered the data between 0.1 and 40 Hz using a
Butterworth bandpass filter. We performed bad channels rejection and
interpolation as well as rereferencing to an average reference using the
PREP pipeline described in Bigdely-Shamlo et al. (2015). Finally, we per-
formed independent component analysis using the adaptive mixture in-
dependent component analysis toolbox and visually detected and
discarded eye and muscle artefacts.

Event-related analysis. We epoched the preprocessed data into
3000 ms trials (—1000 to 2000 ms relative to stimulus onset). For each
participant, we converted ERPs into percent power change relative to the
500 ms prestimulus-onset window using the formula (Data — mean base-
line values)/mean baseline values.

Time-frequency analysis. Time-frequency representations (TFRs)
were computed over 8000ms epochs, (—4000 to 4000 ms relative to
stimulus onset). We choose relatively long epochs to avoid edge artifacts
because of the transformation. We calculated TFRs by applying a 500 ms
hanning window as taper on frequencies from 0.5 to 30 Hz in 0.5 Hz fre-
quency steps and 5ms temporal steps. Similar to ERPs, we converted
participant-specific TFRs into percent power change relative to the
500 ms prestimulus-onset window.

Intertrial phase coherence estimate. Following time-frequency trans-
formation, we extracted the complex Fourier coefficient for each chan-
nel, frequency, and time point in every single trial. Then we computed
the phase angles in each trial before finally averaging the single-trial
intertrial phase coherence (ITPC) values over all trials per subject. We
performed all analyses in FieldTrip (Oostenveld et al., 2011; https:/
fieldtriptoolbox.org).

Statistical analyses

For all of our analyses, we randomly selected an equal number of events/
epochs per condition from N2 and N3. Evoked events were defined as
events that are detected by our algorithms in the 2000 ms poststimulus-
onset window. Because of violations to the assumptions of parametric
testing, we applied rank-based nonparametric tests using the nparLD
function implemented in the nparLD package available in R (Noguchi et
al.,, 2012). We report ANOVA-type statistics (ATS), p values (« = 0.05,
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Figure 4.  Auditory stimulation influenced sleep microstructure but not macrostructure. In eac

h participant, we selected equal numbers of epochs for all conditions. A, Difference in sleep

architecture, that is, the distribution of sleep stages, between the adaptation and the experimental night. To account for the effect of sleep-onset latency, we discarded all epochs that preceded

the first N1 epoch. We found no difference between the architectures of both nights. B, Difference
night. The experimental night consisted of periods of continuous auditory stimulation and periods

in sleep architecture between stimulation and no-stimulation periods during the experimental
of no stimulation. We found no difference in the sleep architecture between those periods. C,

Microstate differences between the stimulation and the no-stimulation periods. To circumvent the poor temporal resolution of the classical 30-second sleep stages, we opted for a more time-

resolved analysis of sleep stages based on the Hori scoring system. We found a higher number of

sleep epochs and lower number of drowsy epochs during the stimulation periods, suggesting

deeper sleep during auditory stimulation. D—F, A comparison of the densities of sleep microstructure between stimulation and no-stimulation periods. K-complex density during the stimulation
periods is higher than that in the no-stimulation periods (D). Slow and Fast spindles densities are higher during the stimulation periods (E). Microarousal density, however, did not differ
between stimulation and no-stimulation periods (F). Box plots show the median and the whiskers depict the 25% and the 75% quartiles. Each dot/triangle represents one participant in one

condition. *p < 0.05, **p < 0.001.

two sided), as well as effect sizes using relative treatment effects (RTE).
Generally, RTEs represent the probability of the values from the whole
dataset being smaller than a randomly chosen observation from the re-
spective group. Therefore, RTE values range between zero and one. An
RTE value of 0.5 means no effect. The higher the RTE value of one con-
dition, the higher the probability that a randomly chosen value from that
condition is larger than that randomly drawn from the whole dataset,
and vice versa. When applicable, we performed post hoc tests via the
nparLD function with Bonferroni’s correction for multiple comparisons.
For repeated measures at different time points, we performed nonlinear
mixed regression via generalized linear mixed models (GLMM:s) imple-
mented in the glmer function of the Ime4 package in R (Bates et al,,
2015). Both KC and microarousals were non-normally distributed. For
K-complexes, we used a GLMM with a Poisson distribution. For micro-
arousals, because of the presence of a notable amount of zero counts, we
used the zero-inflated Poisson distribution implemented in the the pscl
package in R (Zeileis et al., 2008). We added our subjects as effects with
random intercepts and slopes. We report the estimates of the fixed
effects (BA) and their standard errors, z values, and p values. We per-
formed post hoc interaction tests using marginal means estimates as
implemented in the emmeans package in R with Tukey’s correction for
multiple comparisons, and we report Cohen’s d effect sizes.

