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Executive function (EF) is essential for humans to effectively engage in cognitively demanding tasks. In adults, EF is sub-
served by frontoparietal regions in the multiple demand (MD) network, which respond to various cognitively demanding
tasks. However, children initially show poor EF and prolonged development. Do children recruit the same network as adults?
Is it functionally and connectionally distinct from adjacent language cortex, as in adults? And is this activation or connectiv-
ity dependent on age or ability? We examine task-dependent (spatial working memory and passive language tasks) and rest-
ing state functional data in 44 adults (18-38 years, 68% female) and 37 children (4-12 years, 35% female). Subject-specific
functional ROIs (ss-fROIs) show bilateral MD network activation in children. In both children and adults, these MD ss-fROIs
are not recruited for linguistic processing and are connectionally distinct from language ss-fROIs. While MD activation was
lower in children than in adults (even in motion- and performance-matched groups), both showed increasing MD activation
with better performance, especially in right hemisphere ss-fROIs. We observe this relationship even when controlling for age,
cross-sectionally and in a small longitudinal sample of children. These data suggest that the MD network is selective to cogni-
tive demand in children, is distinct from adjacent language cortex, and increases in selectivity as performance improves.
These findings show that neural structures subserving domain-general EF emerge early and are sensitive to ability even in
children. This research advances understanding of how high-level human cognition emerges and could inform interventions
targeting cognitive control.
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Significance Statement

This study provides evidence that young children already show differentiated brain network organization between regions
that process cognitive demand and language. These data support the hypothesis that children recruit a similar network as
adults to process cognitive demand; and despite immature characteristics, children’s selectivity looks more adult-like as their
executive function ability increases. Mapping early stages of network organization furthers our understanding of the func-
tional architecture underlying domain-general executive function. Determining typical variability underlying cognitive proc-
essing across developmental periods helps establish a threshold for executive dysfunction. Early markers of dysfunction are
necessary for effective early identification, prevention, and intervention efforts for individuals struggling with deficits in proc-
essing cognitive demand.

Introduction
Executive function (EF) is comprised of three distinct, yet inter-
secting, components (working memory, cognitive shifting, and
inhibitory control) that, together, facilitate effective self-regula-
tion (Miyake and Friedman, 2012; Friedman and Miyake, 2017).
Children and adolescents, whose impulse control is still develop-
ing, perform worse on laboratory measures of EF compared with
adults; and their overall EF performance improves with age
(Westerberg et al., 2004; Zelazo et al., 2004; Best and Miller,
2010; Anderson and Reidy, 2012; Wiebe and Karbach, 2017). So,
do children process cognitively demanding tasks using the same
system as adults? Factor analytic studies support a hierarchical
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structure of EF in adults, with an overarching “common EF”
factor (Friedman and Miyake, 2017). However, developmental
studies support a unitary model of EF that only dissociates in
mid-to-late childhood (Wiebe et al., 2008, 2011; Brydges et al.,
2014; Lerner and Lonigan, 2014). Duncan (2010) proposed
that the domain-general multiple demand (MD) network, com-
prised of frontal, parietal, cingular, and opercular brain regions,
subserves this “common EF” factor.

Previous work examined this MD network in adults and
showed that it is reliably recruited across a variety of EF tasks
(Niendam et al., 2012; Fedorenko et al., 2013; Shashidhara et al.,
2020). Fedorenko et al. (2013) identified 10 bilateral regions that
show consistent activation in a sample of adults across EF tasks.
These MD regions are distinct from the adjacent language net-
work in functional specificity (Fedorenko et al., 2012; Diachek et
al., 2020) and resting-state connectivity (Blank et al., 2014). In
addition to robust activation for cognitive demand, adults’ acti-
vation of the MD network is correlated with behavioral markers,
such as reaction time, accuracy, and intelligence (Assem et al.,
2020), suggesting that these regions are sensitive to ability. Thus,
we expect that activation of children’s MD network would reflect
their immature EF ability.

It is possible that neural development of the MD network par-
allels development of EF performance. In this case, we would
expect that, as a child’s performance improves, their MD net-
work activation would look more adult-like. Although similar
patterns of activation are observed across EF tasks in children
and adults, child studies show more variability in strength and
location (Durston et al., 2002; Vogan et al., 2016; McKenna et al.,
2017; Fiske and Holmboe, 2019). Additionally, it remains unclear
whether the MD network is functionally and connectionally dis-
tinct from adjacent domain-specific language areas in children,
as in adults, and whether developmental differences in MD net-
work activation reflect changes in EF ability. To date, no one has
looked at neural processing of EF compared with other mental
functions, such as language, in a sample of children.

In this study, we investigate the cross-sectional and longitudinal
development of theMD network among 4- to 12-year-old children.
We collected task-dependent fMRI to localize brain regions that
children recruit during a cognitively demanding spatial working
memory (SWM) task and during a high-level language processing
task. We also collected a resting-state scan. To account for stable
individual variability in anatomic and functional network organiza-
tion (Gratton et al., 2018), which is of increased concern for devel-
opmental samples, we generated subject-specific functional ROIs
(ss-fROIs) using the Group-Constrained Subject-Specific method
(Fedorenko et al., 2010) (https://web.mit.edu/bcs/nklab/GSS.
shtml). Defining ss-fROIs enhances power and therefore increases
the chances of detecting age- and performance-related changes in
MD network selectivity. To rule out motion as a confound of de-
velopmental differences, we asked a subset of adults to participate
in additional “wiggly” scans of the SWM task to compare with
child scans. We predicted that (1) children would exhibit a similar
but immature pattern of MD network activation as adults, (2) this
network would be distinct from the adjacent language network in
functional connectivity, and (3) this pattern would look more
adult-like in children with better task performance.

Materials and Methods
Participants
We recruited 84 children and 50 adults who completed a battery of fMRI
localizer tasks as part of multiple ongoing studies investigating brain de-
velopment at Ohio State University. Children who did not complete the

SWM task or had data processing problems (n= 16) and those who only
completed one run of the SWM task (n=12) were not included in analy-
ses. Seven children and one adult were excluded for excessive head
motion (.25% of time points with .1 mm total vector motion or total
framewise displacement .3 SDs from the group mean) (Power et al.,
2012). Three adults had data processing problems, and two were excluded
because of low accuracy (.3 SDs below the group mean). Of the 49
remaining child scans, 8 children participated in multiple scans, leaving a
final sample of 37 unique children. Final cross-sectional samples include
44 adults (68% female, mean age=23.9 years, range=17.9-38.2 years,
SD=4.9 years) and 37 typically developing children (35% female, mean
age=8.3 years, range=4.5-12.0 years, SD=2.1 years). Demographics are
reported in Table 1.

We also examine a few subsets of the child and adult samples. We
asked 16 adults to complete additional “wiggly” runs of the SWM task,
in an attempt to mimic motion in child scans, so that we could compare
motion-matched child and adult samples; demographics for this “wig-
gly” adult group are also reported in Table 1. A subset of 30 children and
29 adults who also completed the language localizer task were included
in analyses examining functional and connectivity differences between
the MD and language networks. Fourteen children completed the MD
and language tasks at multiple time points; however, 6 do not meet our
predefined motion cutoffs at both time points. Therefore, we present
preliminary longitudinal findings assessing selectivity and resting-state
connectivity for the remaining 8 children, each scanned about 1 year
apart (75% female, time point 1: mean age = 6.22 years, range = 4.65-
7.72 years, SD= 1.12 years, mean time between scans = 1.54 years). Two
of these 8 children are missing accuracy data at one time point (because of
experimenter/technological error), so only 6 children (83% female, time
point 1: mean age=6.37 years, range=4.7-7.7 years, SD=1.4 years, mean
time between scans=1.65) are included in longitudinal analyses assessing
the relationship between MD selectivity and SWM performance.

