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Cortical stimulation is emerging as an experimental tool in basic research and a promising therapy for a range of neuro-
psychiatric conditions. As multielectrode arrays enter clinical practice, the possibility of using spatiotemporal patterns of elec-
trical stimulation to induce desired physiological patterns has become theoretically possible, but in practice can only be
implemented by trial-and-error because of a lack of predictive models. Experimental evidence increasingly establishes travel-
ing waves as fundamental to cortical information-processing, but we lack an understanding of how to control wave properties
despite rapidly improving technologies. This study uses a hybrid biophysical-anatomical and neural-computational model to
predict and understand how a simple pattern of cortical surface stimulation could induce directional traveling waves via
asymmetric activation of inhibitory interneurons. We found that pyramidal cells and basket cells are highly activated by the
anodal electrode and minimally activated by the cathodal electrodes, while Martinotti cells are moderately activated by both
electrodes but exhibit a slight preference for cathodal stimulation. Network model simulations found that this asymmetrical
activation results in a traveling wave in superficial excitatory cells that propagates unidirectionally away from the electrode
array. Our study reveals how asymmetric electrical stimulation can easily facilitate traveling waves by relying on two distinct
types of inhibitory interneuron activity to shape and sustain the spatiotemporal dynamics of endogenous local circuit
mechanisms.
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Significance Statement

Electrical brain stimulation is becoming increasingly useful to probe the workings of brain and to treat a variety of neuro-
psychiatric disorders. However, stimulation is currently performed in a trial-and-error fashion as there are no methods to pre-
dict how different electrode arrangements and stimulation paradigms will affect brain functioning. In this study, we
demonstrate a hybrid modeling approach, which makes experimentally testable predictions that bridge the gap between the
microscale effects of multielectrode stimulation and the resultant circuit dynamics at the mesoscale. Our results show how
custom stimulation paradigms can induce predictable, persistent changes in brain activity, which has the potential to restore
normal brain function and become a powerful therapy for neurological and psychiatric conditions.

Introduction
Brain stimulation is widely used in both experimental and clini-
cal settings. In basic research, it is used to probe neural function

by disrupting or hyperactivating local brain processing (E.
Halgren et al., 1978; Salzman et al., 1990; Tehovnik et al., 2002).
In clinical settings, direct manipulation of activity via stimulation
has also been shown to be effective in the treatment of several
neurological and psychiatric disorders. Deep brain stimulation
(DBS) has been successful in the treatment of movement disor-
ders, such as Parkinson’s disease (Blumenfeld and Bronte-Stewart,
2015; Baizabal-Carvallo and Alonso-Juarez, 2016; Papageorgiou et
al., 2017), depression (Mayberg et al., 2005; Schlaepfer et al.,
2008), and obsessive-compulsive disorder (Abelson et al., 2005; B.
D. Greenberg et al., 2006). Superficial cortical stimulation is an
effective therapy for epilepsy (Nagaraj et al., 2015) and stroke
patients (Hummel and Cohen, 2006). Increasingly, electrical
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stimulation has also shown promise in both the restoration and
enhancement of critical cognitive functions, such as memory.
DBS has been shown experimentally to enhance memory encod-
ing when applied during learning (Suthana et al., 2012), and
closed-loop stimulation protocols have proven to be effective
during periods of poor memory encoding as well as during
memory recall (Ezzyat et al., 2018; Kahana et al., 2018; Kucewicz
et al., 2018a,b).

While brain stimulation is sometimes conceptualized as
disrupting pathological activity to restore normal activity, increas-
ingly the explicit goal is to directly generate normal activity.
Experimental evidence supports traveling waves as critical to
normal brain activity. These propagating waves are funda-
mental to brain information-processing as they coordinate
neural behavior across all spatial scales, from within-layer
to whole-brain interactions, as well as across temporal scales,
from tens to hundreds of milliseconds. By mediating commu-
nication across multiple brain areas, propagating activity puta-
tively performs a variety of cognitive functions, such as the
processing of visual stimuli or long-term memory consolidation
(Muller et al., 2018). For example, sleep spindles traveling across
the cortical surface at multiple scales have been hypothesized to
synchronize convergent co-firing of neurons, resulting in spike
timing-dependent plasticity and consequent memory consolidation
(Dickey et al., 2021). Similarly, the alpha rhythm which modulates
visual processing appears to be a traveling wave from association to
primary areas (M. Halgren et al., 2019). Accordingly, the ability to
predict and control traveling waves has far-reaching implications
for improving and controlling cognitive function.

Currently, there is no method for reliably generating direc-
tional traveling waves with electrical stimulation. Past efforts to
develop new paradigms of stimulation which reinstate particular
brain activity states have largely depended on trial and error.
Recently, we described a method for modeling the effects of cort-
ical stimulation that enables one to predict the consequences of
stimulation in silico, and thereby develop stimulation protocols
that achieve desired results in vivo (Komarov et al., 2019). This
earlier study was limited to the effects of stimulation of a single
electrode and thus did not evoke directional propagation. In this
new study, we describe an initial attempt to model a multielec-
trode stimulation paradigm that produces unidirectional travel-
ing waves in the cortex. With multielectrode arrays increasingly
entering clinical practice (Ha et al., 2017), our model harnesses
the additional complexity and control during stimulation that
multielectrode protocols allow for.

This modeling approach includes two phases. In the first
phase, a biophysical model is used to predict spiking probability
in response to a spatially-varied electric field potential in recon-
structed rat somatosensory cortical neurons obtained from www.
neuromorpho.org (Ascoli et al., 2007). We found that the hyper-
polarization or depolarization of individual neurons varied
according to cell type and cortical depth, and also varied with
respect to the polarity of the applied electric field. The diversity
in excitation responses underlies the propagating wave activity
that we observed in the second phase of the model. In this second
phase, we constructed a Hodgkin–Huxley model of a rat somato-
sensory cortical network composed of multiple interconnected cort-
ical columns, each containing a circuit of inhibitory and excitatory
cells connected within and across cortical layers. Approximating
stimulation effects using the activation probabilities calculated in
Phase 1, we found that fast inhibitory activity, coupled with excita-
tory cells’ preference for anodal stimulation, resulted in a unidirec-
tional, propagating wave of activity. Importantly, we found that the

temporal component of the wave (the timing of cell firing within
the excitatory-inhibitory feedback loop) resulted from an interac-
tion between pyramidal and basket inhibitory cells, suggesting that
a brief pulse of suprathreshold amplitude is sufficient to facilitate os-
cillatory activity thought to be endogenous to cortical columnar cir-
cuits. The spatial component (asymmetry) of the wave, however,
was shown to depend on the unique activation profile of Martinotti
inhibitory cells under this stimulation paradigm relative to the
pyramidal and basket cells. These results suggest a simple
multielectrode pattern for evoking traveling waves and pro-
vide testable predictions for experimental confirmation and
parameter optimization.

Materials and Methods
Cell reconstruction selection. All neuronal cell reconstructions were

chosen from publicly available datasets on www.neuromorpho.org
(Wang et al., 2002, 2004; Staiger et al., 2004; Schubert et al., 2006; Ascoli
et al., 2007; Muralidhar et al., 2013). The types of cells and their respec-
tive datasets are listed in Table 1. We used multiple cell reconstructions
for each cell type to account for anatomical diversity. We used experi-
mental measurements to approximate the cutoff depths for each layer
(see Fig. 1a) (Markram et al., 2004; Wang et al., 2004).

