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The purpose of our study was to identify the low-dimensional latent components, defined hereafter as motor unit modes,
underlying the discharge rates of the motor units in two knee extensors (vastus medialis and lateralis, eight men) and two
hand muscles (first dorsal interossei and thenars, seven men and one woman) during submaximal isometric contractions.
Factor analysis identified two independent motor unit modes that captured most of the covariance of the motor unit dis-
charge rates. We found divergent distributions of the motor unit modes for the hand and vastii muscles. On average, 75% of
the motor units for the thenar muscles and first dorsal interosseus were strongly correlated with the module for the muscle
in which they resided. In contrast, we found a continuous distribution of motor unit modes spanning the two vastii muscle
modules. The proportion of the muscle-specific motor unit modes was 60% for vastus medialis and 45% for vastus lateralis.
The other motor units were either correlated with both muscle modules (shared inputs) or belonged to the module for the
other muscle (15% for vastus lateralis). Moreover, coherence of the discharge rates between motor unit pools was explained
by the presence of shared synaptic inputs. In simulations with 480 integrate-and-fire neurons, we demonstrate that factor
analysis identifies the motor unit modes with high levels of accuracy. Our results indicate that correlated discharge rates of
motor units that comprise motor unit modes arise from at least two independent sources of common input among the motor
neurons innervating synergistic muscles.
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Significance Statement

It has been suggested that the nervous system controls synergistic muscles by projecting common synaptic inputs to the
engaged motor neurons. In our study, we reduced the dimensionality of the output produced by pools of synergistic motor
neurons innervating the hand and thigh muscles during isometric contractions. We found two neural modules, each repre-
senting a different common input, that were each specific for one of the muscles. In the vastii muscles, we found a continuous
distribution of motor unit modes spanning the two synergistic muscles. Some of the motor units from the homonymous vastii
muscle were controlled by the dominant neural module of the other synergistic muscle. In contrast, we found two distinct
neural modules for the hand muscles.

Introduction
The motor unit, which comprises a motor neuron and the mus-
cle fibers it innervates, is the final common pathway of the neu-
romuscular system. The motor neuron integrates an extensive
array of synaptic inputs and produces an activation signal that is
transmitted to muscle fibers (Duchateau and Enoka, 2011).
All voluntary actions are accomplished by varying the
amount of motor unit activity. Despite claims to the con-
trary (Harrison and Mortensen, 1962; Basmajian, 1963), it
is not possible to control the activation of individual motor
units independently (Henneman et al., 1976; Bräcklein et
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al., 2022). Instead, synaptic inputs are distributed broadly
among sets of motor neurons, and the motor units that are acti-
vated in response to these inputs depend on their relative excit-
ability (Henneman et al., 1965; Henneman and Olson, 1965;
Heckman and Enoka, 2012). As a consequence of this organiza-
tion, the order in which motor units are recruited during a vol-
untary action is relatively fixed (Milner-Brown et al., 1973;
Desmedt and Godaux, 1977, 1978).

It is the shared synaptic inputs received by the motor
neurons that are responsible for the force generated by a mus-
cle (Negro et al., 2009; Thompson et al., 2018). These shared
inputs can arise from four sources (cortical, brainstem, spinal,
and afferent pathways) and have varying distributions across
spinal motor nuclei (Phillips and Porter, 1964; https://
onlinelibrary.wiley.com/doi/10.1002/cphy.cp010211; Heckman
and Enoka, 2012; Ferreira-Pinto et al., 2018). One advantage
of this scheme is that the shared inputs can engage several
motor nuclei concurrently and thereby facilitate control of the
net muscle torque.

It has been hypothesized that the control of multiple muscles
is achieved by the activation of sets of motor neurons that have
been referred to as neural modules, motor primitives, or com-
mon synaptic inputs (Ivanenko et al., 2004; d’Avella et al., 2006;
Lacquaniti et al., 2012; Laine et al., 2015; Santello et al., 2016;
Alessandro et al., 2020; Madarshahian et al., 2021; Fig. 1). The
modularity of neural control in humans has been estimated by
measuring the covariation in muscle activation patterns (EMG sig-
nals). The modules extracted by factorization analysis have been
termed muscle synergies (d’Avella et al., 2003; Tresch et al., 2006)
and are assumed to reflect, albeit indirectly, the synaptic inputs that
are common to all the motor neurons contributing to each muscle
synergy (Ivanenko et al., 2004; Tresch et al., 2006; d’Avella et al.,
2006; Muceli et al., 2010; Laine et al., 2015; Alessandro et al., 2020).

The synaptic inputs shared by motor neurons can be exam-
ined more directly by measuring the covariation in the rates at
which motor units discharge action potentials. The identified
patterns are referred to as motor unit modes (Madarshahian et
al., 2021) and neural modules (which refer to the principal com-
ponent identified by factorization analyses). This can be accom-
plished by investigating pairwise spike-train correlations of the
activated motor units (Schneidman et al., 2006; Shlens et al., 2006;
de la Rocha et al., 2007). The purpose of our study was to identify
the motor unit modes underlying the discharge rates of the motor
units from two knee extensors, vastus medialis (VM) and vastus
lateralis (VL) and two hand muscles (index and thumb muscles)
during submaximal isometric contractions. We hypothesized that
the discharge rates of the motor neurons innervating each muscle
would be explained by more than one motor unit mode.

We found that the discharge rates of motor units in individual
quadriceps and hand muscles comprised two independent motor
unit modes that were specific for each muscle in the synergistic
pair. The discharge rates of most motor units were associated
with the neural module for the muscle in which they resided, but
others were correlated with either the neural module for the syn-
ergistic muscle or both motor unit modes. We then simulated
the delivery of two independent common synaptic currents into
integrate-and-fire motor neurons to validate our approach. Our
findings provide a greater level of detail about the distribution of
common synaptic input within and across the motor nuclei that
innervate synergistic muscles. Moreover, they indicate that the
modular (synergistic) organization of movement is not at the
muscle level but rather at the motor unit level, and these two lev-
els do not overlap.