Participants were recruited from the local community around Ohio
State University. Participants reported normal vision and no neurologic,
neuropsychologic, or developmental diagnoses at the time of recruit-
ment; all participants are fluent in English, as measured by self-report.
Informed consent was obtained from all participants or guardians; pa-
rental permission and assent were also obtained for child participants.
Study protocols were approved by the Institutional Review Board at
Ohio State University.

Experimental design
A series of functional localizers were completed by each participant,
including an SWM and language localizer task in the fMRI. The full scan
protocol collects data for six localizer tasks (including the two we report
here), resting-state, T1-, and T2-weighted images during a 90 min scan
protocol. Parents completed a battery of parent-report measures about
their child and adult participants completed self-report questionnaires.

Functional localizer tasks. An SWM task was used to functionally
locate regions that respond to cognitive load, which are associated with
the domain-general MD network (Fedorenko et al., 2013) (https://evlab.
mit.edu/funcloc/). Task difficulty was adjusted by age (low [4-5 years],

Table 1. Demographics and behavioral variables for children and adults
included in selectivity analyses

Children
[mean (SD) or %]
(n= 37)

Wiggly adults
[mean (SD) or %]
(n= 16)

Adults
[mean (SD) or %]
(n= 44)

Age (yr) 8.3 (2.1) 22.9 (4.8) 23.9 (4.9)
Sex (% female) 35% 69% 48%
Race

White 74% 65% 71%
Black 14% 6% 4%
Asian 3% 14% 11%
Other 9% 15% 14%

Handedness (% right) 89% 100% 93%
Framewise displacement 167.3 (77.4) 171.9 (131.8) 49.3 (12.6)
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medium [6-7 years], and high [81 years] load); in cases when a child
was capable of playing a higher level based on prescan performance, they
were given the next level up during the scan. All adults completed the
high load version of the task, which is described and depicted by
Diachek et al. (2020). Response durations are longer for the low and
moderate load versions of the task to give young children one extra sec-
ond to respond. Intertrial durations are shorter (12 s instead of 14 s) to
ensure that the child versions of the task have a similar run time as
adults. For each version of the task (low, medium, or high load), each
run consisted of six blocks of each condition (Hard and Easy), and each
block contained four trials. Hard versus Easy blocks are contrasted to
isolate activation selective for cognitive load. Participants view a single
grid of 9 (low load) or 12 (medium and high load) squares, some of
which are blue. One, two, or three grid patterns with blue squares in new
locations appear sequentially. Then, participants are presented with two
grid patterns. They must choose which of the two grid patterns matches
the sequential presentation of blue squares during that trial and indicate
the correct response with a button press. The Hard trials require partici-
pants to remember more blue squares than the Easy trials. Each child
completed at least one run of this task outside of the scanner to ensure
they understood task rules.

A language localizer task was used to functionally locate regions re-
sponsive to lexical and structural properties of language (Fedorenko et
al., 2010) (https://evlab.mit.edu/funcloc/). Participants listened to blocks
of English Sentences (Sn), Nonsense sentences (Ns; nonwords lists con-
trolling for prosody but constructed from phonemically intact nonsense
words), and Texturized speech (Tx; degraded audio controlling for low-
level auditory features) (Scott et al., 2017). Each run consisted of four
blocks of each condition and three 14 s fixation blocks. Each block con-
tained three trials (6 s each) followed by a visual queue to press a button.

Data acquisition
Images were acquired on a Siemens Prisma 3T scanner with a 32-chan-
nel phase array receiver head coil. Foam padding used for head stabiliza-
tion and increased comfort for all participants. Anatomical images were
acquired with a whole-head, high-resolution T1-weighted MPRAGE
scan to facilitate registration of masks to each subject’s anatomic space
(TR = 1390ms; TE = 4.6 ms; voxel resolution = 1� 1� 1mm3; flip
angle = 12°). Functional images during the SWM task were acquired
with similar EPI sequences for all difficulty levels (TR = 1000ms;
TE = 28ms; voxel resolution = 2� 2� 3 mm3; flip angle = 61°); the
number of frames differed by difficulty level (low load: 336; medium:
384; high: 400). The language localizer was acquired with the same EPI
sequence for both children and adults (TR=1000 ms; TE=28ms; voxel
resolution= 2� 2� 3mm3; number of frames= 258; flip angle = 61°).
Resting-state functional images were acquired with the same sequence
for both children and adults (TR = 1000ms; TE = 28ms; voxel
resolution=2� 2� 3mm3; flip angle = 0°); child scans were 5 min and
adult scans were 10 min. Participants were instructed to lay still and look
at a white fixation cross on a black screen during resting-state image
acquisition.

fMRI preprocessing
Anatomical. Data were analyzed with Freesurfer version 6.0.0,

FsFast, FSL, and custom MATLAB code. All structural images were pre-
processed using a semiautomated processing stream with default param-
eters (recon-all function in Freesurfer: https://surfer.nmr.mgh.harvard.
edu/fswiki/recon-all/), including intensity correction, skull stripping,
surface coregistration, spatial smoothing, white matter and subcortical
segmentation, and cortical parcellation. Cortical gray matter masks for
the MD network regions are based on prior literature (Fedorenko et al.,
2013) and registered to each subject’s native anatomic space.

Task-based fMRI. Functional images were motion-corrected (aligned
all time points to the first time point in the scan and regressed out all
time points with .1 mm total vector motion between consecutive time
points). We used bbrregister to register functional data to the subject’s
anatomic space and resampled to 1� 1� 1 mm3. Additional preprocess-
ing steps, including detrending and spatial smoothing (4 mm FWHM
kernel for SWM and Language localizers), were applied during volume-

based, first-level GLM analyses. A standard boxcar function (events on/
off) was used to convolve the canonical HRF (standard g function,
d= 2.25 and t= 1.25), and regressors were included for each condition
(SWM task: Hard, Easy; Language localizer: Sn, Ns, Tx). Additional
nuisance regressors (six orthogonalized motion measures from the
preprocessing stage) were applied to the processed images for each
task individually. Resulting b estimates and contrast maps (SWM
task: Hard . Easy; Language localizer: Sn . Ns) were used for subse-
quent analyses.

Resting-state fMRI. We preprocessed the resting-state data using
Freesurfer’s FS-Fast preprocessing pipeline (https://surfer.nmr.mgh.
harvard.edu/fswiki/FsFastAnlysisBySteps). Framewise displacement was
used as a motion regressor. We generated masks of white matter, CSF,
and subcortical structures for each subject in their native anatomic
space. We performed spatial smoothing, interpolation over motion
spikes, bandpass filtering (0.009-0.08Hz), and denoising using CSF and
white matter masks.

Generating a probabilistic map
To quantify the brain areas that respond to cognitive load across child
subjects, we generated a probabilistic map from the SWM task signifi-
cance maps. We smoothed each subject’s Hard minus Easy significance
map (4 mm FWHM kernel) and registered it to FsAverage space
(https://surfer.nmr.mgh.harvard.edu/fswiki/FsAverage). We binarized
and thresholded each subject’s significance map (-log10(p). 2; or
p, 0.01) and summed the number of subjects who exhibit significant
activation in each voxel.

ss-fROIs
We used the Group-Constrained Subject-Specific method (Fedorenko et
al., 2010) to define ss-fROIs. Fedorenko et al. (2013) derived 10 bilateral
regions belonging to the MD network based on probabilistic maps of
functional activation in a sample of adults. Each region included showed
greater functional activation during Hard compared with Easy blocks
in at least 60% of subjects across six different cognitively demanding
tasks. Each of the masks was registered using Freesurfer’s CVS function
(Postelnicu et al., 2009) (https://surfer.nmr.mgh.harvard.edu/fswiki/mri_
cvs_register) from the CVS atlas MNI152 space to the participant’s native
anatomic space. We used one run of the first-level GLM analysis to iden-
tify each subject’s ss-fROIs by assessing subject-specific contrast maps
within all 10 bilateral search spaces. Using custom MATLAB scripts, the
top 10% of activated voxels during the contrast of interest (i.e., Hard .
Easy) were identified as the ss-fROI for each search space. Two sets of
MD ss-fROIs were generated for each subject (i.e., from each run of
the SWM task). Language ss-fROIs used in resting-state analyses were
defined (Sn . Ns contrast) using masks of regions that show activation
during high-level language in a previous study in adults (Fedorenko et al.,
2010) (https://evlab.mit.edu/funcloc/).