Calculating the electric field potential generated by the electrode
array. The electrode array modeled in this study was composed of three
square electrodes (each 150mm � 150mm) placed linearly on the surface
of the cortex. Two electrodes had negative current (�75mA each) and
one electrode had positive current (150mA) (see Fig. 1a), and stimula-
tion was applied for 200 ms. This was done to adhere to the constraints
of clinical applications of electrical stimulation which require a net neu-
tral current to be delivered to the tissue. These values are in accordance
with common experimental parameters (Ha et al., 2017). Assuming that
the current sources are homogeneous square electrodes, we calculated
the electric field potential of each electrode as follows:

U X;Y;Zð Þ ¼ r eI
4pA2

ððA=2

�A=2

dxdyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX � xÞ21ðY � yÞ21Z2

q (1)

Here I is net current, r e is extracellular resistivity, and A is the length
of the square electrode edge (see Fig. 1a). In this study, A=150mm and
net current I is either�75 or 150 mA. The derivation of this formula can
be found in our previous work (Komarov et al., 2019). We summed all
three electric field potentials at each point in space to determine the
overall electric field potential.

Estimating the activating function. This paper used a similar
approach to that of Komarov et al. (2019) to estimate the firing probabil-
ity for each neuronal reconstruction. The basis of this approach is the
activating function, a formula derived from cable theory that describes
the effective transmembrane current that arises because of extracellular

Table 1. Summary of datasets with reconstructed cellsa

Cell type
No. of
reconstructions Reference Strain (age)

Pyramidal cells (Layer II/III) 21 Tehovnik et al., 2006 Wistar (P20-P25)
Pyramidal cells (Layer IV) 11 Traub et al., 1994 Wistar (P19-P21)
Pyramidal cells (Layer Va) 14 Wang et al., 2002 Wistar (P20-P21)
Basket cells (Layer II/III) 96 Wester and Contreras, 2012 Wistar (P13-P15)
Basket cells (Layer IV) 82 Wester and Contreras, 2012 Wistar (P13-P15)
Basket cells (Layer V) 57 Wester and Contreras, 2012 Wistar (P13-P15)
Martinotti cells (Layer II/III) 13 Douglas and Martin, 1991 Wistar (P13-P16)
Martinotti cells (Layer V) 7 Douglas and Martin, 1991 Wistar (P13-P16)
Horizontal interneurons (Layer I) 59 Wang et al., 2004 Wistar (P13-P16)
Descending interneurons (Layer I) 29 Wang et al., 2004 Wistar (P13-P16)
Small interneurons (Layer I) 27 Wang et al., 2004 Wistar (P13-P16)
aCell types (from www.neuromorpho.org) that were used in the biophysical component of the model.
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electrical stimulation. This was used to calculate the transmembrane
voltage in each axonal segment of every cell reconstruction. We then
applied a threshold of activation to determine whether an axonal
response was triggered. This threshold was drawn from in vivo experi-
ments which define the threshold injected current I required to induce a
threshold effective current f at the axonal initial segment located at a dis-
tance d from the electrode (Douglas and Martin, 1991; R. J. Greenberg et
al., 1999). In previous work (Komarov et al., 2019), we simulated one
such experiment by computing the activation current f at the axon initial
segment of a layer II/III pyramidal cell while varying the stimulation cur-
rent I and distance d. This simulation used a 200ms-duration stimulating
pulse, which is typical of similar in vivo experiments (Douglas and
Martin, 1991; R. J. Greenberg et al., 1999). The value f = fth = 3pA/mm2

fully replicated the experimentally-observed current-distance relation-
ship across varying stimulation currents and distances. Thus, this thresh-
old value fth was used to determine whether each axonal segment was
activated by induced transmembrane current.

Since we compute the activating function in each small compartment
composing an entire axonal arborization, jitter in the edges of the ana-
tomical reconstruction could introduce numeric noise in our calculation.
To minimize this issue, we estimate the direction of each axonal

component (the mini segment forming a compartment in the recon-
struction) using the position in space of neighboring compartments up
to 10 mm away. The estimated direction is then crucial to computing the
activating function, which, by definition, is calculated along the axonal
element direction.

An important note is that this protocol neglects the effects of axonal
branching at adjacent segments. Instead, it acts as though the axon con-
tinued, unbranched, in a direction given by the sum of the two orienta-
tion vectors of the bifurcated segments. However, given that we base our
activation probabilities (see Computing the average activation probabil-
ity per cell type below) on the total length of activated segments within a
reconstruction, and then average across all reconstructions of that cell
type, we believe that this impact is negligible.

Computing the average activation probability per cell type. To deter-
mine whether a given neuronal reconstruction would be activated by
applied current, we used the activating function to calculate how many
axonal segments had above-threshold transmembrane current values
that could initiate an axonal action potential (assumed at nodes of
Ranvier); these above-threshold axonal segments are collectively called
the trigger area. The activating function threshold was set to fth = 3 pA/
mm2 for myelinated axons and to fth = 60pA/mm2 for unmyelinated

Figure 1. Electric potential and activating function in the plane Y= 0. a, Schematic of the electrode configuration and electric potential in the plane Y= 0. Each electrode is square-shaped
and measures 150mm � 150mm, and the spacing between each electrode is also 150mm. The two leftmost electrodes are negative (cathodal) and deliver negative 75 mA of current each,
while the rightmost electrode is positive (anodal) and delivers 150mA of current, and the stimulation period is 200ms. Layer depths are approximated from experimental measurements of rat
cortex (Markram et al., 2004; Wang et al., 2004; Defelipe et al., 2012) as follows: layer I is 0-100mm, layer II/III is 100-500mm, layer IV is 500-750mm, and layer V is 750-900mm. b, Axial
potential along a horizontal axonal fiber located 100 mm below the cortical surface. The activating function is the second spatial derivative of the electric potential. c, d, As a result of b, hori-
zontal fibers are activated by the anode and hyperpolarized by the cathodes (d). The opposite is true for vertical fibers (c). The vast majority of direct stimulation occurs in layers I and II/III
because of the decay of electric potential with depth.
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axons, since unmyelinated segments are significantly less excitable as
they have fewer sodium channels (Cogan et al., 2016). In this model, we
assumed pyramidal and basket cells are myelinated and Martinotti and
layer I interneurons are unmyelinated based on experimental data
(Thomson et al., 2002; Wang et al., 2004; Tomassy et al., 2014). For each
cell reconstruction at a given point in space (i.e., a given coordinate in
the x-z plane; see Fig. 1a), we found the probability of firing as outlined
in prior work (Komarov et al., 2019). Given that variation in cell position
and orientation within each cortical layer are present in nature, we addi-
tionally average across neuronal rotations and vertical shifts. Thus, we
computed the average activation probability for each cell type/cortical
layer pairing as follows: for each cell reconstruction, we first positioned
the soma at a point along the x axis within its cortical layer. We then per-
formed four rotations (0°, 90°, 180°, and 270°) about the vertical axis of
the cell reconstruction in three-dimensional (3D) space, and at every
rotation we calculated the likelihood of activation by computing the acti-
vating function across the axonal arbor, as outlined above. We then aver-
aged across these four probabilities and set the result as the activation
probability for said point. After this, we incrementally shifted the soma
of the reconstruction vertically within its cortical layer and found the
mean activation probability at each point. We averaged across all vertical
shifts within the cortical layer to obtain an approximate spiking proba-
bility for this cell reconstruction at this point along the x axis. Along the
x axis, we computed the activation probability of all cell reconstructions
and then averaged across all cell reconstructions within a given cell type
and cortical layer (see Fig. 3).