Materials and Methods
Participants
Eight subjects were recruited for each experiment (hand and knee exten-
sor muscles). All procedures were approved by the local ethical commit-
tees at the University of Rome Foro Italico (approval number 44 680,
knee extension experiments) and Imperial College London (approval
number 18IC4685, hand experiments) and conformed to the standards
set by the Declaration of Helsinki. The subjects provided informed con-
sent before participating in the study. Some of these data have been pub-
lished previously (Del Vecchio et al., 2019; Nuccio et al., 2021).

As described subsequently, high-density EMG recordings (Quattrocento,
OT Bioelettronica) were decomposed (Del Vecchio et al., 2020a) from the
signals measured in both experiments.

Experiment 1 (knee extensors)
Eight participants (27.6 6 2.4 year, all men) visited the laboratory on
two occasions. In the first visit, they were familiarized with the experi-
mental procedures by performing a series of maximal and submaximal
isometric contractions with the knee extensors. In the second visit,
which occurred 24 h after the familiarization session, simultaneous
recordings of the force applied by the knee extensors during maximal
and submaximal voluntary contractions and high-density surface elec-
tromyography (HDsEMG) signals were recorded from vastus lateralis
and vastus medialis.

After standardized warm-up contractions, participants were verbally
encouraged to push as hard as possible for;3–5 s to achieve peak maxi-
mal voluntary contraction (MVC) force. They performed fewer than
four or four trials with ;60 s of rest between trials. About 5min later,
they performed steady contractions (2� at 10% MVC for 70 s) and sub-
maximal trapezoidal contractions at three target forces (2� each at 35,
50, and 70% MVC force). The trapezoidal contractions required partici-
pants to match a prescribed trajectory that comprised a ramp-up phase
(5% MVC s-1), a plateau (10 s of constant force at target), and a ramp-
down phase (�5%MVC/s). Three minutes of rest was provided between
all submaximal contractions. We only used the steady contractions at
10% of maximum in the current report.

All measurements were taken with each leg in a random order.
Participants were asked to avoid exercise and caffeine intake for 48 h
before testing. Participants were comfortably seated and secured in a
Kin-Com dynamometer by means of three Velcro straps (thigh, chest,
pelvis), with the knee joint fixed at 45° of flexion (full knee extension =
0°). HDsEMG signals were acquired from the vastii muscles with two
grids of 64 electrodes each (5 columns� 13 rows, gold coated, 1 mm di-
ameter, 8 mm interelectrode distance, OT Bioelettronica; Fig. 1A).

Placement of the electrode grids was based on existing guidelines
(Barbero et al., 2012) and adjusted as necessary. After shaving and clean-
ing the skin (70% ethanol), both electrode grids were attached over the
muscles using two layers of disposable double-sided foam (SpesMedica).

Figure 1. Classic view of the common synaptic input to motor neurons. Motor neurons in
an individual motor nucleus or in synergistic nuclei receive a dominant common synaptic
input (gray line). The neural coupling between VL and VM has been performed either by
low-pass filtering (,20 Hz) the electromyographic signals from VL and VM and then using a
factorization algorithm or by performing the coherence or time-domain correlation analysis
between the motor unit spike trains from these two muscles. Both methods identify one
main component that explains most of the variance during both isometric and dynamic
tasks.
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Skin-electrode contact was ensured by filling the holes of the foam layer
with conductive paste (SpesMedica). A ground electrode was placed on
the contralateral wrist, whereas the reference electrodes for both vastus lat-
eralis and vastus medialis grids were attached to the skin over the ipsilateral
patella and medial malleolus, respectively. Monopolar HDsEMG signals
were recorded using a multichannel amplifier (EMG, Quattrocento; A/D
converted to 16 bits, bandwidth 10–500Hz) at a sampling rate of 2048Hz.

Experiment 2 (hand muscles)
The experimental setup involved a chair, table, and computer monitor.
Participants (eight men and one woman, 266 2 years) were comfortably
seated with both arms resting on the table. A custom-made apparatus
was secured to the table to support the dominant hand (self-reported) with
the forearm midway between pronation and supination and both the fore-
arm and wrist immobilized. The index finger was aligned with the longitu-
dinal axis of the forearm, and the thumb was held in a resting position at
the same height as the index finger. The applied force was displayed on a
monitor that was positioned 60 cm in front of the subject. The visual gain
was fixed at 66 pixels per percentages of MVC force for each muscle (axis).

The forces exerted by the index finger and thumb were measured
with a three-axis force transducer (Nano25, ATI Industrial Automation),
digitized at 2048Hz (USB-6225, National Instruments), and low-pass fil-
tered with a cutoff frequency of 15Hz. HDsEMG signals were recorded
with a multichannel amplifier (Quattrocento, OT Bioelettronica; A/D con-
verted to 16 bits, bandwidth 10–500Hz) at a sampling rate of 2048Hz.
Two flexible grids of high-density EMG electrodes (13� 5 pins, 4 mm
interelectrode spacing) were placed on the skin over the first dorsal inter-
osseous (FDI) and thenar muscles (flexor pollicis brevis and abductor pol-
licis brevis).

Participants performed force-matching tasks (10% MVC force)
involving concurrent abduction of the index finger and flexion of the
thumb for 60 s (see Fig. 3). Visual feedback was provided as a moving
dot cursor in which the x-axis and y-axis corresponded to the thumb
and index finger forces, respectively. Subjects were required to maintain
the force signal within 10% of the target for each applied force.

The experiments began with MVCs (as described in experiment 1).
Subsequently, the required target forces were displayed on a monitor,
and participants performed two 60 s trials with 30 s of rest between trials.
As noted in the introduction, we designed our tasks to determine the
extent to which sets of motor neurons receive common synaptic inputs.
To achieve this goal, subjects were instructed to exert forces in the same
sagittal plane with the two sets of muscles, which required ;10min of
practice.