Percent signal change (PSC)
Cross-sectional. Custom MATLAB scripts extract PSC for each con-

dition (SWM task: Hard, Easy; Language localizer: Sn, Ns, Tx) within all
MD ss-fROIs generated from an independent run of the SWM task (e.g.,
PSC during Run 1 was extracted within the ss-fROIs generated from
Run 2) using the first-level b estimates. ss-fROIs generated from the
SWM task were used to extract PSC from the Language localizer task for
children and adults who also completed at least one run of the Language
localizer task.

Longitudinal. For the subjects who completed two longitudinal
scans, we registered ss-fROIs defined at their second time point to the
subject’s native anatomic space at their first time point using Freesurfer’s
CVS function (Postelnicu et al., 2009) to assess how more mature/adult-
like ss-fROIs are responding at a younger age. We then used the Time
point 2 ss-fROIs (that were now in Time point 1’s native anatomic
space) to extract PSC during the SWM task from Time point 1, so that
we could calculate changes in responsiveness to cognitive demand over
time. The ss-fROI generated from the first run at Time point 2 was used
to extract PSC from the first run at Time point 1; this was repeated for
the second run of the SWM task.
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Selectivity indexes
The MD selectivity index quantifies selectivity of MD ss-fROIs for cogni-
tive demand (Eq. 1) (Simmons et al., 2007; Szwed et al., 2011). We exam-
ine selectivity indexes, instead of raw PSC, because it normalizes signal
contrast relative to general responsiveness of that region. A selectivity
index was calculated for each run of a task (SWM or Language) using
the PSC values; then the selectivity across both runs was averaged to give
each individual one selectivity value per task. The Language selectivity
quantifies selectivity of MD ss-fROIs to language (Eq. 2).

MD selectivity index ¼ PSC:Hard � PSC:Easy
PSC:Hard þ PSC:Easy

(1)

Language selectivity index

¼ PSC:Sn � PSC:Ns
PSC:Sn þ PSC:Ns þ PSC:Tx

(2)

Resting state connectivity
The same ss-fROIs created for the above task-based analysis were
used to examine resting-state connectivity in each subject that also
completed the resting state scan (child, n = 34; adult, n = 26). The av-
erage time course for each ss-fROI of the MD and language net-
works was computed from the preprocessed resting-state images. To
evaluate interactions between regions, Pearson correlations were
generated between ss-fROI time courses. To generate normally dis-
tributed values, each functional connectivity value was Fisher z-
transformed.

Statistical analyses
Single-sample sign tests were conducted to evaluate if selectivity is .0
because of the negatively skewed distribution of MD selectivity within the
child sample; sign tests were also conducted for the adult sample for consis-
tency. We report the dominance statistic (DS), which reflects the proportion
of the sample exhibiting selectivity .0 minus the proportion exhibiting se-
lectivity ,0 (Mangiafico, 2016), and the nonparametric effect size (Fritz et
al., 2012) as measures of effect size for selectivity values. Wilcoxon rank sum
tests were conducted to evaluate whether MD selectivity differs between
adults and children in the motion- and performance-matched subsamples.
Paired-sample sign tests were conducted to evaluate MD selectivity versus
language selectivity in MD ss-fROIs, and paired-sample t tests were con-
ducted to evaluate within- versus between-network (with language network

ss-fROIs) resting-state connectivity in children and adults.
We corrected for multiple comparisons using Bonferroni-
Holm correction (Holm, 1979); each analysis tested for all
10 bilateral ss-fROIs was corrected for three (frontal) or
seven (parietal) comparisons.

To assess linear relationships between selectivity,
age, and task performance, we conducted Pearson’s cor-
relations and multiple linear regressions in the cross-
sectional and longitudinal samples to assess associations
for individual ss-fROIs. To assess whether the multiple
linear regression, including selectivity and age, explains
significantly more variance in performance than age or
selectivity alone, we conducted stepwise regressions
with ANOVAs to compare the linear regressions to the
multiple linear regressions, including both variables. To
assess how pooled selectivity of the MD network
explains variance in performance, we conducted linear
mixed effects models, including selectivity from all ss-
fROIs (within hemisphere), age, and a random intercept
by ss-fROI (lmerTest R package) (Luke, 2017); we refer
to these analyses as pooled selectivity throughout. To
assess the longitudinal correlation between selectivity
and performance, we conducted linear mixed effects
models with a random intercept by subject (lmerTest).
Last, to assess longitudinal changes in selectivity and
performance, we conducted multiple linear regressions
to determine the effect of change (i.e., Time point 2

minus Time point 1) in age and change in selectivity on change in accu-
racy, while controlling for age at Time point 1.

Code accessibility
We used custom scripts in MATLAB for much of the data processing
(e.g., generating ss-fROIs and extracting PSC). Scripts are available on
request; contact corresponding author (Z.M.S). We used RStudio version
1.1.331 for statistical analyses examining selectivity and MATLAB ver-
sion R2020a for statistical analyses examining within- and between-net-
work resting-state connectivity.

Results
Exploratory probabilistic map of the MD network in
children
We generated an exploratory probabilistic map of voxels that ex-
hibit significantly greater activation (z. 2.58) during Hard ver-
sus Easy trials of the SWM task for at least 2 subjects (5% of
cross-sectional sample, Fig. 1). The maximum number of sub-
jects who show significant activation in the same voxel is 8 (22%
of cross-sectional sample). Despite functional variability, we see
a pattern of activation across several frontal and parietal regions
that looks similar to the pattern seen in adults (Fedorenko et al.,
2013). We also see occipital activations, which likely reflect the
fact that the Hard trials show more colored boxes than the Easy
trials. Below, we use ss-fROIs defined using each individual’s
activation map to explore development of the MD network.

Selectivity of the MD network in adults
We considered ss-fROIs to be selective to cognitive demand
if their neural responses to Hard trials (on an SWM task) was
higher than responses to Easy trials (i.e., if the MD selectivity
index [Eq. 1] is significantly .0). Table 2 and Extended Data
Table 2-1 show descriptive statistics, effect sizes, and p values
for each ss-fROI’s MD selectivity index by group. Because of
a negatively skewed distribution, we tested selectivity using single-
sample, one-tailed, sign tests. As expected, adults show robust
selectivity in all bilateral MD ss-fROIs (Table 2, sign tests), which
all survive Bonferroni-Holm multiple comparison correction.
Because motion is a problem in child neuroimaging and can cause

Figure 1. A, Probabilistic map showing common activation during a blockwise spatial working memory task
(z. 2.58; contrast: Hard–Easy) in at least 2 participants and a maximum of 8 participants (22% of participants).
B, Example significant maps are depicted for 4 participants.
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spurious correlations (Power et al., 2012), we asked a subset of our
adult participants to complete additional runs of the SWM experi-
ment while encouraging them to “wiggle” so that we could com-
pare motion-matched child and adult groups. In the wiggly adult
group, most bilateral MD ss-fROIs remain significant (uncorrected
p, 0.05, sign tests) and survive multiple comparison correction
(Bonferroni-Holm–corrected p, 0.05; Table 2). This suggests that
selectivity of MD ss-fROIs is robust among adults, even in the face
of childlike motion, and that any developmental differences we
observe among motion-matched samples are likely not driven by
motion. Figure 2 depicts mean selectivity by region and group.