Computational model of the cortical circuit. The network model is
composed of 11 interconnected cortical columns, where each column
contains layer I interneurons and pyramidal, basket, and Martinotti cells
from layers II-V (same as the biophysical analysis). The number of cells
within each column is outlined in Table 2. This balance of excitatory to
inhibitory cell types approximates the true cell composition of the rat
somatosensory cortex, where pyramidal cells are the primary excitatory
cells and basket and Martinotti cells comprise the majority of inhibition
within and across layers (Markram et al., 2004; Wang et al., 2004). Cells
were constructed to only spike if receiving synaptic input or electrical
stimulation. Each cell behaves according to Hodgkin–Huxley dynamics,
with a handful of parameters differentiating excitatory and inhibitory
cells. Basket cells were modeled as fast-spiking cells, while all other cell
types were modeled as regular-spiking cells with spike rate adaptation.
Inhibitory cells fired more quickly than excitatory cells in response to
activation because all interneurons were modeled as having a lower leak
current than excitatory cells (Santos et al., 2012). Some additional pa-
rameters were as follows: a fast Na1-K1 spike generating mechanism
(all cells), a high-threshold activated Ca21 current (for pyramidal cells),
and a slow calcium-dependent potassium (AHP) current (for regular-
spiking cells).

The network architecture and function mirror that of Komarov et al.
(2019) with the following exceptions: first, our network contains multi-
ple columns while that in Komarov et al. (2019) only contains one; sec-
ond, the initial activation probabilities in our network are derived from
the first phase of our model (see Fig. 3) instead of from the probabilities
calculated in prior work (Komarov et al., 2019); and third, our model
contains slightly different cells (e.g., layer I cells) than those included
previously (Komarov et al., 2019). The Hodgkin–Huxley equations that
govern the dynamics of our model can be found in our prior work
(Komarov et al., 2019).

Initially, the network runs without stimulating input for 200ms to
simulate preexisting activity. Then the network is stimulated and runs
for an additional 500ms. To simulate electrical stimulation, we used the
binary term Ii

ext to inject above-threshold current into a subset of ran-
domly chosen neurons within each cell type/cortical layer pairing such
that the fraction of neurons induced to spike corresponds to the activa-
tion probabilities calculated in the biophysical phase of the model (see
Fig. 3). For neurons in columns 1-3 and 9-11, the activation probabilities
were set to zero. This was because the electric field generated by the elec-
trode design was effectively null at locations this far from the stimulating
electrodes. The term hj i(t) models spontaneous background activity as
a white noise process (j ) with SD h . All model parameters are listed in

Komarov et al. (2019, their Table S2) (unless specified in the description
of simulations), and the network structure and connectivity are described
in Table 2 and Table 3, respectively. Cells were synaptically coupled by
excitatory (AMPA) and inhibitory (GABAA) connections. The strength
and probability of connections between layers and cell types were set
according to a canonical cortical circuit (Thomson et al., 2002).

Average network activity. To quantify network behavior across 50
simulations per current strength, we averaged the percentage of spiking
across all cell types at each cortical column (see Fig. 5c).

Table 2. Structure of the networka

Cortical cell type Layer Cells/column Total cells

IN I 12 132
PY II/III 100 1100
BC II/III 100 1100
MC II/III 24 264
PY IV 12 132
BC IV 12 132
MC IV 12 132
PY V 12 132
BC V 12 132
MC V 12 132
Total 308 3388
aThe layer, cells per column, and total cells per cell type used in the network model.

Table 3. Connectivity within the networka

Presynaptic Postsynaptic

Type Layer Type Layer Cross-column Type Strength Probability

PY II/III PY II/III True AMPA 0.4 0.1
PY IV PY IV True AMPA 0.4 0.1
PY V PY V True AMPA 0.4 0.1
PY II/III PY II/III False AMPA 0.75 0.1
PY II/III BC II/III False AMPA 0.75 0.1
PY II/III MC II/III False AMPA 0.75 0.1
PY II/III PY IV False AMPA 0.25 0.05
PY IV PY II/III False AMPA 1.5 0.05
PY IV PY IV False AMPA 0.75 0.1
PY IV BC IV False AMPA 0.75 0.1
PY IV MC IV False AMPA 0.75 0.1
PY IV BC II/III False AMPA 1.5 0.05
PY IV MC II/III False AMPA 1.5 0.05
PY V PY V False AMPA 0.75 0.1
PY V PY II/III False AMPA 0.5 0.05
PY V BC V False AMPA 0.75 0.1
PY V MC V False AMPA 0.75 0.1
MC II/III PY II/III False GABA 0.75 0.05
MC II/III PY IV False GABA 0.75 0.05
MC II/III PY V False GABA 0.75 0.05
MC IV PY II/III False GABA 0.75 0.05
MC IV PY IV False GABA 0.75 0.05
MC IV PY V False GABA 0.75 0.05
MC V PY II/III False GABA 0.75 0.05
MC V PY IV False GABA 0.75 0.05
MC V PY V False GABA 0.75 0.05
BC II/III PY II/III False GABA 1.5 0.25
BC IV PY IV False GABA 1.5 0.25
BC V PY V False GABA 1.5 0.25
MC V PY IV False GABA 1 0.2
MC V PY V False GABA 1.5 0.25
IN I PY II/III False GABA 0.3 0.3
IN I PY IV False GABA 0.3 0.3
IN I PY V False GABA 0.3 0.3
PY II/III IN I False AMPA 0.3 0.3
aType, strength, and probability of connections between all cell types and layers. These values were estimated
from experimental data of anatomic connectivity across slices of the rat cortex (Thomson et al., 2002).
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Results
Building upon existing in silico models that simulated the effects
of cortical surface stimulation from a single electrode (Komarov
et al., 2019), in this study we sought to explore the spatial dy-
namics of stimulation by modeling an asymmetrical three-elec-
trode configuration applied to the rat somatosensory cortex
(Fig. 1a). This configuration was initially chosen to break the
symmetry between the anodal and cathodal currents and pur-
sued further because of the wave propagation observed in the
network model as a result of the electrode choice. The paper is
organized as follows. We first calculated the electric field poten-
tial created by the system of three electrodes: two cathodes (at
�75 mA each) and a single anode (at 150 mA). Next, we esti-
mated the activation probability for each cell type/cortical layer
pairing by computing the activating function in biophysical
reconstructions of axonal arbors. We then constructed a corti-
cal microcircuit model with Hodgkin–Huxley dynamics to
model the network effects of stimulation based on the previ-
ously-calculated spiking probabilities.

Cell activation results from a combination of morphology
(cell type) and depth within the column
The applied electric field potential generated by the system of
three electrodes (assuming homogeneous tissue) is shown in

Figure 1a. To estimate the probability of specific cell types being
activated by stimulation, we simulated the various cell types
based on 3D morphological reconstructions of neurons derived
from electron microscopy available from www.neuromorpho.org
(Ascoli et al., 2007). The excitatory cells we considered were py-
ramidal cells across layers II-V, while the inhibitory neurons
included basket cells and Martinotti cells across layers II-V in
addition to layer I interneurons (Table 1). Example reconstruc-
tions as well as average axon density plots per cell type/cortical
layer (Fig. 2) demonstrate the significant differences in axonal
arborization and density among the different cell types, as well as
between cells of the same type based in different layers.