Data Analysis
HDsEMG decomposition. The 64 monopolar HDsEMG signals were

filtered off-line with a zero-lag, high-pass (10Hz) and low-pass filter
(500Hz). The force signals were corrected for the influence of gravity
and normalized to MVC force. HDsEMG channels with poor signal-to-
noise ratios were inspected with a semiautomated function that identi-
fied spurious EMG signals based on the power spectrum. Those channels
with a poor signal-to-noise ratio (defined as 3 SDs from the mean of the
power spectrum averaged across all signals in the band 10–500Hz) were
visually inspected and removed from the analysis. The number of EMG
channels containing noise was low;.95% of the channels had acceptable
signal-to-noise ratios.

Subsequently, the HDsEMG signals were decomposed with a gradi-
ent convolution kernel compensation algorithm (Holobar and Zazula,
2007). The general decomposition procedures have been described pre-
viously (Farina and Holobar, 2016). Briefly, the decomposed signals can
be described as a time series of Dirac delta functions that contain the
sources (s) representing the discharge times of motor units, which can
be described as delta ðd Þ functions as follows:

sjðkÞ ¼
X

r
d ðk� w jrÞ; (1)

where w jr corresponds to the spike times of the jth motor unit. Each
channel of the HDsEMG signal can then be described as the convolution

of the motor unit discharge times (s) into the muscle fiber action poten-
tials. Because each motor unit innervates multiple muscle fibers, we
detect a compound action potential from the muscle fibers innervated
by the same motor axon. Therefore, the HDsEMG recordings can be
described mathematically in a matrix x form as follows:

xðkÞ ¼
XL�1

l¼0
HðlÞsðk� lÞ þ nðkÞ; (2)

where s (k) = [s1 (k), s2 (k), . . . , sn (k)]T represents the n motor unit
discharge times derived from the HDsEMG signal (10) and n is the
noise to for each electrode. The matrix H contains the two-dimensional
information of the motor unit action potential and has size m � l with
lth sample of motor unit action potentials for the n motor units and
m channels.

Before beginning the blind-source separation procedure, the spatial
sparsity of the matrix x was enhanced by extending the observed num-
bers. This procedure improves the decomposition as the gradient
descent update rule maximizes the diversity of the motor unit waveform
to converge on the discharge times of each motor unit (the sources, s).
The shapes of the motor unit action potentials obtained by spike-trig-
gered averaging are then inspected as 2D and 3D waveforms (Vecchio
and Farina, 2019; Del Vecchio et al., 2020b).

Factorization analysis. Once the discharge times of the motor units
are known, it is possible to predict modulation of muscle force with near
perfect correlations (Partridge, 1965; Baldissera et al., 1998). By record-
ing large samples of motor units, the modulation of muscle force can be
reconstructed (Negro et al., 2009) because of the low-pass filtering prop-
erties of the muscle to a given neural drive (Baldissera et al., 1998; Del
Vecchio et al., 2018). When motor unit discharge rates are filtered in the
low-frequency range (muscle bandwidth ,20Hz), it is possible to pre-
dict oscillations in the applied force close to;1% MVC (Del Vecchio et
al., 2018). Consequently, the factorization analysis used in the current
study focused on the low-pass-filtered motor unit discharge rates. The
discharge rates were filtered by convolving with a Hann window of
400ms (2.5Hz). Because of late recruitment of motor units, we only ana-
lyzed the last 50 s segment of the smoothed discharge rate at the steady
contraction. The motor unit discharge times were characterized with
three methods, factorization analysis (Jöreskog, 1967; Maxwell and
Harman, 1967), principal component analysis, and non-negative matrix
factorization.

These factorization methods were applied to the matrix containing
the smoothed discharge rates with rows equal to the number of motor
units identified for both muscles and columns equal to the smoothed
discharge rates. Factorization analysis is based on the rationale that the
activated motor units can be represented as time sequences of M dimen-
sional vectors (Eq. 3) in response to various common and independent
synaptic inputs delivered to the motor neuronsm(t). The response of the
motor neuron population, therefore, can be described as combinations
of N varying synaptic inputs that are constrained by the nonlinear prop-
erties of the motor neuron to produce a motor unit mode, expressed as
wi tð Þ

� �
i¼1;:::N; as follows:

mðtÞ ¼
XN

i¼1
ciwi; (3)

where ci is a non-negative scaling coefficient of the ith motor unit
mode. We were interested in finding the matrix wi without making
any assumptions about the associations between muscles or motor
neurons. We found that factor analysis resulted in the strongest
correlations between the motor unit modes and the discharge rates
of individual motor units. Moreover, we demonstrate with an inte-
grate-and-fire model (see below) that factor analysis can separate
the motor unit modes with high levels of accuracy. We also exam-
ined the performance of non-negative matrix factorization and
principal component analysis by using previous approaches to
identify muscle synergies (i.e., .100 iterations and reconstruction
of the original signal; D’Avella et al., 2003; Ivanenko et al., 2004;
Tresch et al., 2006).
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Factor analysis models the associations between variables into a
lesser number of latent variables (factors). It assumes that for a collection
of observed variables (x) there are a set factors (f) that explain most of
the total variance, which is the common variance. The function factoran
in MATLAB computes the maximum likelihood estimate of the factor
loadings matrix (K) as follows:

x ¼ m1Kf 1 e; (4)

where e is the vector of independent factors. Alternatively, the model
can be specified as follows:

covðxÞ ¼ KKT 1W; (5)

where KKT is the common variance matrix, andW ¼ covðeÞ is the diag-
onal matrix of specific variances.

The unique variance in the model with no a priori assumption of
orthogonality between factors (when allowing for factor rotations, such
as promax) makes the factor analysis an appropriate choice to extract
the latent discharge rate of synergistic motor nuclei. It is supposed that
the model mimics the common (f ) and independent (e) inputs imping-
ing onto the two motor nuclei.