Selectivity of the MD network in children
A similar pattern is observed among children. Most MD ss-fROIs
show positive selectivity indexes (Fig. 2, light blue bars). Children
exhibit significant selectivity in all three bilateral parietal, four
right frontal, and six left frontal MD ss-fROIs (uncorrected
p, 0.05, sign tests) and several survive multiple comparison cor-
rection (Table 2). These data show that, in samples of children as
young as 4-12 years, we can already see functionally selective acti-
vation of the MD network during a cognitive demanding task.
Upon visual inspection, all ss-fROIs show greater selectivity in
adults than in children, even for the motioned-matched adult
sample (Fig. 2; Extended Data Fig. 2-1 depicts the average PSC).
Surprisingly, only 12 of the 20 ss-fROIs reach statistical signifi-
cance. Seven of 10 MD ss-fROIs in the right hemisphere show sig-
nificantly greater selectivity in adults compared with children
(uncorrected p, 0.05, Wilcoxon rank sum tests; Fig. 2; Extended
Data Table 2-2), and all survive multiple comparison correction.
In the left hemisphere, only five frontal ss-fROIs show significantly
greater selectivity in adults, and all survive multiple comparison
correction. Despite robust selectivity in children’s MD ss-fROIs,
adults evoke stronger selectivity than children even when matched

on motion. Additionally, in a performance-matched subsample
of children (n = 23) and adults (n = 18), we only see signifi-
cantly greater MD selectivity for adults among frontal ss-fROIs
(Wilcoxon rank sum tests; Extended Data Table 2-2). These data
show that, even in young children, the bilateral MD network is
engaged during cognitively demanding tasks, just like in adults.
However, we see weaker activation in children compared with
adults, even in samples controlling for motion and performance
on the task. Thus, it is reasonable to attribute these differences to
maturation.

Dissociation between MD and adjacent language regions:
functional selectivity
We next compared the same participants’ activation on the
SWM task to activation on a language task, where participants
were asked to listen to meaningful Sentences and Nonsense sen-
tences, as well as Texturized sound. Frontal MD and language
regions are often in close proximity, but we know from previous
work (Fedorenko et al., 2012, 2013) that these networks are func-
tionally distinct in adults. Do these regions emerge from a
common frontal area? If so, we may expect slight sensitivity,
or mild selectivity, to language in these MD ss-fROIs in young
children.

We conducted single-sample, two-tailed, sign tests to test this
hypothesis. We found that no MD ss-fROIs show selectivity to
language in either our child or adult samples (i.e., no ss-fROIs
show language selectivity significantly .0; p. 0.05, two-tailed
sign tests, Extended Data Table 2-3). Intriguingly, we observed
trends of greater response to the Nonsense sentences condition
compared with the Sentences condition (reflected as language
selectivity ,0; Fig. 2, pink bars; Extended Data Fig. 2-1 depicts
the average PSC). Several ss-fROIs show significantly greater
PSC during the Nonsense versus Sentences condition in our

Table 2. Selectivity of the MD ss-fROIs during an SWM taska

Children (n= 37) Wiggly adults (n= 16) Adults (n= 44)

Median DS p Median DS p Median DS p

Right hemisphere
Posterior parietal 0.15 0.51 1.28 � 10�3* 0.29 1.00 3.05 � 10�5* 0.24 1.00 5.72 � 10�14*
Superior parietal 0.09 0.30 0.045* 0.43 1.00 2.59 � 10�4* 0.27 0.95 2.56 � 10�12*
Inferior parietal 0.22 0.51 1.28 � 10�3* 0.43 1.00 1.53 � 10�5* 0.31 0.95 5.63 � 10�11*
Precentral gyrus 0.14 0.38 0.010 0.46 1.00 2.59 � 10�4* 0.32 0.91 5.63 � 10�11*
Superior frontal sulcus 0.12 0.30 0.040 0.43 0.75 2.09 � 10�3* 0.27 0.91 2.56 � 10�12*
Inferior frontal sulcus 0.11 0.35 0.018 0.61 1.00 2.59 � 10�4* 0.35 0.95 2.56 � 10�12*
Middle frontal gyrus 0.11 0.19 0.155 0.68 1.00 3.69 � 10�3* 0.55 0.91 5.63 � 10�11*
Orbital middle frontal gyrus 0.16 0.14 0.250 0.92 0.75 0.038 0.74 0.95 2.56 � 10�12*
Inferior frontal gyrus 0.28 0.41 0.010 0.67 0.88 2.09 � 10�3* 0.57 1.00 5.72 � 10�14*
Anterior cingulate cortex 0.15 0.24 0.088 0.43 0.88 0.046 0.48 0.95 2.56 � 10�12*

Left hemisphere
Posterior parietal 0.17 0.43 4.52 � 10�3* 0.35 1.00 1.53 � 10�5* 0.22 1.00 5.72 � 10�14*
Superior parietal 0.30 0.32 0.033* 0.37 1.00 4.88 � 10�4* 0.28 1.00 5.72 � 10�14*
Inferior parietal 0.26 0.38 0.014* 0.33 1.00 4.88 � 10�4* 0.29 1.00 5.72 � 10�14*
Precentral gyrus 0.18 0.54 2.68 � 10�4* 0.35 0.88 3.69 � 10�3* 0.25 0.91 5.63 � 10�11*
Superior frontal sulcus 0.25 0.43 5.67 � 10�3* 0.36 1.00 2.59 � 10�4* 0.31 1.00 5.72 � 10�14*
Inferior frontal sulcus 0.20 0.40 8.34 � 10�3* 0.41 1.00 3.69 � 10�3* 0.37 0.95 2.56 � 10�12*
Middle frontal gyrus 0.30 0.38 0.012* 0.53 1.00 3.69 � 10�3* 0.48 0.95 2.56 � 10�12*
Orbital middle frontal gyrus 0.33 0.38 0.012* 0.65 0.88 0.029 0.76 0.86 8.09 � 10�10*
Inferior frontal gyrus 0.16 0.16 0.203 0.52 1.00 0.029 0.44 0.95 2.56 � 10�12*
Anterior cingulate cortex 0.14 0.32 0.029 0.15 0.88 0.073 0.42 0.91 5.63 � 10�11*

aOne-tailed sign-tests were conducted and medians are reported because of negatively skewed distribution. Subject-specific functional regions of interest (ss-fROIs) are grouped by hemisphere and brain lobe. DS, Dominance
statistic. Extended Data Table 2-1 lists the nonparametric effect sizes for each group. Extended Data Table 2-2 lists statistics for comparisons between children and adult groups. Extended Data Table 2-3 lists statistics for lan-
guage selectivity and repeated-measures comparisons between multiple demand (MD) and language selectivity of MD ss-fROIs for children and adults, separately. Extended Data Table 2-4 lists comparisons of percent signal
change for relevant conditions in the spatial working memory (SWM) and language tasks.
*Corrected p, 0.05 (Bonferroni-Holm, 3 parietal regions, 7 frontal regions) for each group (e.g., significant selectivity. 0).