The hyperpolarization or depolarization of a neuronal fiber
within a constant electric field can be modeled with one-dimen-
sional cable theory in conjunction with the activating function.
The activating function (for details, see Materials and Methods)
(Komarov et al., 2019) computes the net transmembrane current
generated by external stimulation (while ignoring preexisting
synaptic currents). According to one-dimensional cable theory,
the activating function is the second-order spatial derivative of
the electric potential along the neuronal fiber. The case of a per-
fectly horizontal fiber is shown in Figure 1b. Through this, we can
draw relationships between the orientation and excitation of a
fiber in response to a given stimulation polarity. Indeed, horizontal
fibers were depolarized by anodal stimulation and hyperpolarized

Figure 2. Representative reconstructions and averaged axonal density for neuronal cell types modeled. For each neuronal cell type used in the cortical microcircuit model, we plot both a sin-
gle representative anatomical reconstruction as well as an averaged axonal density heatmap for all the reconstructions of that type. Cells are arranged by layer and type; the first row represents
layer I inhibitory neurons. The representative layer I interneuron is a horizontal cell, but we average across small, descending, and horizontal layer I interneurons in both the axonal heatmap as
well as in our analyses. The following rows represent pyramidal, basket, and Martinotti cells across layers II/III, IV, and V (layer Va for pyramidal cells). We did not have neuronal reconstructions
for layer IV Martinotti cells and averaged spiking probability results from layers II/III and layer V Martinotti cells for subsequent analyses. In the axonal density (AD) plots, color represents the
averaged density computed using all available reconstructions for the given cell type. The color scale is logarithmic for visual clarity. AD gives a sense of the general orientation and density of
axon branches for each cell type, which is key to understanding subsequently computed activation probabilities.
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by cathodal stimulation; in contrast, vertical fibers were hyper-
polarized by anodal stimulation and depolarized by cathodal
stimulation (Fig. 1d and Fig. 1c, respectively). While each neu-
ron has unique axonal fibers that span 3D space, these maps of
activation and suppression zones for orthogonal axonal orien-
tations give us insight into how each cell type will behave across
the stimulated space given its average axon density and orienta-
tion (Fig. 2).

We next calculated spiking probability in response to the
applied electric field potential for each cell type/cortical layer
pairing by averaging across the activating function results of their
respective cell reconstructions; each cell reconstruction was shuf-
fled by rotating and shifting along the vertical axis, and multiple
reconstructions were considered for each cell type (for details,
see Materials and Methods) (Komarov et al., 2019). This calcula-
tion compares the overall excitability of each reconstruction to
an experimentally derived threshold (fth = 3pA/mm2) to deter-
mine the probability of spiking. This threshold was set 20 times
higher for unmyelinated cell types (Martinotti cells and layer I
interneurons) compared to myelinated cell types (pyramidal and
basket cells) since unmyelinated fibers are relatively unexcitable
and lack nodes of Ranvier (Markram et al., 2004; Wang et al.,
2004; Defelipe et al., 2012). The results of these calculations are
shown in Figure 3.

To explore the parameter space of the model, we calculated
activation probabilities at 25%, 50%, and 75% of the maximum
stimulation current (150 mA for the anode and �75 mA for each
cathode), which are displayed in Figure 3. The activation

probabilities scale upward with increasing applied current for all
cell types except Martinotti. At the weakest applied current, at
which the absolute values of current amplitudes are ,50 mA,
layer II/III Martinotti cells exhibit a slight preference for
cathodal stimulation, layer V Martinotti cells exhibit a slight
preference for anodal stimulation, and layer IV cells show no
strong preference. However, at all currents above the weakest,
Martinotti cells across all layers display a slight preference for
cathodal stimulation, and the activation probabilities appear
to have reached a plateau; that is, increasing the applied cur-
rent increases activation probabilities for all cell types except
Martinotti. The average axonal density heatmaps in Figure 2
as well as the presence or absence of myelination explain the
variation of activation responses across cell types and cortical
layers.

Across all layers, pyramidal cells were strongly activated by
the anode and minimally activated by the cathodes, with layer IV
showing the greatest, layer V the least, and layer II/III an inter-
mediate probability of activation (Fig. 3a). As shown in Figure 2,
all pyramidal cells vertically span the cortical layers regardless of
soma position. However, layer II/III and layer IV pyramidal cells
exhibit significant horizontal axonal density close to the cortical
surface and thus responded more strongly to stimulation overall
(and to cathodal stimulation in particular), whereas the bulk of
layer Va pyramidal axons lie in deeper layers and lack the super-
ficial axonal density to be adequately stimulated above threshold.
Pyramidal cells display a strong overall response to stimulation
due to their myelinated axons.

Figure 3. Probability of spiking as a function of horizontal distance from the center of the electrode array for each cell type and cortical layer. Average (solid line) cell spiking probability and
95% confidence intervals (shaded region) for each reconstruction were calculated for soma locations across the entire X-Z plane of the corresponding cortical layer by averaging spiking probabil-
ity across rotations and vertical shifts of all cell reconstructions. Activation probabilities were calculated across four stimulating current strengths, with the maximum anodal stimulation current
set to 150mA and the maximum cathodal stimulation current set to�75mA per electrode over a 200ms stimulation period. Right, Insets, Activation profiles for 25%, 50%, and 75% stimula-
tion strength. Pyramidal cells (excitatory, a) and basket cells (inhibitory, b) are highly activated by anodal stimulation and are minimally activated by cathodal stimulation because of their mye-
lination and horizontally oriented axonal arbors. Martinotti cells (inhibitory, c) are activated by all electrodes with a slight preference for the cathodes but lack myelination and thus show less
activation overall. Layer I interneurons (d) are also unmyelinated and are minimally excited by stimulation.
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Basket cells also exhibited a strong preference for anodal stimu-
lation and little activation underneath the cathodes (Fig. 3b).
However, their responses were significantly more tiered according
to cortical layer compared with pyramidal cells because basket cell
arborization is localized within the same layer as the soma
(Fig. 2). Their preference for anodal stimulation is due to
their largely horizontal axonal arbor that stretches out
within each layer. Basket cells were the only myelinated in-
hibitory cell type in our model and therefore demonstrated
a significantly stronger spiking response overall relative to
Martinotti or layer I interneurons.

Martinotti cells across all layers are moderately activated by
both anodal and cathodal stimulation but showed a slight prefer-
ence for the latter (Fig. 3c). This is because all Martinotti cells
make universal connections with pyramidal cells via layer I (Fig.
2); therefore, the majority of their arborizations lie in vertical
axonal fibers connecting the soma to layer I, with additional den-
sity spread out horizontally across layer I. However, they exhib-
ited a dampened stimulation response overall because of their
unmyelinated axons.

Last, since layer I axon fibers are unmyelinated and stay local-
ized to layer I (resulting in mainly horizontal arborization), layer
I interneurons displayed a slight preference for anodal stimula-
tion but little activation overall (Fig. 3d).

Cortical microcircuit model shows directional propagation
when stimulated with three electrode array
In the previous section, we estimated the activation probabilities
of isolated neurons within an applied electric field. To understand
how stimulation affects the dynamics between neurons and ulti-
mately the overall dynamics of the cortex, we constructed and
stimulated a network model of the cortex using simplified neuron
models and previously-calculated activation probabilities. Each
cortical column was modeled as a canonical microcircuit (Douglas
et al., 1989; Thomson et al., 2002; da Costa and Martin, 2010;
Defelipe et al., 2012) containing the same cell types and cortical
layers as the biophysical analysis above. A schematic of the cell
types across cortical layers and their synaptic connections is shown
in Figure 4.