In our current study, we found that two factors explained much of
the variance in the pooled motor unit discharge rates (see below,
Results). The two motor unit factors (modes) were further characterized
based on the strength of the correlation with the motor units in each
muscle; we refer to these factors as “muscle modules.” For instance, the
VL module is the factor that showed the stronger correlation of the
smoothed compound spike trains of vastus lateralis motor units. Note,
however, that the VL module could be associated with either of the two
motor unit factors (modes) because the association depended on the var-
iance of the motor unit discharge rates during a trial. Trials in which
only one muscle module was identified were discarded from analysis
(one trial for the hand muscles and two trials for vastii muscles). Not all
motor units showed stronger correlation with the homonymous muscle
module; the modulation of discharge rate for some motor units was bet-
ter explained by the other muscle module, whereas some motor units
showed a similar correlation with both muscle modules.

We classified the motor units into three groups, based on the correla-
tion values with specific centroids [pdist2 function, x and y coordinates,
(0.65 1.00), (0.60 0.60), (1.00 0.65)]. We arbitrarily selected these cent-
roids based on the variability of the motor unit modes with respect to an
individual common input observed in the results of the computer simu-
lations. There are two main limitations with our approach. First, the
motor unit discharge rates are smoothed with a Hann window of
400ms, which may cause spurious correlations. For this reason, the du-
ration of the trial is critical in understanding the statistical significance
of our results. From the simulations, we found that 50 s of simulated vol-
untary contractions were sufficient to cluster two unique inputs and a
shared input. In contrast, a 10 s trial resulted in many motor unit modes
that converged in the common space, presumably because of the filtering
effects described above. Second, it is important to understand how well
the factor analysis can distinguish the contribution of specific independ-
ent inputs. We found that some motor units had correlation values with
the neural module within the 0.1–0.3 range for 50 s of simulated data,
but this increased to �0.2–0.6 for 10 s of simulated data. Moreover, the
results from the hand experiments identified two muscle-specific motor
unit modes that had correlation values .0.8 with the muscle-specific
neural module and a range of �2 to 0.5 with the other module.
Therefore, by selecting boundaries of [0.65 1.00] for motor unit mode 1,
[0.60 0.60] for the shared mode, and [1.00 0.65] for the motor unit mode
2, we could estimate the proportion of the motor units in the two clus-
ters for the vastii muscle, where many motor units also had a strong cor-
relation with both modes. Note that the scope of this analysis is not to
define the specific clusters of motor unit modes in the vastii muscles, but
rather it provides an estimate that was tuned with a computer model
and hand motor unit results about the proportions of the motor unit
modes in the vastii muscles.

Tracking motor units
To evaluate the reliability of the motor units being assigned to the same
motor unit mode, we tracked the motor units in the two trials performed
by each subject. The motor units were considered the same if the two-
dimensional correlation of the motor unit action potential waveform
from all channels (obtained by spike-triggered averaging on the
HDsEMG) was above a threshold of 0.86.

Cross talk and realigning
Up to 95% of the action potentials generated by motor units in first dor-
sal interosseous can be detected in recordings from the thenar muscles
(and vice versa) and similarly from the two vastii muscles (Germer et al.,
2021). Consequently, we examined the level of such cross talk with a
validated method (Del Vecchio et al., 2019; Germer et al., 2021). Briefly,
this procedure takes advantage of the distance from the activated muscle
fibers (muscle unit) to the electrode, which is less for motor units in a
targeted muscle. Motor units from a targeted muscle are expected to
show greater action potential amplitudes with minimal shape distortion
(Germer et al., 2021 contains a detailed assessment of statistically signifi-
cant cross talk of individual motor units.).

Also, we aligned motor unit action potentials relative to the average
shape of the motor unit action potentials obtained by spike-triggered
averaging. Because action potentials show some variability in time
because of surface EMG stochasticity, we convoluted the average action
potential to retrieve the discharge times of the motor units. Although
this procedure is critical when assessing brain-spinal transmission laten-
cies (Ibáñez et al., 2021), it did not influence our results because of the
brief corticospinal latencies (,50ms). In our study, discharge rate was
smoothed in the frequency domain for force production (2.5Hz,
400ms). The influence of discharge time, therefore, is removed by low-
pass filtering at,2.5Hz.

Computer simulations
We simulated 480 integrate-and-fire motor neurons, each of which
received a computer-generated current input (set at 20nA). The synaptic
currents that were shared among all neurons represented the common
synaptic input, but the neurons also received some independent synaptic
inputs. Because the discharge times of motor neurons can be synchron-
ized, the common input currents were close to maximal values in the
low-frequency range of ,2.5Hz (see below). The resting membrane
potential and reset voltage was set at �70mV, the spike threshold was
set at�50mV, and a membrane time constant was 20ms. The time step
duration was set at 0.1ms.

Our model comprised randomly distributed Gaussian noises at each
time step to represent the common and independent synaptic inputs.
Two random uncorrelated Gaussian input currents were created at each
time step to represent the motor unit modes that were identified experi-
mentally; one-third of the neurons (160 neurons) received Isyn1 as a
unique common input, and Isyn2 comprised another common input at
the same strength, but orthogonal to Isyn1; Isyn3 was the average of Isyn1
and Isyn2 plus its unique independent noise (see eq. 5). The input current
for each neuron i and population j (j = 1,2,3) can be summarized by the
following equation:

Ii;j ¼ mi 1s iðj i tð Þ1 j c tð ÞÞ; (6)

where mi is the temporal average of the current that was set at 20nA and
s i sets the global network state by taking into account the unique inde-
pendent inputs for each neuron (j i) and the Gaussian-distributed ran-
dom common inputs (j c). The tuning of these parameters was matched
to those observed in vivo. The values of m, j i, and j c were adjusted to
reflect physiological values for the variability in motor unit interspike
intervals and common input. Interspike interval variability was exam-
ined with histogram distributions as found in the current study and by
others (Moritz et al., 2005). The common and independent inputs were
tuned based on the cross-correlogram function derived from previously
reported motor unit data (Negro et al., 2016). Therefore, each combina-
tion of three randomly assigned groups of 160 neurons from the total
pool (n = 480) received two independent synaptic currents (Ii1;2 equal to
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Eq. 6), and a third randomized subpopulation (j = 3) of motor neurons
received the average of the two inputs as follows:

Ii;j ¼ Ii1 1 Ii2
2

1 j i tð Þ: (7)

Simulations were run for 10, 50, and 80 s. We removed the first and
last 2 s of spiking activity in all simulations to minimize the influence of
spike-frequency adaptation. The spike trains emitted by the Ith neuron
after generating the spike times were stored as a binary time series,
which was equal to one when the neuron reached voltage threshold. The
successive analysis followed the same steps as the experimental data.
Briefly, the binary spike trains were low-pass filtered with a 2.5Hz Hann
window, and the factorization analysis was then performed on the low-
pass-filtered signals.

Because the distribution of inputs to each neuron was known (i.e.,
Ii1�3), it was possible to determine the performance accuracy of the fac-
torization analysis. Moreover, we investigated the relation between
motor neuron responses to increased synaptic currents with changes in
common and independent inputs.

Statistical analysis
We performed linear regression analysis between the smoothed motor
unit discharge rates within and between muscles. The significance level
was extracted from bivariate Pearson correlations, and Bonferroni cor-
rections were applied for multiple comparisons. The same procedure
was used to find the modules carried by each neuron (decoding func-
tion). Each neural module extracted by the factorization algorithm
(Jöreskog, 1967; Maxwell and Harman, 1967) was compared with the fir-
ing rate of the individual motor units. Significance was accepted for p
values, 0.05.

Data availability
The website https://github.com/alecsdelvecchio/neuralmodules contains
the data and functions for the extraction of the motor unit modes.

Results
Muscle modules
Our approach involved extending the classic method for muscle
synergy analysis (Lee and Seung, 1999; D’Avella et al., 2003;
Ivanenko et al., 2004; Tresch et al., 2006; Alessandro et al., 2020;
Sylos-Labini et al., 2020) to motor unit recordings. Instead of
treating muscles as individual elements, the discharge times of
motor units from different muscles were grouped together. We
found that the factor analysis was superior to principal compo-
nent analysis and non-negative matrix factorization (Tresch et
al., 2006; Tanzarella et al., 2020, 2021; Ting et al., 2021) in maxi-
mizing the correlation between individual motor unit discharge
rates and the muscle modules (Fig. 2).

The experimental setup and correlation analysis for the two
vastii muscles is shown in Figure 3. The motor unit discharge
times were decomposed with a blind-source separation proce-
dure, which identifies each event with no a priori knowledge on
the physiological information conveyed by the individual motor
units (Holobar and Zazula, 2007; Farina and Holobar, 2016; Del
Vecchio et al., 2020b). We identified an average of 6.9 6 4.3 and
4.46 2.3 motor units for VL and VM, respectively, across partic-
ipants during isometric contractions at 10% of MVC force. We
subsequently smoothed the motor unit discharge times with a
Hann window, which retained all the frequencies responsible for

Figure 2. Reconstruction accuracy (percentage of variance explained) for each subject (dotted black lines). A, B, The black dots represent the average motor unit modes across subjects for
the vastii and hand muscles. C, The correlation values (mean6 SD) between the muscle modules (VL and VM) and the motor unit discharge rates (dots) as determined by non-negative matrix
factorization (NMF), factor analysis (FA), and principal component analysis (PCA).
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Figure 3. Recordings of muscle force and correlation analysis of motor unit discharge times. A, Experimental setup included high-density EMG grids over the vastus lateralis and medialis
muscles during isometric contractions at 10% MVC force. B, The applied force. C, The decomposed motor unit discharge times represented in a raster plot for the vastus lateralis (violet) and
medialis (green) muscles. D, The motor unit discharge times (series of 0s and 1s) were convolved with a 400 ms Hann window to yield discharge rates (spikes s�1), which retained the motor
unit oscillations responsible for the fluctuations in force during steady contractions. E, Four bivariate correlations (correlation strength, r) between different motor units belonging to the same
muscle module (the labels are color coded as indicated in C, D). The blue lines indicate the smoothed discharge rates during the steady contraction. F, Matrix color map of the correlation
strength (r) between all the identified motor units for the two muscles. Note that the discharge rates within each muscle module exhibited a range of correlation values. The Pearson’s p value
was,0.0001 for the reported r values.
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muscle force (,5Hz; Negro et al., 2009). As the applied force
has a cutoff frequency of �20Hz, the low-pass-filtered discharge
times (the time series of zeros and ones; Fig. 3C) are strongly cor-
related with the variance in force during steady contractions
(Baldissera et al., 1998; Negro et al., 2009; Del Vecchio et al.,
2018; Feeney et al., 2018). Consequently, we focused on finding
the latent components (i.e., the motor unit modes) for the low-
pass-filtered signals (Fig. 3D).

After converting the discharge times to rates and smoothing
the signal, we computed pairwise correlations between each
motor unit within the same muscle (Fig. 3E,F). We consistently

found correlated and uncorrelated discharge rates of some
motor units from the same vastus muscle (muscle module),
which indirectly indicates that not all motor neurons in a
given nucleus received the same common input (Schneidman
et al., 2006; Shlens et al., 2006). Because most previous studies
report high correlations among motor units within a motor
nucleus (De Luca and Erim, 1994; Farina et al., 2014; Laine et
al., 2015), it was necessary to assess the level of cross talk
between muscles. We found that the motor units identified in
the other muscle had action-potential amplitudes that were
statistically similar to those in the homonymous muscle and,

Figure 4. Recordings of muscle force and correlation analysis between the discharge times of motor units in hand muscles. A, Experimental setup involved high-density EMG grids placed
over the first dorsal interosseous and thenar muscles. B, C, The applied force and the discharge times of motor units shown in a raster plot for the first dorsal interosseous (green) and thenar
muscles (violet). D, The motor unit discharge times (series of 0s and 1s) were convolved with a 2.5 Hz (400 ms) Hann window to yield discharge rates (spikes s�1). E, Two bivariate correlations
between different motor units belonging to the same muscle module (the labels are color coded as indicated in C, D). The blue lines indicate the smoothed discharge rates during the steady-
state contraction. F, Matrix color map of the correlation strength (r) between all the identified motor units for the two muscles. Note that all motor units are highly correlated within each mus-
cle module. The Pearson’s value was,0.0001 for both correlations.
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therefore, were not the result of cross talk (Del Vecchio et al.,
2019; Germer et al., 2021).