1944 • J. Neurosci., March 15, 2023 • 43(11):1940–1951 Schettini et al. · Performance Reflects MD Selectivity in Children

https://doi.org/10.1523/JNEUROSCI.1460-22.2023.f2-1
https://doi.org/10.1523/JNEUROSCI.1460-22.2023.t2-2
https://doi.org/10.1523/JNEUROSCI.1460-22.2023.t2-2
https://doi.org/10.1523/JNEUROSCI.1460-22.2023.t2-3
https://doi.org/10.1523/JNEUROSCI.1460-22.2023.f2-1
https://doi.org/10.1523/JNEUROSCI.1460-22.2023.t2-1
https://doi.org/10.1523/JNEUROSCI.1460-22.2023.t2-2
https://doi.org/10.1523/JNEUROSCI.1460-22.2023.t2-3
https://doi.org/10.1523/JNEUROSCI.1460-22.2023.t2-4


child and adult samples (uncorrected p. 0.05, Wilcoxon rank
sum tests; Extended Data Table 2-4). Nonsense sentences may
evoke greater functional activation than Sentences in regions
associated with cognitive demand as individuals attempt to
comprehend the words, effectively engaging in a cognitively
demanding task.

We also asked whether children show greater MD selectivity
than language selectivity in these ss-fROIs. All but two left hemi-
sphere ss-fROIs show greater MD than language selectivity, and
four right hemisphere MD ss-fROIs reach significance for this
comparison (uncorrected p, 0.05, Extended Data Table 2-3;
repeated-measures, one-tailed, sign tests); the right posterior and
inferior parietal MD ss-fROIs survive multiple comparison cor-
rection. Overall, we see selective activation for SWM in the MD
network but no language selectivity within MD ss-fROIs in chil-
dren. However, it is possible that these two networks are still
functionally connected in children. Therefore, we next examined
whether these networks are also dissociated in their resting-state
connectivity patterns.

Dissociation between MD and adjacent language regions:
resting-state connectivity
Previous work shows that in adults, regions of the MD and lan-
guage networks are also distinct in resting-state functional con-
nectivity (Blank et al., 2014). We investigated whether this
pattern is replicated among our sample of adults and whether it
is observed among children using their MD ss-fROIs defined for
the prior analysis and their language ss-fROIs defined using the

language task. We observe a similar pattern of greater within-
than between-network resting-state connectivity in our sample
of adults (left: t(25) = 12.27, p=8.13� 10�13, right: (t(25) = 11.19,
p = 3.14� 10�11, repeated-measures t test; Fig. 3A). We also
see significantly greater within-MD than between-network
connectivity in both the left (t(33) = 3.37, p = 1.90� 10�3,
repeated-measures t test) and right (t(33) = 3.28, p=2.5� 10�3,
repeated-measures t test) hemispheres for the cross-sectional child
sample (Fig. 3B). So, are MD frontal regions also more connected
to other MD regions than to language regions that are in closer
proximity? When focusing on just the frontal ss-fROIs (which
exist in both networks), we also see the same pattern: frontal
MD ss-fROIs are more connected to one another than they are
to adjacent language ss-fROIs for children (left: t(33) = 3.46,
p = 1.90� 10�3, right: (t(33) = 2.87, p = 7.1� 10�3, repeated-
measures t tests) and adults (left: t(25) = 9.07, p = 2.23� 10�9,
right: (t(25) = 8.24, p = 1.35� 10�8, repeated-measures t tests).

In our longitudinal sample (n= 8), at Time point 1, children
show only a trend of greater within- than between-network
connectivity in both hemispheres (left: t(8) = 1.93, p = 0.090;
right: t(8) = 2.16, p = 0.063, repeated-measures t tests; Fig. 3C,
top). At Time point 2, within-network connectivity is significantly
greater than between-network connectivity in both hemispheres
(left: t(8) = 4.10, p = 3.4� 10�3; right: t(8) = 2.34, p = 0.047,
repeated-measures t tests; Fig. 3C, bottom). This suggests
that, by early-to-middle childhood, the MD network is already
dissociated from the adjacent language network in both function
and connectivity.

Figure 2. Mean selectivity in the right (A,B) and left (C,D) multiple demand (MD) network subject-specific functional regions of interest (ss-fROIs) during the spatial working memory (SWM)
(blue) and language localizer (pink) tasks for children (lighter colors) and adults (darker colors). One-tailed sign tests were conducted to test whether MD selectivity is significantly.0. Two-tailed
sign tests were conducted to test whether language selectivity is significantly different from zero. Repeated-measures, one-tailed sign tests were conducted to test whether children show greater
MD than language selectivity in MD ss-fROIs. Wilcoxon rank sum tests were conducted to test whether adults show greater MD selectivity than children in motion-matched comparison groups.
Extended Data Figure 2-1 represents the average percent signal change for each condition, which was used to calculate selectivity. *p, 0.05; **p, 0.01; ***p, 0.001; strength of significance
(uncorrected). Red symbols represent Bonferroni-Holm–corrected p, 0.05. Error bars indicate SE.
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Development of MD functional selectivity
and resting-state connectivity
Next, we explored any developmental changes in
selectivity of the MD network in children ages 4-
12 years. In the cross-sectional sample, MD se-
lectivity was not significantly associated with
age for any MD ss-fROIs (|R| , 0.31, p values
. 0.05, Pearson correlations). Analogous cor-
relations in the longitudinal sample also show
no significant associations with age (|t| , 1.83,
p values. 0.05, linear mixed effects models,
random intercept by subject).

When we examined developmental changes
in resting-state connectivity, the cross-sec-
tional sample shows no association between
age and within-MD network connectivity
within the whole network (left: R = –0.096,
right: R = –0.094, p values. 0.05, Pearson’s
correlations) or within-MD frontal ss-fROIs (left:
R = –0.106, right: R = –0.289, p values. 0.05,
Pearson’s correlations). We also see no associa-
tion between age and between-network (MD to
Language) connectivity for the whole network
(left: R=0.022, right: R = –0.002, p values. 0.05,
Pearson’s correlations) or for the frontal ss-
fROIs (left: R = –0.050, right: R = –0.223, p
values. 0.05, Pearson’s correlations). Age is also
not related to differences in connectivity across
tasks (i.e., within- minus between-network con-
nectivity; left: R = –0.118, right: R = –0.090,
Pearson’s correlations). To assess age-related
changes in the longitudinal sample, we tested
whether change in age between the first and sec-
ond scan sessions is related to change in connec-
tivity, while controlling for age at first scan. Here,
we also see no changes in within-network connec-
tivity (left: F(2,6) = 0.736, p=0.518; right: F(2,6) =
0.255, p = 0.783, multiple linear regressions)
or between-network connectivity (left: F(2,6) =
0.736, p = 0.518; right: F(2,6) = 0.255, p = 0.783,
multiple linear regressions), or difference in
connectivity at the whole-network level (left:
F(2,6) = 0.736, p = 0.518; right: F(2,6) = 0.255, p =
0.783, multiple linear regressions). When look-
ing only at the frontal ss-fROIs (left: F(2,5) = 2.117,
p=0.216,; right: F(2,6) = 0.209, p=0.817, multiple
linear regressions), we also see no significant rela-
tionship. Together, these findings suggest that,
during childhood, the MD network is already
functionally dissociated from the language net-
work and that changes in functional connectivity and selectivity
are not well explained by age alone. Below, we explore how per-
formance on the SWM task relates to age, selectivity, and connec-
tivity of the MD network.