The only cross-column synapses present are pyramidal-
pyramidal excitatory connections to adjacent columns. Layer I
includes only inhibitory interneurons, which inhibit pyramidal
cells in all three deeper layers and are reciprocally excited by
the same cells. Each of the deeper layers contain pyramidal, bas-
ket, and Martinotti cells. Within a cortical column, pyramidal
cells reciprocally excite other pyramidal cells in their same layer
as well as across cortical layers. Basket cells act as local inter-
neurons as they only inhibit and are excited by pyramidal cells
within their own layer. In contrast, while Martinotti cells are

Figure 4. Microcircuit diagram of a single cortical column in modeled network. This depiction of a single cortical column details the cell types across cortical layers and the synaptic connec-
tions between them in our microcircuit network model. Circular labels (IN, LI interneurons; BC, basket cells; MC, Martinotti cells) represent inhibitory neurons. Triangular labels (PY, pyramidal
cells) represent excitatory neurons. Green connections represent excitatory synapses, with the circular end indicating the postsynaptic cell and the unlabeled end indicating the presynaptic cell.
Purple connections represent inhibitory synapses, with the perpendicular line indicating the postsynaptic end. Teal-colored connections are also excitatory but represent connections from py-
ramidal cells to others in adjacent columns (cross-columnar synapses). The gray box that surrounds the pyramidal cells within each layer includes all synaptic connections to all pyramidal cells,
not just the ones closest to the synapse in the figure. The only cross-column synapses present are within-layer pyramidal-pyramidal excitatory connections to adjacent columns. Layer I includes
only inhibitory interneurons, which inhibit pyramidal cells in all three deeper layers and are reciprocally excited by the same cells. Each of the deeper layers contain pyramidal, basket, and
Martinotti cells. Within a cortical column, pyramidal cells reciprocally excite other pyramidal cells in their same layer as well as across cortical layers. Basket cells act as local interneurons as
they only inhibit and are excited by pyramidal cells within their own layer. In contrast, while Martinotti cells are only excited by pyramidal cells within their own layer, they universally inhibit
pyramidal cells across all layers. In this model, inhibitory cells receive only excitatory synaptic inputs. The number of neurons in each column is listed in Table 2 and the probability and strength
of each synaptic connection is listed in Table 3.
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only excited by pyramidal cells within their own layer, they uni-
versally inhibit pyramidal cells across all layers. In this model,
inhibitory cells receive only excitatory synaptic inputs. The
number of neurons in each column is listed in Table 2 and the
connectivity within the network is described in Table 3.

Following a brief stimulation period in which the activa-
tion probabilities from the biophysical calculations were
applied to the model, the network was allowed to run with-
out any external input for 500ms, during which time it
behaved according to synaptic interactions between neurons.

To test the robustness of network behavior, we conducted
50 simulations for four different values of stimulation cur-
rent (25%, 50%, 75%, and 100% current, respectively) and
calculated the percentage of total spikes in each cortical col-
umn averaged across these simulations (Fig. 5c). At the
weakest applied current, spiking is highest underneath the
anode and tapers off on either side as the stimulating current
is not strong enough to induce propagating activity in either
direction (Fig. 5c, leftmost plot). At �50% current, however,
activity propagates unidirectionally as a traveling wave to the
right. The following simulation example and subsequent
explanations and analyses focus on network stimulation with
the maximum current applied as it corresponds to strong
asymmetric network behavior within physiological current
bounds.

A raster plot and voltage and conductance traces of one
microcircuit trial at maximum applied current are shown in
Figures 5 and 6. The trial shown is one example of the general
behavior of the microcircuit in the majority of trials at maximum
applied current (Fig. 5c, rightmost plot) in which spiking activity,
particularly from LII/III pyramidal cells, propagates to the

rightward columns but not past the leftmost electrode. Given
this unique spiking activity and the biological importance of LII/
III pyramidal cells in mediating communication across cortical
regions, we chose to focus our analyses on the network behavior
of LII/III pyramidal cells.

Directionality of the stimulation-triggered wave can be
explained by network inhibition
The activation probability curves in Figure 3 provide intuition
into the network behavior during and immediately after the
stimulation period (0-5ms; Fig. 5b). Let us first examine the col-
umn underneath the anodal electrode (Fig. 5b, column 7). While
both layer II/III and layer IV pyramidal cells were predicted to
be highly activated underneath the anodal electrode (Fig. 3), only
layer IV pyramidal cells were directly activated. Although all py-
ramidal cells were inhibited by moderate Martinotti activity,
only layer II/III pyramidal cells were locally inhibited by strong
synchronous layer II/III basket cell activity while other layers
were not because basket cell response drops off with increasing
cortical depth and because basket cells are only inhibit pyramidal
cells within their own layer. Following stimulation, layer IV py-
ramidal cells excited layer II/III pyramidal cells and triggered a
cluster of layer II/III activity. There was negligible layer V excita-
tion during stimulation and none following because of their low
excitation probabilities and relatively small neuronal population.

Network behavior underneath the cathodal electrodes con-
trasted sharply with anodal stimulation response and underpinned
unidirectional excitatory propagation (Fig. 5b, columns 5 and 6).
Although layers II/III and IV pyramidal cells were still moderately
activated by cathodal stimulation (Fig. 3a), very few cells were
pushed above threshold because of strong inhibition. Martinotti

Figure 5. Directed propagation of pyramidal activity in raster plot of microcircuit simulation trial. A raster plot displaying network behavior during and after stimulation in one trial of the
microcircuit simulation across all cortical columns at maximum applied current. Each cell within the microcircuit has its own coordinate on the y axis. Each dot is an action potential. Green dots
indicate spikes that are directly triggered by electrical stimulation (occurs during first 5 ms). Blue dots indicate spikes triggered via synaptic input. a, The first 50 ms of the simulation (the net-
work is silent beyond this period). b, Zoom in to the first 10 ms in the five central columns. c, The percentage of spikes (all cell types) per cortical column, then averaged across 50 simulations
at each applied current value (25%, 50%, 75%, and 100% applied current, with the anodal current listed, from left to right, respectively).
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cells showed a preference for cathodal stimulation (according to
Fig. 3) and thus fired early in the stimulation period, inhibiting py-
ramidal cells across all cortical depths (since Martinotti cells uni-
versally synapsed to all pyramidal cells in the network). This
strong inhibitory force coupled with moderate superficial basket
cell activity silenced almost all pyramidal activity across cortical
layers.

In the column directly to the left of the electrode array (Fig.
5b, column 4), there was negligible activity across all cell types
and cortical layers. Not only did the electric field potential drop
off significantly at this distance, but pyramidal and basket cells
were already minimally activated by the cathodal electrodes, and
Martinotti cells were only moderately activated by the cathodal
electrodes because of their lack of myelination. In the absence of
stimulating electric field potential or activating input from neigh-
boring cortical columns, the leftmost three columns exhibited no
spiking activity at all (Fig. 5a, columns 1-3). Hence, the excita-
tory pyramidal activity present underneath the electrodes did not
propagate leftward past the cathodal electrodes. This activity,
however, did travel rightward past the electrode array, growing
stronger and more synchronous as it propagated.

On the other side of the array, in the cortical column directly
to the right of the anodal electrode (Fig. 5b, column 8), there was
moderate direct activation of pyramidal cells and little direct acti-
vation of inhibitory cells. This follows from Figure 3, which
depicts pyramidal cells continuing to be activated by the anodal
electrode. While basket cells were also moderately activated by
anodal stimulation, their joint inhibition with Martinotti cells

was not enough to counter pyramidal stimulation response. This
allowed for dense clusters of excitatory activity in pyramidal cells
following stimulation.