For the more temporally resolved analysis to compare between the
latencies of the detected events, we binned the 2000 ms poststimulus
intervals into bins of 100 ms, then we calculated the mean of the number
of events in each bin for each subject and condition, before finally sub-
mitting these results to the permutation analysis in FieldTrip. The choice
of the bin size is a compromise between a meaningful temporal resolu-
tion and a sufficient statistical power.

For ERP, TFR, and ITPC analyses, we selected equal numbers of
epochs per condition (66.47 = 56.25) for each subject. For this analysis,
we averaged the signal from six frontal channels (F3, F4, F7, F8, Fcz, and
Fz), using a time window from —500 to 2000 ms relative to stimulus
onset. We calculated the grand average over all subjects in each condi-
tion before submitting the results to the nonparametric cluster-based
permutation analysis in FieldTrip (Maris and Oostenveld, 2007). We
performed two-sided paired-sample ¢ tests followed by Monte Carlo’s
approximation with 5000 permutations (cluster-alpha = 0.05 and critical
alpha = 0.025). We report the sum of the ¢ values (> f), as well as
Cohen’s d effect sizes calculated over all possible permutations, channels,
time points, and frequencies in the cluster.

Results

Auditory stimulation influenced sleep microstructure but
not macrostructure

First, we assessed the effects of auditory stimulation on sleep
macrostructure. We found that auditory stimulation during sleep
does not influence sleep macrostructure. That is, we found no
change in sleep macrostructure from the adaptation to the exper-
imental night (Fig. 4A). Specifically, we found an effect of Stage
(ATS(2.61) = 62.75, p < 0.001, RTE, 4 = 0.24, RTEy; = 0.26,
RTEN, = 0.79, RTEpN; = 0.70, RTEggy = 0.51), no effect of the
Night (ATS(1) = 0.04, p = 0.84, RTEnystim = 0.48, RTE,,, = 0.52),
and no interaction Night x Stage (ATS(2.56) = 0.75, p = 0.51).
Similarly, during the experimental night, we found no difference
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Figure 5.  Auditory stimulation increased the occurrence sleep microstructures. A, A graphical illustration of the stimulus-ON and stimulus-OFF windows used for the analysis. We detected
events in the 2000 ms poststimulus window (Stimulus-ON, green), as well as during 2000 ms prestimulus windows that are at least 2000 ms after the last stimulus (Stimulus-OFF, orange). B—
E, The numbers of (B) K-complexes, (C) slow spindles, (D) fast spindles, as well as (E) microarousals were significantly higher during the stimulus-ON than the stimulus-OFF periods. The y-axis

depicts the percentage of epochs in which events were detected. Box plots show the median, and the whiskers depict the 25% and the 75% quartiles. Each dot/triangle represents one partici-
pant in one condition. *p << 0.05, **p << 0.001.
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Figure 6. Selective sleep-specific responses to unfamiliar voices during NREM sleep. 4, Differences in the triggered K-complexes between the familiar voice (FV) and the unfamiliar voice
(UFV) in the 2000 ms poststimulus-onset window. UFVs triggered more K-complexes than FVs. B, ¢, However, the numbers of (B) slow and (C) fast spindles did not differ between FV and
UFVs. D, Differences in triggered microarousals between FVs and UFVs demonstrating the higher number of microarousals triggered by UFVs. E, The amount of triggered K-complexes and
microarousals by all our stimulus categories and compared with those detected in the same number of 2000 ms no-stimulation epochs. F, G, Temporal aspects of the difference in the triggered
K-complexes and microarousals. The difference between UFV and FV in the number of triggered K-complexes was significant from 100 ms to 800 ms (indicated by bar and asterisks; F). The dif-
ference in the number of microarousals between FVs and UFVs was significant in the periods from 200 to 400 ms, and from 500 to 700 ms (G). Box plots show the median, and the whiskers
depict the 25% and the 75% quartiles. Each dot/triangle represents one participant in one condition. Top, The dashed horizontal line represents the mean duration of our stimuli (808 ms), the
lines depicts the means of the bins, and the shadings indicate the standard error of the mean (F, G). *p << 0.05, **p << 0.001. FVSON, Familiar voice speaking the subject’s own name;
UFVSON, unfamiliar voice speaking the subject’'s own name; FVUNS, familiar voice speaking two unfamiliar names, UFVUNs, unfamiliar voice speaking two unfamiliar names.