Relationship between age, MD selectivity, and performance
on SWM task
Performance by age
In the cross-sectional sample, we only see a significant positive cor-
relation between age and accuracy (R=0.44, t(30) =2.67, p=0.012,
Pearson correlation) and a trend of quicker reaction time with age
(R =�0.25, t(30) =1.41, p=0.168, Pearson correlation; Fig. 4) during

Easy trials. There is no relationship between age and accuracy or
reaction time for Hard trials (p values. 0.05; Fig. 4). In the longitu-
dinal sample, we also see a positive association between age and ac-
curacy for both conditions (Hard: t(9.6) =2.85, p=0.018; Easy:
t(6.8) =4.38, p=3.53� 10�3, linear mixed effects model with ran-
dom intercept by subject). They show no significant associations for
reaction time (p values. 0.05). Next, we investigate whether MD
selectivity or connectivity reflect a child’s ability to process cognitive
demand.

Performance by MD selectivity
Pearson’s correlations between accuracy and selectivity of several
MD ss-fROIs show a significant relationship during both Hard

Figure 3. Mean resting-state connectivity of subject-specific functional regions of interest (ss-fROIs) for the multi-
ple demand (MD) and language networks, separated by hemisphere. Group means for the cross-sectional adult (A;
n= 26) and child (B; n =34), and longitudinal child (C; n= 8) samples are depicted. Two-tailed repeated-measures
t tests show significantly greater within- than between-network connectivity in both hemispheres. *p, 0.05;
**p, 0.01; ***p, .001; strength of significance (uncorrected). Error bars indicate SE.

Figure 4. Pearson correlations for age and behavioral metrics during the spatial working memory (SWM) task in
the cross-sectional child sample. Accuracy (A,C) and reaction time (B,D) during Easy (A,B) and Hard (C,D) trials are
reported separately.
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and Easy trials among children (uncorrected p, 0.05, Pearson
correlations; Extended Data Table 3-1). The majority of the ss-
fROIs that show increasing MD selectivity with performance on
Hard trials are in the right hemisphere. When assessing pooled
selectivity, selectivity of ss-fROIs in both hemispheres is related
to accuracy (linear mixed effects model with random intercepts by
ss-fROI; Extended Data Table 3-1). Figure 5A depicts three correla-
tions of the most robust selectivity by performance associations
among children, namely, in right middle frontal gyrus, right
inferior parietal, and right inferior frontal sulcus. Similar to
children, we see a positive trend in the relationships between adult
accuracy on Hard trials and selectivity for several MD ss-fROIs,
although only five ss-fROIs are statistically significant (uncor-
rected p, 0.05, Pearson correlations; Extended Data Table 3-2).
Figure 5B depicts the association between selectivity and adult per-
formance during Hard trials in the same three ss-fROIs as
depicted for children. This association remains significant for
adults when pooled within hemisphere (linear mixed effects model
with random intercepts by ss-fROI; Extended Data Table 3-2). For
accuracy during Easy trials, children (Extended Data Table 3-1),
but not adults (Extended Data Table 3-2), show significant associ-
ations between MD selectivity and accuracy.

Performance by MD selectivity while controlling for age
Then, we explored the unique effect of MD selectivity on accu-
racy, while accounting for variability associated with age. During

Hard trials, five right ss-fROIs and one left ss-
fROIs remain significantly related to accuracy
(multiple linear regressions; Table 3); three of
the right ss-fROIs (inferior frontal sulcus, middle
frontal gyrus, inferior parietal) survive multiple
comparison correction (Bonferroni-Holm–cor-
rected p, 0.05; Table 3). Pooled selectivity
across all ss-fROIs in each hemisphere (to assess
selectivity of the MD network as a whole) show
significant main effects of selectivity, but not age,
in both hemispheres (linear mixed effects models
with random intercepts by ss-fROI; Table 3).
During Easy trials, age remains robustly associ-
ated with accuracy in all models controlling for
variance explained by MD selectivity (Extended
Data Table 3-3). The association between accu-
racy and pooled selectivity in both hemispheres
remains significant when framewise displacement
is controlled for in the model for both Hard (left:
B=0.10, t(316)=5.59, p=4.81� 10�8, right: B=
0.15, t(316) = 7.91, p=4.35� 10�14, linear mixed
effects models with random intercepts by ss-fROI)
and Easy (left: B=0.09, t(316) = 4.55, p=7.80�
10�6, right: B=0.12, t(316) = 6.22, p=1.54� 10�9,
linear mixed effects models with random inter-
cepts by ss-fROI) trials.

Do the longitudinal analyses mirror the
cross-sectional results? Two subjects were miss-
ing accuracy data at one time point, so these
analyses only include 6 children with two data
points each. Even in this small sample, we see
that change in selectivity is significantly related
to change in accuracy during Hard trials when
pooling across ss-fROIs within hemisphere, even
while controlling for change in age and age at
first scan (Table 4, linear mixed effects models
with random intercept by ss-fROI); however,
this effect is not observed in individual ss-fROIs

(Table 4, linear regressions). Because of the small sample size, to
further examine these results, we assessed reliability of the varia-
bles of interest. We see that selectivity indexes (R=0.29, p=4.49�
10�8, Pearson’s correlation) and accuracy during Easy (R=0.79,
p=3.21� 10�8, Pearson’s correlation) and Hard (R=0.78,
p=9.01 � 10�8, Pearson’s correlation) trials are correlated across
runs within time point. These longitudinal results replicate the
association between performance and MD selectivity observed in
the cross-sectional sample, suggesting that children’s neural
responses reflect their EF ability and look increasingly adult-like as
their ability improves across time.

Model comparisons
Does MD selectivity explain more variance in performance than
variance explained by age? We compare models of both age and
selectivity (multiple linear regression) to models of either age or
selectivity alone (linear regressions) using stepwise regression.
All significant multiple linear regressions (Table 3) explain sig-
nificantly more variance in performance during Hard trials than
linear regressions including age alone (Extended Data Table 5-1,
ANOVAs). Notably, these multiple linear regressions do not
explain more variance than linear regressions with selectivity
alone (Extended Data Table 5-1, ANOVAs). We see this same pat-
tern for pooled selectivity in both hemispheres (Table 5, linear
mixed effects model). This suggests that selectivity of MD regions

Figure 5. Pearson correlations between neural selectivity of multiple demand (MD) subject-specific functional
regions of interest (ss-fROIs) and behavioral accuracy during Hard trials of the spatial working memory task in chil-
dren (A) and adults (B); stronger selectivity was related to better task performance regardless of age. *p, 0.05;
**p, 0.01; ***p, 0.001; strength of significance (uncorrected). A full list of statistics by individual ss-fROIs is
reported in Extended Data Table 3-1 for children and Extended Data Table 3-2 for adults.
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adequately explains variance in performance during Hard trials,
regardless of age, for children ages 4-12 years.

Finally, we assess whether the relationship between selectivity
and performance differs by group. For all right hemisphere MD
ss-fROIs and all but three left hemisphere MD ss-fROIs, we see a
significant main effect of group (i.e., adults have higher accuracy
than children) and selectivity (i.e., both adults and children who
have higher accuracy have higher selectivity), but no ss-fROIs
show a significant interaction between group and selectivity
(Extended Data Table 5-2). Pooled selectivity within both
hemispheres shows a significant interaction between group
and selectivity, such that the relationship between selectivity and
performance is stronger among children than adults (Extended
Data Table 5-2). The main effect of group and the interaction
effect (selectivity by group) are also observed in a performance-
matched subsample of children (n= 23) and adults (n=18;
Extended Data Table 5-3) for pooled selectivity within the left
hemisphere; only a group main effect is observed for pooled se-
lectivity within the right hemisphere. This result mirrors those
reported above regarding the performance by selectivity associa-
tions in each group separately (Fig. 4) and the between-group
tests of greater selectivity in adults (Extended Data Table 2-2).
Thus, MD selectivity seems to reflect individual differences in
working memory performance in both children and adults.