In the second column to the right of the electrode array (Fig.
5a, column 9), we see a dense cluster of highly synchronized py-
ramidal layer II/III activity that was slightly delayed from the ac-
tivity in the column to its left. Although pyramidal cells were no
longer directly stimulated in this cortical column, this activity
resulted from the rightward cross-columnar propagation of exci-
tatory signaling. Remarkably, this substantial, synchronized py-
ramidal activity grew more and more synchronous as the wave
propagated rightward across cortical columns. This unidirec-
tional propagation of excitatory signaling is an exceptional prod-
uct of asymmetrical stimulation (Fig. 5a, columns 9-11).

Following the stimulation period and initial clusters of activity
that die down at ;10ms after stimulation, there were a handful of
waves of activity that ping-ponged between excitatory and inhibi-
tory cells in columns with pyramidal excitation (Fig. 5a, columns 6-
11). In these columns, pyramidal activity activated both Martinotti
and basket cells, which in turn inhibited pyramidal activity. There
were a few iterations of this negative feedback loop over the course
of a fewmilliseconds before pyramidal spiking was halted entirely.

Analysis of synaptic currents reveals mechanism of
asymmetrical spiking activity
Next, we analyzed the voltage traces of individual neurons and
synaptic dynamics to explain the causes of pyramidal asymmetri-
cal spiking activity (Fig. 6).

Figure 6. Voltage traces for layer II/III cells and pyramidal input conductances during simulation show how inhibition causes directionality of traveling wave. Each of the subplots in the grid
contain data for the collection of layer II/III cells specified by type and column. The x axis for each subplot is time in milliseconds and is restricted to the interval from 5 ms before stimulation
to 50 ms after. Region in light green represents stimulation period. Subplot columns, labeled at top, indicate the model columns. The first three rows represent data from pyramidal cells, with
the first row representing the voltage trace, the second the total excitatory conductance (the sum of all incoming pyramidal connections), and the third the total inhibitory conductance (sum
of inhibitory connections from layer I interneurons, basket cells, and Martinotti cells). The fourth and fifth rows represent the voltage traces of layer II/III basket and Martinotti cells, respectively.
In each subplot, there are light gray traces representing each of the individual cells in the group, and their average (within the same column, layer, and subtype) in red. Sharp increases in the
light gray trace indicate action potentials (spikes). Darker gray regions correspond to times when large numbers of cells spiked.
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Voltage traces revealed that layer II/III pyramidal cells
were initially depolarized underneath the anodal electrode
(column 7), as they were highly activated by anodal stimula-
tion. However, a large inhibitory conductance immediately
following the stimulation period (the first gi peak) dampened
any stimulation-induced depolarization and hyperpolarized
these pyramidal cells. Inhibitory conductance then fell and
excitatory conductance rose as layer II/III pyramidal cells
gained excitatory input from neighboring layers and col-
umns, bringing layer II/III pyramidal cells to threshold and
triggering action potentials. The second peak in inhibitory
conductance midway through the pyramidal action potential
was caused by pyramidal cell input into the inhibitory cells,
which initiated a negative feedback loop that quickly subsided as
pyramidal cells were silenced by inhibition. This effect occurred
in all columns with substantial pyramidal activity.

Although there were similar inhibitory and excitatory con-
ductance dynamics in the column underneath the central catho-
dal electrode (column 6), the excitatory conductance was of a
smaller magnitude overall, and there were fewer action potentials
because pyramidal cells were less excited by cathodal stimulation.
Underneath the leftmost electrode (column 5), moderate inhibi-
tory conductance outweighed negligible excitatory conductance,

leading to minimal pyramidal activity. There was little excitation
in column 4 or any of the other leftward columns (not shown). On
the other side of the electrode array, in column 8, high initial excita-
tory conductance and minimal inhibitory conductance resulted in
strong initial pyramidal spiking. Pyramidal action potentials became
more and more synchronous as they traveled rightward, as evi-
denced by increasingly overlapped voltage traces. Together, these
observations reveal the mechanisms of activity propagation to
the right but not to the left in these stimulation settings.

Cell type-specific silencing reveals distinct roles of inhibitory
interneurons in shaping and sustaining traveling waves
To better understand the role of basket and Martinotti cells in
shaping and sustaining traveling waves, we performed cell type-
specific silencing experiments using the previously described net-
work model paradigm in Figure 5. Silencing basket cells resulted
in persistent activity rapidly spreading bidirectionally from the
central column similar to what may be observed during a sei-
zure-like event (Fig. 7a). Compared with the control network in
Figure 5a, without basket cells, the pyramidal cell activity within a
given column never halts once initiated and appears more akin to
a standing wave which spreads bidirectionally throughout the net-
work rather than propagates. Alternatively, silencing Martinotti

Figure 7. Cell type-specific silencing indicates distinct roles of inhibitory interneurons in temporal and spatial dynamics of the traveling wave. Raster plots displaying network activity in the
same experimental setup as that shown in Figure 5a, except with either Basket cells (a) or Martinotti cells (b) silenced. c–e, The average spike percentage per column (relative to the total
number of spikes in the simulation) averaged across 20 simulations for the full network model (c), with silenced Basket cells (d), or with silenced Martinotti cells (e).
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cells preserved the propagating nature of the wave across columns
(i.e., activity in each column self-terminated after 20-25ms).
However, this propagation was still bidirectional (Fig. 7b). Thus,
these experiments demonstrate that both types of inhibitory cells
may be necessary for the spatial asymmetry of the wave, while sug-
gesting that basket cells may be more important for wave propaga-
tion by more effectively halting excitatory activity once initiated.

Discussion
In this work, we predict that an asymmetrical cortical stimulation
protocol using a combination of anodal and cathodal electrodes
may trigger propagating excitatory activity that shows strong
directional preference. Our model had two steps: we first con-
structed a biophysical model to predict activation probabilities
across cell types in response to an asymmetrically-applied electric
field potential, and then incorporated these probabilities into a
cortical microcircuit to model the network effects of stimulation.
We found that pyramidal cells and basket cells are highly acti-
vated by the anodal electrode and minimally activated by the
cathodal electrodes because of their myelination and horizontal
axonal arbors, while layer I interneurons are only moderately
activated by the anodal electrode despite their horizontal axonal
arbors due to lack of myelination. Martinotti cells also exhibit
moderate activation due to lack on myelination, but show a slight
preference for cathodal stimulation due to their predominately
vertically-oriented axonal arbors. Network model simulations
revealed that this asymmetrical activation results in a traveling
wave in superficial excitatory cells that propagates away from the
electrode array, past the anodal electrode, and into adjacent cort-
ical columns, but does not propagate in the opposite direction
past the leftmost cathodal electrodes (Fig. 8).

We found that distinct classes of inhibitory cells are the cause
of separable components of the unidirectional propagation.
Basket cells were necessary for the wave to propagate (as opposed
to spread as a standing wave), but both basket and Martinotti
cells were needed for asymmetrical spatial propagation. While
activity directly under the central column is defined by the stim-
ulation protocol, as the activity propagates laterally through
horizontal excitatory connections, the increasing synchrony
of cell firing is likely mediated by a PING type mechanism
(Whittington et al., 2000) (Martinotti cells were not neces-
sary for this aspect of the activity, as shown in Figure 7b).