in sleep macrostructure between periods of stimulation and peri-  (2.08) = 0.68, p = 0.52). We then opted for a more time-resolved
ods of no stimulation (Fig. 4B). We found a main effect for Stage  analysis of sleep stages based on the Hori scoring system
(ATS(2.51) = 53.30, p < 0.001, RTE, ;. = 0.28, RTEy; = 0.18,  (Tanaka et al., 1996; Jagannathan et al.,, 2018), which uses 4 s
RTEN,=0.82, RTEy; = 0.74, RTERgy = 0.47). There was no effect  epochs instead of the classical 30 s staging. Again, we found a
of the Stimulation (ATS(1) = 3.36, p = 0.07, RTE papr = 0.5,  main effect for Stage (ATS(1.64) = 146.26, p < 0.001, RTE,, 4k, =

RTEgxp = 0.5), and no interaction Stimulation x Stage (ATS  0.28, RTEy; = 0.18, RTEy, = 0.82, RTEN; = 0.74, RTEggy =
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Zero-Inflated Model
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The effect of time on sleep-specific responses to unfamiliar voices during NREM sleep. A, The difference in the numbers of triggered K-complexes to the familiar voice (FV) and

unfamiliar voice (UFV) from the first to the second half of the night. A Generalized Linear Mixed Model (GLMM) using Poisson distribution revealed a significant interaction, Time x Voice, as
only the amount of UFV-triggered K-complexes decreased in the second half. B, A GLMM using zero-inflated Poisson distribution showed that the number of triggered microarousals did not
change from the first to the second half of the night. C, A statistical report of the GLMM model of K-complexes. We added Time (first half and second half), and Voices (familiar and unfamiliar
voices) as fixed effects. Moreover, we assigned random intercepts and slopes for each subject. We found a significant main effect of voice, no effect of time, and a significant interaction,
Time x Voice. D, Statistical report of the zero-inflated Poisson GLMM of microarousals. Similar to K-complexes, we added Time (first half and second half), and Voices (familiar and unfamiliar
voices) as fixed effects and random intercepts and slopes for each subject. No main effect of time and no interaction, Time x Voice, indicating that the amount of triggered microarousals did
not change from the first to the second half of the night. *p <C 0.05. Box plots show the median, and the whiskers depict the 25% and the 75% quartiles. Each dot/triangle represents one par-

ticipant in one condition.

0.47). However, there was no effect of the Stimulation (ATS
(169) = 3.36, p =0.19, RTEADAPT =0.5, RTEEXP = 05), but a Sig-
nificant interaction Stimulation x Stage (ATS(1.47) = 8.17, p =
0.02). Post hoc pairwise test with Bonferroni’s correction for mul-
tiple comparisons revealed that auditory stimulation resulted in
a higher number of sleep epochs (ATS(1) = 12.84, p < 0.001,
RTE;,, = 0.62, RTE, s, = 0.38) and a lower number of drowsy
epochs (ATS(1) = 10.88, p < 0.001, RTE;,, = 0.4, RTE, ,sim =
0.6), suggesting even deeper sleep during stimulation periods.