Performance by connectivity
In the cross-sectional sample, we observed no correlations between
resting-state connectivity (of either hemisphere) and performance
(during Hard and Easy trials) for within- (|R| , 0.26, p values
. 0.05, Pearson’s correlations) or between-network (|R| , 0.16,
p values. 0.05, Pearson’s correlations) connectivity. In the longitu-
dinal sample, change in connectivity does not explain change in
performance, even when accounting for variance explained by

change in age and age at Time point 1 (within-network: |t| , 0.83,
p values. 0.05; between-network: |t|, 1.16, p values. 0.05, multi-
ple linear regressions).

Discussion
Do children process cognitively demanding tasks using the same
neural system as adults? As evidenced with visual inspection of
our novel probabilistic atlas of children’s MD network and with
quantitative analysis of MD selectivity within ss-fROIs, we show
that children recruit similar regions to adults while engaged in a
cognitively demanding task. Although many MD regions already
show positive selectivity, we see group differences between motion-
and performance-matched child and adult groups, likely reflecting
children’s immature EF ability. Among children, individual differ-
ences in performance are more accurately explained by models,
including both age and MD selectivity, than models with age alone.
Although we still see a relationship between performance and selec-
tivity among adults, this relationship is weaker, suggesting that neu-
ral activation is more reflective of EF ability during childhood, than
once individuals are fully matured.

When evaluating resting-state connectivity of ss-fROIs, we
observed expected dissociation of the MD and language networks
in both children and adults. Although adults show significantly
greater within- than between-network connectivity, replicating
prior literature (Blank et al., 2014; Malik-Moraleda et al., 2022);
we also observe higher within- and between-network connectivity
than was observed in these studies. We speculate that global
differences (i.e., greater connectivity overall) are because of
methodological differences, like instructing participants to
fixate on a cross (as we do here) instead of closing their eyes,
which produces higher connectivity values (Van Dijk et al.,
2010). Additionally, we observed no age effects in connectivity

Table 3. Main effect of selectivity of MD ss-fROIs on accuracy during hard trials of the spatial working memory task in the cross-sectional child sample (n= 32)a

Accuracy: hard trials Selectivity (B) Selectivity (t) Age (B) Age (t) Full model (F) Adjusted R2

Right hemisphere
Posterior parietal 0.17 1.98 2.20 � 10�2 1.47 2.35 0.08
Superior parietal 0.13 2.10* 1.21 � 10�2 0.86 2.60 0.09
Inferior parietal 0.24 3.63** 1.46 � 10�2 1.17 7.10** 0.28b

Precentral gyrus 0.21 3.10** 7.69 � 10�3 0.59 5.25* 0.22
Superior frontal sulcus 0.16 2.64* 8.75 � 10�3 0.64 3.92* 0.16
Inferior frontal sulcus 0.28 4.01*** �1.12 � 10�4 �0.01 8.56** 0.33b

Middle frontal gyrus 0.23 4.21*** 2.16 � 10�3 0.18 9.43*** 0.35b

Orbital middle frontal gyrus 0.10 1.62 5.51 � 10�3 0.37 1.69 0.04
Inferior frontal gyrus 0.08 1.06 1.02 � 10�2 0.68 0.92 �5.36 � 10�3

Anterior cingulate cortex 0.12 1.98 8.76 � 10�5 0.01 2.35 0.08
Pooled selectivity 0.16 7.97*** 8.19 � 10�3 1.95 NA NA

Left hemisphere
Posterior parietal 0.20 2.87** 1.85 � 10�2 1.37 4.58* 0.19
Superior parietal 0.14 2.38* 1.14 � 10�2 0.83 3.25 0.13
Inferior parietal 0.11 1.74 8.48 � 10�3 0.58 1.90 0.06
Precentral gyrus 0.09 1.07 1.34 � 10�2 0.90 0.93 �4.47 � 10�3

Superior frontal sulcus 0.12 2.05 8.41 � 10�3 0.59 2.49 0.09
Inferior frontal sulcus 0.08 1.36 5.11 � 10�3 0.33 1.30 0.02
Middle frontal gyrus 0.10 1.61 7.75 � 10�3 0.53 1.67 0.04
Orbital middle frontal gyrus 0.03 0.47 1.07 � 10�2 0.69 0.46 �0.04
Inferior frontal gyrus 0.07 0.92 6.73 � 10�3 0.42 0.78 �0.01
Anterior cingulate cortex 0.11 1.76 2.91 � 10�3 0.19 1.93 0.06
Pooled selectivity 0.10 5.15*** 8.42 � 10�3 1.89 NA NA

aTo examine individual subject-specific functional regions of interest (ss-fROIs), multiple linear regressions (df = 2,29) were conducted to account for variability associated with age. To examine the whole network within hemi-
sphere, linear mixed effects models (df = 317) estimate the effect of selectivity and age on accuracy, with random intercepts by ss-fROI.
bBonferroni-Holm indicates full model corrected p, 0.05 (corrected for 3 parietal or 7 frontal regions). Extended Data Tables 3-1 and 3–2 list the Pearson correlations between accuracy and selectivity of multiple demand
(MD) ss-fROIs for children and adults, respectively. Extended Data Table 3-3 lists the main effects of selectivity and age for multiple linear regressions estimating accuracy during easy trials among children.
*p, 0.05; **p, 0.01; ***p, 0.001; strength of significance (uncorrected).
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for either sample of children, which deviates from prior neu-
rodevelopmental literature (for review, see Power et al., 2010).
This study uses ss-fROIs, which account for individual vari-
ability and capture a more personalized evaluation of network
connectivity than studies that average activity within larger
search-spaces; this may explain differences between our find-
ings and existing literature on the relationship between age
and connectivity. Our findings suggest that, in 4- to 12-year-
old children, dissociation between MD and language networks
is already functionally distinct. These data do not preclude the
possibility that larger age effects exist in samples younger than
4 years or across broader age ranges.

Interestingly, although we see differences between children
and adults in both hemispheres, the most robust associations
between selectivity of MD ss-fROIs and performance (i.e., ac-
curacy) are observed during Hard trials in right MD regions.
This may reflect right lateralization during visuospatial proc-
essing in adults (Jiang and Kanwisher, 2003; de Schotten et al.,
2011; Crittenden and Duncan, 2014). We did not formally
assess lateralization in this study and speculate that right later-
alization may develop later in development as performance
improves, which is consistent with observations of right later-
alization in adolescents, but not children (Houdé et al., 2010).

Researchers observe age-related changes in working memory
behavioral metrics (i.e., accuracy, reaction time) between chil-
dren, adolescents, and young adults, such that response time and
accuracy show linear negative and positive associations, respec-
tively, with chronological age (Gathercole et al., 2004; Linares et
al., 2016). We also observed age-related changes in accuracy and
reaction time in the child sample and, therefore, controlled for
age when assessing relationships between performance and MD

selectivity and connectivity. We found that variability in working
memory performance was best explained by models, including
both age- and task-dependent neural selectivity, suggesting that
neural activity provides additional information about individual
differences in EF ability among 4- to 12-year-old children. The
relationship between pooled selectivity within hemisphere and
accuracy holds in our longitudinal sample; however, we acknowl-
edge that this is a small sample and results should be interpreted
with caution.

We also see performance-related increases in selectivity in the
adult sample, primarily in right frontal regions. This replicates
studies showing an association between individual differences in
EF and MD activation in adults (Assem et al., 2020; Mitchell et
al., 2022) and is consistent with studies showing that damage to
MD regions is linked to cognitive deficits (Warren et al., 2014;
Woolgar et al., 2018). In a sample of older children, adolescents,
and young adults, Satterthwaite et al. (2013) show a stronger
relationship between working memory performance and MD
activation than between working memory performance and age.
Here we show that this relationship between selectivity to cognitive
demand and task performance is also observed in a younger
cross-sectional sample and a small longitudinal sample of
young children and that selectivity explains variance in per-
formance, beyond that explained by age alone. These results
suggest that functional selectivity of the MD network is a poten-
tial neural mechanism underlying EF improvement throughout
development.