The average number of identified motor units for the hand
muscles across participants was 12.2 6 3.0 and 4.3 6 1.2 for the
first dorsal interosseous and thenar muscles, respectively. In con-
trast to the vastii muscles, Figure 4 shows that the discharge rates
of motor units in each hand muscle were strongly correlated
(.0.9), and there were few cases of low correlations (see cluster
analysis below).

Motor unit modes
Figure 5 shows the results obtained from the factor analysis for
the vastii muscles of two participants. The factor analysis was
applied to the pooled motor units from both muscles; therefore,
the extracted factors did not have any a priori muscle-specific
constraint. The factors (motor unit modes) are then superim-
posed for each muscle (gray lines indicate individual motor unit
discharge rates from that muscle; Fig. 5A). The first two modes
explained most of the variance in the signal (.80%).

Figure 5. Results of the factorization analysis for the vastii muscles of two subjects. A, The smoothed motor unit discharge rates (gray lines, zeroed mean for visualization) and two muscle
modules derived from the factor analysis (green for the vastus lateralis and violet for vastus medialis). Note the high correlation between the two factors and the discharge rates of some, but
not all, motor units for the two subjects. B, The two factors were then correlated with the smoothed discharge rates of all motor units and defined the motor unit modes. C, The cross-correla-
tion values between the two modes. D, Projections of the bivariate correlation values for each motor unit with respect to the motor unit modes. Values close to one indicate that a motor unit
carries;100% of that motor unit mode. Note that some vastus lateralis (green) and medialis (violet) motor units invade the territory of the other motor unit mode; for example, intermingling
of the green and violet lines for Subject 3. Also note that some motor units are only correlated with one module.
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We then determined the level of correlation between the dis-
charge rate of each motor unit and the two modes (Fig. 5B). This
analysis shows, for example, that motor unit number 2 in vastus
lateralis for Subject 1 had a stronger correlation with the first
mode, whereas the two other motor units were more correlated
with the other mode (Fig. 5D). However, the two modes were
not correlated (Fig. 5C). We then take the first mode as the

vastus medialis module and the second mode as the vastus latera-
lis module. Projections of the correlations with the two modes
(Fig. 5D) indicated that one motor unit in vastus lateralis (green)
belonged to the mode of the vastus medialis (violet) motor units.
Subject 3 exhibited more intermingling of the motor unit data in
the space of the two motor unit modes (Fig. 5; graph, bottom
right).

Figure 6. The output of the factor and cluster analysis across all subjects and motor units. A, The motor units from vastus lateralis (green) and vastus medialis (violet). Each line indicates
the strength (line length) and sign of the correlation coefficient (r) ranging from �1 to 1 between the discharge rate of one motor unit and the muscle module. Note that some motor units
shared the combined module space (indicated as gray lines and dots), whereas others diverged from synergistic modules (blue and red), and a few invaded the territory of the other module.
B, A cluster analysis identified three motor unit modes. Note the gray cluster that indicates the percentage of motor units that shared both motor unit modes. C, D, The same analysis as in A,
B but for the hand muscles. Note the smaller proportion of motor units belonging to the shared (gray) cluster in comparison with the vastii muscles. E, F, An example of two motor units that
occupy different module space. The discharge rate of the motor unit in F (top) was correlated to both motor unit modes (mode 1 and mode 2), whereas the motor unit in F (bottom) was only
correlated with mode 1.
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We then examined the overall distribution of the identified
motor units within each motor unit mode across participants for
the vastii (n = 8) and hand muscles (n = 8). We found that
although many motor units from each vastus muscle shared the
same modes (Fig. 5A–D), the discharge rates of some motor
units were correlated with both motor unit modes. There were
also some motor units that showed negative correlations with
one of the modes. These negative correlations were more com-
mon for the hand muscles.

In the vastii muscles, we found a continuous distribution of
motor unit modes across the two muscle-specific neural modules.
We clustered the correlation values of the motor units with the re-
spective modes based on specific centroids [x and y coordinates,
(0.65 1.00), (0.60 0.60), (1.00 0.65); Fig. 6B–D]. We have arbitrarily
chosen these clusters because they represent a large proportion of
the data in the vastii and not in the hand motor units, so that all
motor unit modes that were correlated with an R. 0.6 with both
modules represented the shared cluster. This analysis was not
intended to identify a specific cluster, but rather to determine
the number of the motor units within these boundaries. The
largest proportion of motor units for all muscles was the group
belonging to the homonymous muscle module (e.g., correlation
level ranging from 0.65 to 1.00). Interestingly, the proportion
of motor units belonging to the shared cluster was greater for

vastus lateralis than vastus medialis
(Fig. 6B). The muscle module clusters
were stronger for the hand muscles,
with few motor units in the shared clus-
ter (,20% for both first dorsal interos-
seous and thenar muscles). Moreover,
there were some motor units for both
sets of muscles that diverged from the
homonymous module and were more
correlated with the synergistic muscle. This
was more evident for the vastii (.10% of
motor units) than hand muscles (,3% of
motor units).