On the level of sleep microstructure, we compared the den-
sities, that is, the numbers of events per minute of N2 and N3, of
KCs, slow and fast spindles, as well as microarousals between
stimulation and no-stimulation periods. We show that auditory
stimulation significantly increased the densities of KCs (Fig. 4D;
ATS(1) =19.68, p < 0.001, RTE;,, = 0.59, RTE,, 4541 = 0.41) and
spindles (Fig. 4F; slow: ATS(1) = 19.68, p < 0.001, RTEq;, =
0.58, RTE, ossim = 042 — fast: ATS(1) = 8, p = 0.005, RTE,,, =
0.58, RTE, pstim = 0.42). However, the increase in the density of

microarousals did not reach statistical significance (Fig. 4F; ATS
(1) =1.01, p = 0.31, RTEyjy = 0.53, RTE p51im = 0.47).

Next, we performed a more temporally resolved analysis
of the auditory-induced changes in sleep microstructure.
Specifically, we compared the numbers of KCs, spindles,
and microarousals between Stimulus-ON and Stimulus-
OFF periods during the experimental night. Stimulus-ON
periods are 2000 ms poststimulus intervals (0-2000 ms rela-
tive to stimulus onset), whereas stimulus-OFF periods are
2000 ms intervals that start at least 2000 ms after the onset
of the previous stimulus and during which no sounds are presented
(Fig. 5A). We found significantly higher numbers of KCs (ATS(1) =
54.77, p < 0.001, RTEpy = 0.68, RTEqg: = 0.32), slow spindles
(ATS(1) = 9.13, p = 0.002, RTEy = 0.57, RTEppr = 0.43), fast spin-
dles (ATS(1) = 20.16, p < 0.001, RTEpy = 0.55, RTEqgr = 0.45),
and microarousals (ATS(I) = 845, p = 0.003, RTEoy = 0.58,
RTEopr = 0.42) in the stimulus-ON than in the stimulus-OFF peri-
ods (Fig. 5B-E).
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Figure 8.  Unfamiliar voices elicited stronger brain responses in the presence of the evoked K-complex. A, ERP contrast To illustrate whether the unfamiliarity

between familiar voice (FV) and unfamiliar voice (UFV) in the presence of the auditory-evoked K-complexes. UFVs triggered a
larger amplitude of the evoked response between 510 ms and 1400 ms as shown by the gray shadings. Extended Data Figures
8-1 and 8-2 illustrate the methodological underpinnings of the discrepancies between the amplitude and latency of the nega-
tive component in A as compared with the conventional amplitude and latency of the N550 in the literature. B, Comparison of
the peak-to-peak amplitude (P2P; N550 to P900) of the evoked K-complexes showing no difference in the amplitudes of the
evoked K-complexes between FVs and UFVs. €, ERP responses to FVs and UFVs in the absence of evoked K-complexes. There
was no difference in the ERP amplitudes between FVs and UFVs when no K-complexes were evoked. The solid blue and red
lines and the shadings represent the mean and the standard error of the mean, respectively. Top, The dashed horizontal line
represent the mean duration of our stimuli (808 ms). Vertical dashed lines (at x = 0) represent stimulus onset. Bottom left,
The red dots on the topographical plots indicate the locations of the channels used for the analysis. Box plots show the median,
and the whiskers depict the 25% and the 75% quartiles. Each dot/triangle represents one participant in one condition.

The brain responds selectively to unfamiliar voices during
NREM sleep

We subsequently sought to investigate whether brain responses
to auditory stimuli differ depending on their content, that is, the
name and/or voice used in the stimulus. We used a nonparamet-
ric test from the nparLD package with two within factors, that is,
Name (SON and UNs) and Voice (FV and UFV). KC responses
to auditory stimuli showed a significant effect of Voice, as UFVs
triggered more KCs than FVs (Fig. 64; ATS(1) = 16.10,
p>0.001, RTEyry = 0.76, RTEgy = 0.24), no effect of Name
(ATS(1) = 0.09, p = 0.76, RTEson = 0.48, RTEyN, = 0.52), and a
significant interaction Name x Voice (ATS (1) = 11.86, p =
0.001). Post hoc tests revealed that the amount of KCs triggered
by the combination FV-SON was marginally higher than that
triggered by the combination FV-UNs (ATS(1) = 4.17, ppons =
0.08, RTEpyson = 0.56, RTEgyyns = 0.44), whereas there was no
difference between UFV-SON and UFV-UNs (ATS(1) = 4.17,
Prons= 0.19, RTEypyson = 0.53, RTEypyuns = 0.47).