Importantly, only the spatial component of the traveling
wave is dependent on the particular electrode design of the
stimulation paradigm; the temporal component is a mani-
festation of endogenous cortical columnar circuitry. This
allows for endogenous oscillatory activity to be spatially
guided through the network, without inducing artificial fre-
quencies as a result of stimulation. These two classes of in-
hibitory cells could be deactivated optogenetically in rodents
during stimulation to test the predictions of the model. Electrical
stimulation paradigms that rely on current steering to guide activ-
ity along particular trajectories are widely used both experimen-
tally and clinically and have demonstrated robust efficacy at the
macroscopic network level, but are still poorly understood at the
mesoscopic circuit level. Ultimately, we believe that this model is a
first step toward understanding the circuit mechanisms which are
engaged during these stimulation practices.

Traveling waves in the brain
Multielectrode recordings in human and animal subjects have
demonstrated the ubiquity of traveling waves in cognitive

Figure 8. Summary of interactions resulting in unidirectional propagation. Key interactions are depicted graphically above and summarized in text in the table below. Columns 4-8 of the
total 11 are included, indicated by labels at top. Cell and synaptic labels are as in Figure 4. Orange arrows coming from the electrodes and pointing toward cells represent direct electrical stim-
ulation, as opposed to synaptic inputs, indicated by the green, purple, and teal lines. The opacity of the cell labels approximately depicts the degree of spiking activity, with more transparent
cells showing little or no spiking activity, and more opaque ones corresponding to more actively spiking cells. The opacity of lines indicates the strength of the input to cells, either synaptic or
from the stimulating electrodes. For example, more opaque orange arrows indicate that the cell being pointed to was strongly stimulated directly. The light blue dashed arrow at the top right
indicates the initiation of synchronous, unidirectional propagation of activity to the direct right of the electrodes. Key events in initiation of this unidirectional propagation are indicated by the
white numbers in black circles: ① Direct activation under (1) [column 7] and central (–) [column 6] induces strong spiking in PYs, BCs, and MCs. ② Under left (–) [column 5] direct activation
induces strong spiking in MCs, but little in PYs and BCs. ③ PYs in column 5 further inhibited by MCs leads to little activity to left of electrode. ④ Strong PY activity in columns 6 and 7 propa-
gates rightward via cross-column PY-PY synapses, overcoming moderate inhibition. ⑤ PY activity causes spiking in MCs and BCs as it propagates rightward; feedback between PYs and inhibi-
tory cells causes increasingly synchronous spiking. Layer I interneurons have been omitted, as they did not contribute significantly to the propagation described here.
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function (Muller et al., 2018). They relay information across a
range of distances and thereby coordinate fundamental processes
such as memory, perception, language, orientation, executive
functions, and more across distant brain regions (Rubino et al.,
2006; Wu et al., 2008; Muller et al., 2018; Salimpour and
Anderson, 2019). Recordings have also shown that propagating
activity present in the human cortex is often directional, traveling
from one point to another. The ability to generate directional
propagation via stimulation would allow for unique precision in
and control over induced activity. This has widespread implica-
tions for the restoration or enhancement of high-level brain
function, particularly because many neuropsychiatric disorders
are marked by abnormal or absent propagating activity.

In the model, propagating activity was confined to supragra-
nular cortical layers. This may not be a limitation if the goal is to
reproduce natural waves, because spontaneous traveling waves
in the human cortex have also been found to be largely confined
to upper layers, including the alpha rhythm during waking (M.
Halgren et al., 2019), and spindles and slow oscillation during
sleep (Cash et al., 2009; M. Halgren et al., 2018).

Traveling waves have long been studied with a variety of com-
putational models, and numerous mechanisms have been pro-
posed to explain how activity propagates across neuronal
networks (Ermentrout and Kleinfeld, 2001; Breakspear, 2017).
Cortical propagating waves that are triggered specifically by elec-
trical stimulation have been recorded in mammalian cortical sli-
ces (Kim et al., 1995; Wu et al., 2001; Wester and Contreras,
2012), as well as in non-human mammals (Contreras et al., 1997;
Xu et al., 2007; Stieger et al., 2020) and simulated in non-mamma-
lian computational models (Chen et al., 2008), but remain under-
studied in human subjects. This previous experimental work, both
in vivo and in silico, has yielded scarce evidence of asymmetrical
traveling wave propagation or reliable wave generation analo-
gous to that reported here. To the extent that previous work has
focused on traveling wave propagation initiated by stimulation
(Alekseichuk et al., 2019), these studies examined stimulation
through the skull and meninges, and are thus not directly com-
parable to this model of intracranial stimulation of the cortical
surface. Many computational models exist that model the
effects of stimulation on the brain, including some that have
constructed Hodgkin–Huxley microcircuits (Douglas et al.,
1995; Haeusler and Maass, 2007) and modeled cortical sur-
face stimulation (Anderson et al., 2009). However, few have
modeled multielectrode or asymmetrical stimulation or
reproduced traveling waves using surface electrodes. Many
existing stimulation models have focused on stimulation of a
particular nerve (Raspopovic et al., 2011; Helmers et al., 2012) or
an isolated cell type (Traub et al., 1994; R. J. Greenberg et al.,
1999), as opposed to the functioning cortical microcircuit pre-
sented here, which can be more readily adapted to other cortical
regions by adjusting the parameters and neuronal reconstructions
used. In addition, stimulation has more often been simulated in
these models by a simple application of suprathreshold current or
a uniform electric field (Radman et al., 2007, 2009). Thus, by com-
bining the two-phase biophysical model with asymmetrical, multi-
polar surface stimulation, our approach synthesizes existing
achievements into a single coherent, clinically-adaptable model
that uniquely sheds light on the generation of propagating wave
activity.

Clinical relevance of our findings
Brain stimulation is becoming increasingly common in clinical
and experimental settings, especially using multielectrode arrays

(Lewis et al., 2015). As such, it is pressing that we develop accu-
rate models of the effects that multielectrode stimulation has on
neural activity. While sometimes the explicit goal of stimulation
may be to disrupt aberrant activity to restore normal functioning,
increasingly the goal is to induce the desired brain activity
directly via stimulation, as our work demonstrates.

Changes in neural plasticity result from patterned activity,
with the particular changes in connectivity contingent on the
specific timing and order of activity (Bennett and Bair, 2015).
Stimulation protocols that induce neural activity which contin-
ues past the stimulus duration are more likely to alter cellular
and synaptic properties in favor of the induced activity, in con-
trast to stimulation protocols that briefly activate broad swaths of
cells without triggering existing activity patterns. Thus, initiating
propagating waves within tailored spatiotemporal constraints is a
promising way to retrain neural networks and enhance or silence
brain functions in a targeted way.

The generation of traveling waves may serve as a promising
therapy for a variety of neurological disorders. For example, it
has been previously suggested that triggering propagating activ-
ity in perilesional areas where waves are otherwise aberrant or
absent may be an effective therapy for post-stroke aphasia
(Beuter et al., 2020). While the ultimate clinical applications of
this technique are uncertain, stimulation-induced traveling
waves may have the potential to offset inhibition in cortical
spreading depression (Liebetanz et al., 2006; Santos et al., 2012),
reduce the risk of seizure while determining which brain tissue to
remove from epilepsy patients (Nagaraj et al., 2015), and enhance
memory formation when applied during learning or recall periods
(Suthana et al., 2012; Batterink et al., 2016; Ezzyat et al., 2018;
Kucewicz et al., 2018a,b), as consistency in traveling wave direc-
tion is positively correlated with working memory efficiency
(Zhang et al., 2018).