Of note, some studies have found age-related activation
changes, but not performance-related changes (e.g., in a sample
of 7-22-year-olds engaging in a working memory task) (Kwon et
al., 2002) and meta-analytic work including 4- to 17-year-olds
engaging in various EF tasks (Houdé et al., 2010). These studies
included a wider age range than the current sample, so our find-
ings do not contradict age-related changes when including older
participants. Age-related changes across developmental periods
are consistent with observed group main effects (i.e., greater
adult MD selectivity than children) in our study. Because vari-
ability in performance decreases with age (Buczylowska and
Petermann, 2018), it is possible that age may account for more
variability when including samples spanning developmental
periods. Evidence so far suggests that during middle child-
hood, age may not be the best marker for neural develop-
ment of cognitive control. We show that MD network
selectivity seems an adequate marker of task performance, a
proxy for EF ability, during childhood.

Table 4. Longitudinal change in selectivity and change in age explaining
change in accuracy during hard trials of an SWM task in a subsample of
children scanned twice, about 1 year apart (n= 6)a

Accuracy: hard trials
Change in
selectivity (t)

Change in
age (t)

Age at first
scan (t)

Full
model (F)

Right hemisphere
Posterior parietal 0.83 0.84 –0.23 0.50
Superior parietal 0.69 0.70 0.54 0.04
Inferior parietal 3.63 3.48 2.59 1.01
Precentral gyrus –0.96 –0.38 0.53 0.13
Superior frontal sulcus –0.20 –0.05 –0.07 0.04
Inferior frontal sulcus 0.30 0.40 –0.08 2.04
Middle frontal gyrus 1.47 1.03 –0.60 0.41
Orbital middle frontal gyrus 0.08 0.29 0.17 0.34
Inferior frontal gyrus 0.41 0.49 0.32 0.03
Anterior cingulate cortex 2.05 2.03 1.70 1.47
Pooled selectivity 1.55 2.04* 1.10 NA

Left hemisphere
Posterior parietal 1.18 0.62 –0.42 0.27
Superior parietal 0.24 0.36 0.25 0.19
Inferior parietal 1.69 –0.74 –1.30 4.57
Precentral gyrus –0.54 –0.42 0.33 0.34
Superior frontal sulcus 0.23 0.35 0.26 0.04
Inferior frontal sulcus 2.41 2.13 1.88 0.06
Middle frontal gyrus 1.06 –0.62 –0.77 0.78
Orbital middle frontal gyrus 0.95 0.63 �0.02 0.03
Inferior frontal gyrus –0.01 0.23 0.16 0.08
Anterior cingulate cortex 0.20 0.38 0.10 0.04
Pooled selectivity 2.12* 1.95 0.53 NA

aTo examine selectivity of individual ss-fROIs, multiple linear regressions were conducted (df = 3,2). To
examine pooled selectivity within hemisphere, linear mixed effects models with random intercepts by ss-
fROI were conducted.
*p, 0.05; strength of significance (uncorrected).

Table 5. ANOVAs comparing linear mixed effects models (with a random inter-
cept by ss-fROI) that explain variance in accuracy from age or pooled selectivity
(within hemisphere) alone to similar linear mixed effects models, including
both age and pooled selectivity as explanatory variablesa

Hard trials Easy trials

Comparison model Age (x 2) Selectivity (x 2) Age (x 2) Selectivity (x 2)

Right hemisphere
Pooled selectivity 25.70** 3.60 37.96*** 63.08***

Left hemisphere
Pooled selectivity 58.38*** 3.83 16.39** 59.22***

aSignificant x 2 reflects that models with age and selectivity explain significantly more variance than models
with age or selectivity alone. Extended Data Table 5-1 lists ANOVA results comparing linear regressions and
multiple linear regressions for individual ss-fROIs that show a significant multiple linear regression model in
Table 3 or Extended Data Table 3-3. Extended Data Tables 5-2 and 5-3 list the main effects of selectivity
and age group (child and adult), and the interaction effect, explaining accuracy during hard trials for the full
child and adult samples (Extended Data Table 5-2) and for a performance-matched subsample (Extended
Data Table 5-3).
**p, 0.01; ***p, 0.001; strength of significance.
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Last, we explored whether MD ss-fROIs are already function-
ally distinct from the adjacent language network. In adults, the
MD and language networks are differentiated in both function
(Fedorenko et al., 2012, 2013) and resting-state connectivity
(Blank et al., 2014). We replicate these findings in adults and
extend prior work in children (Satterthwaite et al., 2013), to
explore whether this distinction is evident in children. We see
greater selectivity for cognitive load than for language in regions
functionally localized using the SWM task (i.e., MD ss-fROIs),
and we see greater within- than between-network resting-
state connectivity for these same MD ss-fROIs compared with
ss-fROIs functionally localized using the language task. Both
approaches show that, even in young children, we see functional
distinction between brain regions recruited for processing cogni-
tive load versus language, suggesting that these networks are
already dissociated in childhood, despite ongoing functional
reorganization (Power et al., 2010).

Strengths of this study include using two fMRI localizer tasks
to define ss-fROIs, which increase power by accounting for indi-
vidual variability in functional organization. We also analyzed
cross-sectional and longitudinal samples of children so that we
could evaluate these relationships using different approaches,
compare, and draw conclusions based on consistent findings
between different designs and statistical tests. Further, we used
strict motion-cutoffs, and compare motion- and performance-
matched child and adult subgroups to rule out motion and per-
formance as potential confounds, respectively.

Some limitations should be noted. First, we did not assess the
association of MD selectivity with out-of-scanner working mem-
ory performance. Therefore, our findings may be limited in gen-
eralizability because of influences of the scanning environment,
as the neural selectivity observed in this study may not accurately
represent neural function in more naturalistic situations. Second,
substantial motion is observed in child samples, which can pro-
duce spurious correlations in fMRI (Power et al., 2012). Because
of strict motion cutoffs and comparing motion-matched sam-
ples, we believe that observed differences between children and
adults are because of maturational differences, and not a motion
artifact. However, these findings may not generalize to children
who move more during scanning. Third, our child sample
engaged in age-appropriate versions of the SWM task, it is possi-
ble that group differences are driven by task difficulty. We see
similar accuracy (during Hard trials) across age in our child sam-
ple (i.e., difficulty of the tasks appropriately engages younger
children), suggesting that difficulty does not drive group effects.
Fourth, we acknowledge that our longitudinal sample is small
and may show low power because of noise; we include them here
to offer additional insight to the cross-sectional findings. Last, it
is possible that non-MD network regions show selectivity to cog-
nitive demand and could be related to performance (Feilong et
al., 2021); future studies can explore other regions and resting-
state networks, such as the default mode network, and their se-
lectivity to cognitive demand and dissociation from the MD
network.

In conclusion, this study provides evidence that a common
neural network underlies processing cognitive demand in chil-
dren and adults. Although children 4-12 years of age do not yet
exhibit fully mature selectivity of the MD network, they show
adult-like patterns and performance-related increases in selectiv-
ity. These findings further our understanding about neural devel-
opment underlying improvements in EF. Future studies should
explore how recruitment of MD ss-fROIs changes over time
in a larger sample that allows evaluation of moderating and

mediating variables. Identifying functional architecture that sup-
ports EF across development furthers our understanding of how
the human brain processes cognitive demand and how that is
related to variability in behavioral performance across develop-
mental periods.
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