For fast and slow spindles, however, there was no effect of
Voice (Fig. 6B,C; slow: ATS(1,16) < 0.001, p = 0.99, RTEypy =
0.5, RTEgy = 0.5 — fast: ATS(1,16) = 2.71, p = 0.10, RTE = 0.53,
RTEgy = 047), no effect of Name (slow: ATS(1,16) = 0.46, p = 0.5,
RTEsoy = 0.51, RTEyy, = 049 — fast: ATS(,16) = 0.62, p = 0.43,
RTEson = 0.49, RTEyy, = 0.51), and no interaction Name x Voice
(slow: ATS(1,16) = 0.11, p = 0.74, RTEypyson = 0.51, RTEypyuns =
0.49, RTEgyson = 0.52, RTEpyyns = 0.48 — fast: ATS(1,16) = 2.63,
p= 0.10, RTEygyson = 0.50, RTEygyvuns = 0.55, RTEpyson = 0.47,
RTEpyyns = 0.47). Microarousals showed a main effect of
Voice (Fig. 6D; ATS(1) = 9.14, p = 0.002, RTEypy = 0.59,
RTEpy = 0.41), no effect of Name (ATS(1) = 1.16, p = 0.29,
RTEgson = 0.53, RTEyyn,s = 0.47) and no interaction Name X
Voice (ATS(1) = 0.19, p = 0.66, RTEypyson = 0.61,
RTEUFVUNS = 058, RTEFVSON = 044, RTEFVUNS = 037)

Figure 6E depicts the number of KCs and microarousals
evoked by different stimulus types as compared with a 2000 ms
no-stimulation intervals. Further, a temporally resolved analysis
(see above, Statistical analyses) showed that the difference in the
evoked KCs between FVs and UFVs occurred in the 100-800 ms
poststimulus window (Fig. 6F; >t = 25.35, p = 0.002, d =
1.02). For microarousals (Fig. 6G), the difference appeared

of the voice is candidly the main cause of
the difference in KC and microarousal
responses, we divided the night into
halves and hypothesized that brain
responses to UFVs, but not to FVs, will
decrease from the first to the second half,
as the UFVs become more familiar with
time. We modeled the change in the
number of KCs from the first to the sec-
ond half of the night using a GLMM
with Poisson distribution fit by maxi-
mum likelihood (Fig. 7A). We found a
main effect of Voice (BA = 1.17 = 0.16, z = 7.51, p < 0.001), no
effect of Time (BA = —0.08 * 0.11, z = —0.77, p = 0.44), and a
significant interaction Time x Voice (z = —2.28, p = 0.02). Post
hoc tests revealed a significant decrease of the UFV-triggered
KCs from the first to the second half of the night (BA = —0.31 *
0.08, z = 3.54, p = 0.002, d = 0.31), whereas FV-evoked KCs did
not change (BA = —0.08 * 0.11, z = 0.77, p = 0.87, d = 0.08).
Conversely, for microarousals, a GLMM with zero-inflated
Poisson distribution (Fig. 7B) demonstrated a marginally signifi-
cant effect of Voice (BA = 0.89 = 0.51, z = 1.75, p = 0.08), no
effect of Time (BN = —0.19 * 0.27, z = 0.73, p = 0.98), and no
interaction Time x Voice (BA = —0.09 = 0.33, z = —0.27, p =
0.55). We provide a more detailed description of the GLMM
results in Figure 7C,D.