Limitations
In this work, we modeled a single, short stimulating pulse.
However, clinical stimulation is most often composed of longer
pulses or pulse trains and is usually performed with bipolar elec-
trodes delivering biphasic pulses to prevent damaging Faradic
currents (Merrill et al., 2005; Cogan et al., 2016). These stimula-
tion paradigms modulate properties over time that are not
accounted for in the current model, such as underlying dendritic
and axonal dynamics as well as synaptic interactions. Thus, our
biophysical approach may be expanded in future studies to
incorporate these steady-state properties through alternative
modeling approaches, such as the cylinder model (Rall, 1962;
Tranchina and Nicholson, 1986) or the multicompartmental
model (Berzhanskaya et al., 2013). However, we chose to model
the activation probability of the axonal instead of the dendritic
arbor in this work because experimental evidence shows that the
nodes of Ranvier, followed by the axon hillock, are the most excit-
able neuronal elements by far via direct stimulation (Gustafsson
and Jankowska, 1976; Swadlow, 1992; Rattay, 1999; Tehovnik et
al., 2006) as they both have a high concentration of sodium chan-
nels (Catterall, 1981). In contrast, direct stimulation of the dendri-
tic arbor generates transmembrane currents that propagate to the
axon hillock, but these effects are strongly attenuated and delayed,
and are negligible compared with direct stimulation of the nodes
of Ranvier and axon hillock.

Consistent with the findings that the axon is the most likely
site of action potential initiation under electrical stimulation, our
approach has focused specifically on estimating this probability
while neglecting other aspects of stimulation which may alter
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subsequent network activity. In particular, effects of stimulation
on nonlinear, often calcium-mediated, properties of the den-
drites and axon terminals would be expected to significantly out-
last the duration of stimulation. Both of these locations can
directly influence synaptic efficacy, or even decorrelate synaptic
release from action potential initiation (Katz and Miledi, 1967),
and therefore could substantially alter subsequent network dy-
namics in neural tissue.

Moreover, previous modeling studies have indicated that the
most depolarized neural element is not always the site of action
potential initiation (McIntyre and Grill, 1999). This was particu-
larly found to be the case when the electrode was positioned near
the cell body, which resulted in maximal depolarization in the
dendrites or soma, but with action potential initiation taking
place in the axon or at the initial segment. For the present study,
this breakdown in the assumptions of the activating function
approach is mitigated by the more proximal relationship of the
axons than the soma to the electrode and the short pulse dura-
tion, as such conditions have been found to show greater corre-
spondence between the site of maximal depolarization and
action potential initiation, both of which typically occurred in
axonal segments (Rattay and Aberham, 1993; McIntyre and
Grill, 1999). In future studies which consider longer stimulus
durations or DBS paradigms where the electrode may be more
proximal to the soma than axonal – conditions that are particu-
larly pertinent to clinical applications – an active cable theory
model would need to be used to properly account for action
potential initiation.

In the microcircuit phase of the model, the connectivity
between different cell types follows a canonical microcircuit
model. While this approach characterizes the main signal
pathways and feedback loops present within cortical col-
umns (Douglas et al., 1989; da Costa and Martin, 2010;
Defelipe et al., 2012), finer details are not modeled, such as
descending projections to inhibitory cells from excitatory
cells (Thomson et al., 2002) or the contribution of less com-
mon interneuron cell types. The cells within the cortical
microcircuit model could be extended from single-compart-
ment to multicompartment neurons (Bonjean et al., 2012) to
distinguish tuft versus soma-targeting interneurons, which
may further differentiate the inhibitory power of inter-
neuron cell types (Markram et al., 2004). This phase of the
model may be further expanded from a 2D plane to a 3D cir-
cuit in the volume of cortex underneath the electrodes to
understand how activity spreads across space.

While moving to multicompartment neurons with active
properties would alleviate many of the limitations of our
approach discussed above, it also presents unique difficulties.
Such models are vastly higher-dimensional than the passive
cable and point-neuron models considered here and are diffi-
cult to properly constrain because of the lack of experimental
data on the distribution of passive and active ion channels
within different cell types necessary for data-driven parame-
terization. Without such constraints, these high-dimensional
models are liable to be finely tuned within their vast parame-
ter space to be able to exhibit nearly any desired activity and
run the risk of diverging from biologically realistic parameter
regimens and decoupling the modeled activity from plausible
cellular mechanisms. Given that our goal in this study was to
shed light on the cellular and circuit mechanisms underlying
electrical stimulation and current steering rather than pro-
vide robust statistical predictions of the results of this partic-
ular electrical stimulation design, we opted to use models

which, although known to be incomplete, are capable of more
robustly constrained parameterization.

Alternative modeling approaches
In this modeling work, we have focused on estimating transient,
cell type-specific responses to electrical stimulation, and subse-
quently incorporated these estimates into a biophysical network
model of the canonical cortical column. In this sense, we directly
model certain effects of electrical stimulation at the microscopic,
cellular level, and then import these findings into a mesoscopic,
cortical circuit model. Previous work has approached the problem
of modeling the effects of electrical stimulation in diverse ways at
multiple scales. At the microscopic level, McIntyre et al. (2004a)
used a multicompartmental cable theory model with active prop-
erties to study the effect of DBS on the cellular properties of single
thalamocortical relay neurons (McIntyre et al., 2004a). More
recently, such an approach was used to study single-cell responses
to intracortical and uniform electric field stimulation for a variety
of cell types obtained from human and rat cortical neuron recon-
structions (Aberra et al., 2018). At more macroscopic levels,
researchers have used finite-element methods to model epidural
electrical stimulation of the motor cortex which can account for
cortical folding (Wongsarnpigoon and Grill, 2008, 2012; Aberra et
al., 2018), and have incorporated data from human diffusion ten-
sor MRI to estimate the volume of tissue activated by DBS in the
subthalamic nucleus (McIntyre et al., 2004b).

Generalization of this approach
While this work modeled a specific stimulation protocol for a
particular and still simplified cortical network architecture, the
approach is generalizable to a variety of basic science and clinical
applications. This versatility comes from the modular structure
of the model, which completely decouples the biophysical-ana-
tomical model from the dynamic-neuronal network model. This
makes it possible to use the same activation probabilities for a va-
riety of network models so long as they contain analogs of the
initial cell types. Additionally, circumventing the computational
complexity of simulating high-dimensional compartmental
models facilitates the widespread investigation of much larger
networks than studied in this paper. Indeed, recent empirical
studies have collected an enormous amount of new data regard-
ing cell properties and local- and long-range connectivity, but
current modeling efforts have yet to take advantage of these data.
It is still not feasible to simulate large-scale network models,
including different brain structures (Sanda et al., 2021) and/or
multiple cortical regions and long-range connectivity (Rosen et
al., 2019), which would be built on anatomically realistic cell
reconstructions and include multiple layers and different cell
types. This severely limits how new anatomical and functional
data are used in the model design, and we suggest that the hybrid
approach we present here may help to partially overcome these
limitations.

In conclusion, this work models an asymmetrical stimulation
paradigm that could be implemented to initiate unidirectional
traveling waves in the cortex. A biophysical model is integrated
with a computational network model to predict the behavior of
single neurons as well as the cortical network dynamics resulting
from multielectrode stimulation. This model provides hypothe-
ses and stimulation paradigms which can be verified experimen-
tally. It expands on the capabilities of our hybrid modeling
approach to show how it can be deployed to probe the relation-
ship between the microscale effects of electrical stimulation and
the mesoscale consequences at the level of circuit dynamics.
These results demonstrate how complex stimulation protocols
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could be harnessed to generate persistent changes in activity with
the potential to restore normal brain function in neurological
and psychiatric conditions.
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