We then removed the motor units that
shared both motor unit modes and per-
formed coherence analysis between the
motor pools. This analysis was performed
only in the subjects with at least three motor
units in both modes (total number of sub-
jects, six). We found a twofold decrease in
the coherence value when the shared motor
units were removed. Among the subjects
who had motor units in different modes, the
coherence in the physiological bandwidth
(0–50Hz) did not differ from frequencies
.50Hz, which means that there was no co-
herence between motor units that did not
belong to the same mode. Conversely, the
coherence for the motor units that shared
both modes was similar to previous reports
(Laine et al., 2015; Negro et al., 2016). This
finding suggests that previous coherence val-
ues found between muscles from the thigh
and the hand are because of the shared
inputs only and do not represent common
synaptic input to all motor neurons in the
nuclei (Laine et al., 2015; Del Vecchio et al.,
2019).

The analysis of the tracked motor units
showed higher variability in the correla-

tion values with the neural modules for the vastii muscles than in
the hand muscles (Fig. 7). Many of the motor units remained in
the same cluster for vastus lateralis (50%, N = 24) and vastus
medialis (56%, N = 18), whereas the proportion was significantly
higher for the first dorsal interosseous (77%, N = 59) and thenar
muscles (96%, N = 23).

Integrate-and-fire model: factor analysis accurately reflects
the interplay of two common inputs
We performed computer simulations to generate a set of motor
neuron discharge times that could be used to determine the accu-
racy of factorization analysis on the extraction of motor unit
modes (Fig. 8). The aim was to assess the influence of known dis-
tributions of two synaptic inputs (Isyn1,2) and their average
Isyn3 = (Isyn1 1 Isyn2)/2 plus independent inputs on the number
of identifiable motor unit modes. The common and independent
inputs, as well as the discharge times, were approximated by tun-
ing the parameters of an integrate-and-fire model (Abbott, 1999;
de la Rocha et al., 2007).

Because we have no information on the dimensions of the
synaptic inputs received by the motor neurons, we can model
these inputs with an integrate-and-fire model and study the out-
puts with pairwise correlations and factor analysis. Moreover,

Figure 7. The smoothed discharge rates of the motor units that were tracked across two trials. The variability in the motor
unit modes for each motor unit was plotted with a line connecting the same motor units in the first and second trial. The
axes of the plot correspond to the correlation coefficient (r, ranging from 0 to 1) of the motor unit discharge rate to the mus-
cle module. A, The variability for the vastii (green for the motor units that resided in VL and violet motor units that resided
in VM). B, The thenars and FDI muscle (green for the motor units that resided in FDI and violet motor units that resided in
thenars).
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Figure 8. Integrate-and-fire (IF) model. We injected correlated and uncorrelated fluctuating currents (Ii) into 480 motor neurons. Two-thirds of the population received two distinct common
inputs (j c), and one-third received the average of the two common inputs plus its own independent noise. The proportion of common and independent inputs reflected the cross-correlation
values observed in experimental data. Similarly, the injected current (20 nA) generated interspike intervals that matched in vivo motor unit data. Each neuron received Gaussian synaptic noise
reflecting its unique connections (independent input, j i). A, mi Is the temporal average of the current (20 nA), and s i sets the global network state. Raster plot (orange lines) showing some
of the data from an 80 s simulation with the proportion of common-to-independent inputs set at 1.53. Note that the output of the factorization analysis clearly depicts the space of three
injected currents (graph, top right), as observed in the experimental recordings. B, Pairwise correlation for the first neural (muscle) module between motor neurons 1 and 2 from a pool of 160
neurons that each received Isyn1. C, The averaged total current across all cells plotted between the motor unit modes. Note that module 1 and module 2 are uncorrelated, whereas there was a
high correlation with module 3 because of the shared averaged synaptic current. D, Matrix colormap of the correlation strength across all 480 neurons. E, The computed discharge rates from
the integrate-and-fire model were low-pass filtered at 25 Hz for a 10 s trial. The first and last second was excluded when calculating the correlations to avoid the influence of spike frequency
adaptation. Each line corresponds to one motor neuron. F, Distribution of interspike intervals across all 480 neurons for an 80 s trial. G, Matrix colormap of the correlation strength across all
480 motor neuron smoothed discharge timings. H, Accuracy of factor analysis computed as the average difference in discharge rate of all neurons belonging to each module (|M1 - M2|) at three
time points during the simulation. The absolute difference between the modules corresponds to the accuracy of factor analysis in converging in that specific module. The values for the shared
module (green) were close to 0, which indicates perfect separation from the two modules. We injected low percentages of common input (0% indicates that the common and independent
inputs are the same). The dashed vertical lines indicate the range of values that reflect in vivo motor unit correlation values. There was a strong influence of time, so that 10 s of data were
insufficient to obtain reliable estimates of the proportion of common input, whereas there were no differences for the data at 50 s and 80 s. I, Three representative motor unit modes extracted
by factor analysis at three time points (10, 50, and 80 s) when the common input was twice as much as the independent input.
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the model allowed us to test the influence of time (trial duration),
net synaptic currents, and the relative strength of the common
and independent inputs.

We simulated 480 integrate-and-fire neurons that were
activated by applying an independent input and a common
input. Two-thirds of the population of neurons received the
uncorrelated inputs, Isyn1 and Isyn2, and a one-third received
Isyn3, which represented the average of the two other inputs
(Fig. 8A). We examined the correlations between the inputs
and outputs (smoothed motor unit discharge rates) as well
as the average and SD of the motor unit modes extracted by
the factorization method (Fig. 8). Because of the influence
of low-pass filtering of the discharge rates, there was a
strong influence of trial duration with the 10 s data being
unable to distinguish between the unique and shared
inputs. With longer simulations, we were able to retrieve
the full dimensions of the three common synaptic input sig-
nals (Fig. 8H,I) independent of the strength of the common
and independent inputs.