UFVs evoke stronger K-complex-mediated brain responses
during NREM sleep

Next, we aimed to examine the neural dynamics underlying the
aforementioned differences in sleep microstructure. Therefore,
we compared the ERPs between FVs and UFVs in the following
conditions: (1) when the stimuli triggered KCs and (2) when no
KCs were triggered. We found that when KCs were triggered,
UFVs evoked a larger, more pronounced negative peak (Fig. 84;
> tae) = —436.35, p>0.001, d = 0.96) that resembles the N550
of the KC in its temporal and morphologic characteristics.
Importantly, however, we observed that the peak of the N550
potential occurred later (~750-800 ms) than the usual time win-
dow (500-550 ms) and had a much smaller amplitude (20-50
nV) than that (~100 uV) previously reported in the literature
(Colrain, 2005; Haldsz, 2005; Laurino et al., 2014). We illustrate
that these discrepancies with the previous literature are because
of the relatively large temporal window we defined for the detec-
tion of evoked KCs (2000 ms) as well as our decision to use an
average reference compared with the mastoid reference used in
earlier studies (Bastien and Campbell, 1992, 1994; Colrain, 2005;
Haldsz, 2005; Laurino, 2014). Extended Data Figures 8-1 and 8-2
show the difference in the amplitude of the N550 according to
the different referencing procedures as well as the latency jitter of
the N550 peak on the single-trial level. Further, to confirm that
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Figure 9.

Brain responses to unfamiliar voices in the presence of the evoked K-complex reflect further processing. A, The difference in intertrial phase coherence (ITPC) values between the

familiar voice (FV) and the unfamiliar voice (UFV) in the presence of the evoked K-complex. UFVs evoked significantly higher ITPC than FV in the delta (14 Hz) frequency band. Note that the
largest difference in phase locking overlaps with the difference between the ERPs in Figure 84. B, Separate ITPC plots for FVs (top) and UFVs (bottom) showing stronger ITPC values following
UFVs and indicating that the difference in ITPC values is because of an increase in ITPC following UFVs. C, ITPC difference between UFVs and FVs in the absence of the evoked K-complexes.
There is no difference in ITPC between FVs and UFVs in the absence of evoked K-complexes. D, E, Spectral power maps of the power differences between FVs and UFVs. We demonstrate stron-
ger responses to UFV in a broad frequency range (~1-10 Hz) regardless of the presence (D) or the absence (E) of K-complexes. However, stronger high-frequency (=16 Hz) responses to
UFVs appeared only in the presence of K-complexes. Top, The dashed horizontal line represents the mean duration of our stimuli (808 ms). Vertical dashed lines (at x = 0) represent stimulus
onset. Bottom left, The red dots on the topographical plots indicate the locations of the channels used for the analysis.

the difference in the ERPs does not reflect a difference in the
amplitude of the evoked KCs, we compared the peak-to-peak
amplitudes of the evoked KCs, as measured by the detection
algorithm, between FVs and UFVs (Fig. 8B). Peak-to-peak
amplitudes showed no significant effect of Voice (ATS(1) =
1.47, p = 0.23, RTEypy = 0.48, RTEgy = 0.52), Name (ATS(1) =
0.71, p = 0.39, RTEsoN = 0.52, RTE N, = 0.48), and no interac-
tion Voice x Name (ATS(1) = 1.47, p = 0.23, RTEypyson =
049, RTEUFVUNS = 047, RTEFVSON = 054, RTEFVUNS = 050)
Intriguingly, when no KCs are evoked, we found no difference
in the amplitude of the ERPs between UFVs and FVs (Fig. 8C;
0.3-0.37 s: Y t1e) = 27.31, p = 0.13).

K-complex-mediated brain responses to UFVs reflect sensory
processing
We then speculated that the difference in the amplitude of the
ERPs, if not because of a difference in the amplitude of the
evoked KCs, might reflect more synchronized evoked responses
to UFVs as compared with FVs. Therefore, we compared the
phase consistency of brain responses between FVs and UFVs via
the ITPC metric (Tallon-Baudry et al., 1996). We observed stron-
ger ITPC following UFVs as compared with FVs in the delta
band (1-4 Hz; Fig. 94; Y t6) = 2413.98, p = 0.003, d = 1.06)
indicating more synchronized brain responses to UFVs. Figure
9B shows the ITPC contrast between FVs and UFVs indicating
that difference in the IPTC is a product of stronger time-locked
responses to UFVs. Similar to our ERP analysis, in the absence of
the evoked KCs, IPTC values did not differ between FVs and
UFVs (Fig. 9C; Y te) = 2521.7, p = 0.001).

Finally, we performed spectral analysis of brain responses to
UFVs and FVs in the presence and absence of evoked KCs. We

observed stronger low-frequency response (delta band; 1-4 Hz) to
UFVs as compared with FVs (Fig. 9D,E) that started ~250 ms post-
stimulus onset. This delta response appeared independent of the
presence (Fig. 9D; > t(16) = 9395.64, p < 0.001, d = 1.25) or absence
(Fig. 9E; > "ty = 4097.56, p = 0.013, d = 0.86) of the evoked KC.

Crucially, only in the presence of KCs, UFVs additionally eli-
cited a significant increase in the power of higher frequencies
(>16 Hz) as compared with FVs (Fig. 9D, > f1¢) = 5020.62, p =
0.006, d = 1.04) starting ~500 ms poststimulus.

Discussion

In this study, we presented sleepers with their own first names
(SON) and two UNs spoken by either an FV or a UFV during a
full night of sleep with polysomnography. We show that
although auditory stimulation did change sleep architecture (Fig.
4A-C), it induced prominent, stimulus-specific changes in sleep
microstructure. Generally, presenting auditory stimuli during
NREM sleep increased the number of KCs, spindles, and
microarousals (Fig. 5). UFVs triggered more KCs (Fig. 6A)
and microarousals (Fig. 6D) than FVs. However, we found
no difference in the amount of triggered KCs, spindles, or
microarousals between SONs and UNs. The difference in the
numbers of evoked KCs and microarousals between FVs and
UFVs appeared ~100 ms poststimulus (200 ms for microar-
ousals) and extended over the whole duration of the stimuli
~800 ms (Fig. 6F,G). Although the number of the UFV-trig-
gered KCs decreased in the second half of the night, the
numbers of evoked microarousals remained relatively stable
throughout the night (Fig. 7). Moreover, in the presence of
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the auditory-evoked KC, UFVs triggered larger evoked
responses (Fig. 8A4), which did not reflect a difference in the
amplitudes of the evoked KCs (Fig. 8B,C) but rather more
synchronized brain responses to UFVs relative to FVs (Fig.
9A,B). Similarly, brain responses to UFVs demonstrated an
increase in the power of high frequencies (>16 Hz), suggest-
ing a stronger arousal reaction to UFVs (Fig. 9D). Crucially,
we were not able to detect such differential brain responses
between FVs and UFVs in the absence of the evoked KC.

It has previously been suggested that the more relevant the
stimulus, the higher its tendency to trigger KCs (Halasz, 2005).
In this regard, our results pose UFVs as more relevant—or in ev-
olutionary terms potentially more threatening (Blume et al,
2018)—and consequently more arousing to the sleeper than FVs.
Indeed, the increase in microarousals following UFVs suggests a
transient shift toward external processing of vital environmental
stimuli. In the same vein, the decrease in the number of UFV-
evoked KCs in the second half compared with the first half of the
night (Fig. 7A) supports the notion that the sleeping brain con-
tinues to learn new information during sleep (Ziist et al., 2019).
That is, homeostatic regulatory processes alone cannot explain
this observation because the number of FV-evoked KCs did
not change, indicating a stimulus-specific attenuation of brain
responses. It might be that the sleeping brain learns, through
repeated processing, that an initially unexpected stimulus
poses no immediate threat to the sleeper and consequently
decreases its response to it. Conversely, in a safe sleep envi-
ronment, the brain might be expecting to hear FVs and consis-
tently inhibits any response to such stimuli to preserve sleep
(Fig. 6E). Although this assumption remains speculative, it
entails a thorough investigation of the ability of the brain to
generate top-down predictions of the the external sensory
world during sleep. Nevertheless, our results suggest that the
unfamiliarity of voice is a strong promoter of brain responses
during NREM sleep.