Discussion
We analyzed the strength of the corre-
lations between the discharge rates of
motor units from different synergistic
muscles during isometric contractions
with the knee extensors and index fin-
ger and thumb muscles. We found two
motor unit modes for the motor units
of the vastii muscles, which contrasts
with previous findings of only one
dominant common input to individual
(De Luca and Erim, 1994) or synergis-
tic muscles (Laine et al., 2015). As con-
ceptualized in Figure 9, large groups of
motor units innervating the vastus lateralis
and vastus medialis muscles were associ-
ated with a specific module for each mus-
cle, but some motor units were associated
with both neural modules. In contrast,
fewer motor units innervating the hand
muscles (,20%) were associated with both
neural modules. Moreover, the discharge
rates of some motor units were not corre-
lated with the module for the muscle in
which they resided but instead were corre-
lated with the module for the synergistic
muscle.

The correlation between each motor
unit and its mode reveals the potential na-
ture of shared synaptic inputs by the motor
neuron pools that is inevitably obscured in
the global EMG signal. With a motor unit
analysis, we show that the motor neurons
from two hand muscles during an inde-
pendent task can be fully represented by a
unique muscle-specific input, but the motor
units for each knee extensor muscle receive
common input from two unique sources.

Previous experiments reported a single
dominant common input governing coor-
dination of the vastus medialis and latera-
lis muscles (Laine et al., 2015). Similarly,
previous studies on one motor unit pool
have identified a single common synaptic
input (De Luca and Erim, 1994; Negro et

al., 2016). The identification of a single dominant common input
in previous studies is not necessarily in contradiction with the
present results because the number of inputs received by a motor
unit pool may depend on the task that is performed. The sources
of common input, such as the type and intensity of feedback
from sensory receptors (Nielsen, 2016; Sobinov and Bensmaia,
2021), likely differ depending on the task and type of contraction
(isometric and dynamic). For example, in a previous study using
similar techniques, we observed that most motor units did share
the same neural module when macaque monkeys performed
rapid high-force contractions (Del Vecchio et al., 2022), which
was probably because of the specificity of the task. At the
same time, we also note that it is not possible to identify mul-
tiple common inputs when using the motor unit pooled-co-
herence approach, which masks the presence of more than
one input when most motor units in a pool receive a similar
input and relatively few a different one. Because we found
that the motor units innervating an individual muscle may

Figure 9. Schematic representation of the results and suggested neural connectivity of voluntary motor commands to
motor neuron pools. A, Previous studies that grouped the vastii or hand muscles based on global EMG signals have found
strong coherence between the two muscles, indicating a dominant common input across synergistic muscles (Figure 1). After
we removed those motor units that shared both motor unit modes (green line showing without common units), the correla-
tion between the two pools of motor units was significantly reduced, as indicated in the coherence graph. This indicates that
the coherence found in previous studies is mainly attributable to those motor units that shared two distinct sources of com-
mon synaptic. B, Visual representation of our current findings. Factor analysis suggested that there are at least two sources
of common synaptic input (motor unit modes) to motor neurons that innervate each pair of synergistic muscles. Most motor
neurons, but not all of them, innervating each vastus muscle receive common input from a unique source (green and violet
lines), but some motor neurons receive inputs from the source directed to the other muscle (dashed green and violet lines,
top graph), and some receive inputs from both sources.
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receive more than one common input, correlation analysis
in time and frequency domains should be ideally performed
at the level of pairs of motor units rather than using a
pooled coherence approach.

Even for isometric contractions, however, the sources of com-
mon input may differ with the details of the task being per-
formed (Hug et al., 2021). Based on the interpretation that the
fluctuations in force during steady isometric contractions are at-
tributable to the variance in the common synaptic input (Negro
et al., 2009; Feeney et al., 2018; Thompson et al., 2018), differen-
ces in the coefficient of variation for force during a specific action
suggest adjustments in the common input across tasks. For
example, the coefficient of variation for force during index finger
abduction, which is mainly because of the activity of the first dor-
sal interosseus muscle, was 2� greater when participants per-
formed index finger abduction and wrist extension at the same
time, although the abduction force was the same in both tasks
(Almuklass et al., 2016).

Based on the finding of an increase in the coefficient
of variation for force during the double-action task (index
finger abduction plus wrist extension) in the study by
Almuklass et al., (2016), it seems reasonable to predict that
the motor unit modes for the two hand muscles in the cur-
rent study would differ from those observed during inde-
pendent actions. Consistent with this possibility, Desmedt
and Godaux (1981) suggested that the synaptic inputs deliv-
ered to the motor neurons that innervate the first dorsal
interossei muscle differed when the direction of the force
applied by the index finger changed from abduction to flex-
ion. The basis for this conclusion was the finding that the
recruitment for some pairs of motor units (;8%) consis-
tently reversed order when the task was changed from abduc-
tion to flexion. They hypothesized that this effect, although
relatively modest, was attributable to differences in the dis-
tribution of the motor command for each task. We found the
presence of three motor unit modes during knee extension
that were explained by two independent inputs and the alge-
braic summation of these two inputs. The motor unit modes
that carried both inputs are likely the ones that are ultimately
responsible, for example, for precise coordinated activity of
both muscles. In contrast, the existence of independent
neural modules that control motor unit pools of agonist
muscles rather than a single dominant input is likely also
important from a functional perspective as it gives more
space for flexibility of control, such as changes in the cova-
riation of vastus medialis and lateralis to regulate internal
joint stresses (Barroso et al., 2019; Alessandro et al., 2020)
or context-dependent separation of activity of other agonist
muscles (Sylos-Labini et al., 2017). The CNS can modulate
the force at the tendon level with a greater precision by
using various combinations of independent and shared
motor unit modes.

Despite the limited scope of the tasks examined in our cur-
rent study, the findings indicate that the derivation of muscle
synergies is based on the common synaptic input that is shared
by the motor neurons involved in the action but that this com-
mon input is not shared by all the neurons within a given motor
nucleus. We found, for example, that the modulation of dis-
charge rate for all motor units could be classified into three
clusters distributed across two motor unit modes. These results
indicate that synergistic motor neuron pools may receive more
than one common synaptic input during submaximal isometric
contractions.
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