What is the role of the auditory-evoked brain responses dur-
ing NREM sleep? Central to such responses is the KC, that is, the
most prominent sleep-specific response to sensory stimulation.
To answer this question, we contrasted trials during which FVs
and UFVs triggered KCs. In such trials, UFVs evoked a larger
negative potential that resembles the N550 component of the KC
(Fig. 7A). The N550 has been associated with large-scale neuro-
nal silencing that protects sleep (Cash et al., 2009; Laurino et al.,
2014) and, conversely, an arousal reaction that facilitates stimu-
lus processing (Atienza et al., 2001). In our study, the amplitudes
of the evoked KCs did not differ between FVs and UFVs, corrob-
orating the previous literature presenting the evoked KC as an
all-or-none phenomenon (Bastien and Campbell, 1992). Rather,
the difference in the N550 amplitude between FVs and UFVs
was because of more synchronized brain responses to UFVs as
indicated by the ITPC values (Fig. 9A). Stimulus-induced phase
modulations have been suggested to promote information proc-
essing and transmission in the cortex (Lakatos et al, 2013;
Canavier, 2015; Voloh and Womelsdorf, 2016), and increased
ITPC values have been associated with better cognitive perform-
ance (Hanslmayr et al., 2005; Eidelman-Rothman et al., 2019)
and enhanced attention (Joon Kim et al., 2007) during wakeful-
ness. Together, our results suggest that the preferential brain
responses to UFVs during NREM sleep reflect sensory process-
ing. Importantly, the shorter poststimulus time window during
which UFVs elicited KCs as compared with FVs, indicated by
the narrower peak in Figure 6F, implies better temporal align-
ment of KCs following UFVs and emphasizes the contribution of
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the evoked KCs to the observed phase modulations. Finally, the
stronger high-frequency responses (>16 Hz; Fig. 9) to UFVs
that appeared only in the presence of KCs corroborate the role of
the auditory-evoked KCs in promoting sensory processing of rel-
evant information. Together, our findings suggest a central role
for KCs in the extraction and processing of relevant external sen-
sory information during NREM sleep.

We did not find any differences in brain responses between
SON and UNs in contrast to the previous literature (Oswald et
al., 1960; Perrin et al., 1999). One explanation might be that
although sleep preserves low-level auditory processing, it attenu-
ates higher order linguistic tracking (Makov et al.,, 2017). We
speculate that this is because of the disruption of the activity of
the large-scale networks necessary for higher order name proc-
essing (Démonet et al., 1992; Luke et al, 2002) because of the
loss of long-range cortical connectivity during sleep (Massimini
et al., 2005). Further research should elucidate the mechanisms
of language tracking during sleep.

We show that the auditory-evoked spindles are not influenced
by specific characteristics of the auditory stimuli (i.e., name or
voice). However, the role of spindles in response to sensory stim-
uli during sleep is far from clear. Previous research has shown
that spindles attenuate or even inhibit the processing of auditory
information (De Gennaro and Ferrara, 2003; Schabus et al.,
2012; Blume et al, 2018). Other work suggests that brain
responses are preserved during spindles (Sela et al., 2016) and
even argues for a role for spindles in the processing of memory-
related sensory information (Antony et al., 2018; Cairney et al.,
2018; Jegou et al., 2019). More research should investigate the
role of spindles in response to sensory information irrelevant to
ongoing memory processes.

Finally, we found no relevant changes in sleep macrostructure
and architecture because of auditory stimulation (Fig. 4). In fact,
microarousals represent an integral part of healthy sleep as they
ensure its reversibility (Haldsz et al., 2004). Hence, their slight
increase should not be viewed as a disruption to normal sleep.
Further, the analysis of microstates even indicates a shift toward
deeper sleep in response to UVF stimuli (Fig. 4C), which is most
likely a by-product of more auditory-evoked KCs that influenced
the staging. However, the classical 30 s sleep staging might not be
sensitive enough to capture subtle changes in sleep microstruc-
ture. Hence, the development and refinement of new fine-
grained methods, such as the Hori-based microstate classifica-
tion (Jagannathan et al., 2018) promises better monitoring of
transient sleep fluctuations, especially in the presence of sensory
perturbation.

In summary, sleep appears to be far from a homogenous state
of unconsciousness. There are temporal windows in sleep during
which the brain filters, extracts, and processes relevant external
information. We speculate that such content-specific, dynamic
reactivity to sensory signals enables the brain to enter a sentinel
processing mode (Blume et al., 2018) during which it preserves
the ability to efficiently engage in the important internal proc-
esses that are ongoing during sleep while remaining connected
to the surrounding environment.
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