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Both passive tactile stimulation and motor actions result in dynamic changes in beta band (15–30Hz Hz) oscillations over
somatosensory cortex. Similar to alpha band (8–12Hz) power decrease in the visual system, beta band power also decreases
following stimulation of the somatosensory system. This relative suppression of a and b oscillations is generally interpreted
as an increase in cortical excitability. Here, next to traditional single-pulse stimuli, we used a random intensity continuous
right index finger tactile stimulation (white noise), which enabled us to uncover an impulse response function of the somato-
sensory system. Contrary to previous findings, we demonstrate a burst-like initial increase rather than decrease of beta activ-
ity following white noise stimulation (human participants, N= 18, 8 female). These b bursts, on average, lasted for 3 cycles,
and their frequency was correlated with resonant frequency of somatosensory cortex, as measured by a multifrequency
steady-state somatosensory evoked potential paradigm. Furthermore, beta band bursts shared spectro-temporal characteristics
with evoked and resting-state b oscillations. Together, our findings not only reveal a novel oscillatory signature of somatosen-
sory processing that mimics the previously reported visual impulse response functions, but also point to a common oscilla-
tory generator underlying spontaneous b bursts in the absence of tactile stimulation and phase-locked b bursts following
stimulation, the frequency of which is determined by the resonance properties of the somatosensory system.
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Significance Statement

The investigation of the transient nature of oscillations has gained great popularity in recent years. The findings of bursting
activity, rather than sustained oscillations in the beta band, have provided important insights into its role in movement plan-
ning, working memory, inhibition, and reactivation of neural ensembles. In this study, we show that also in response to tactile
stimulation the somatosensory system responds with;3 cycle oscillatory beta band bursts, whose spectro-temporal character-
istics are shared with evoked and resting-state beta band oscillatory signatures of the somatosensory system. As similar bursts
have been observed in the visual domain, these oscillatory signatures might reflect an important supramodal mechanism in
sensory processing.

Introduction
Oscillatory dynamics are assumed to play a critical role in the
processing of perceptual information (Buzsaki, 2006), with dif-
ferent sensory modalities operating preferentially in different

frequency bands (Klimesch et al., 2007; Spitzer and Haegens,
2017; Kayser, 2019). In response to tactile stimulation, as
well as during movement preparation and execution, the
power of b oscillations (15–30Hz) over somatosensory corti-
ces decreases (Salmelin and Hari, 1994; Hari et al., 1997; Salenius
et al., 1997; Neuper and Pfurtscheller, 2001; Parkkonen et al.,
2015). This reduction in beta band power has generally been
interpreted as an increase in excitability, allowing the somatosen-
sory system to process external and interoceptive information
during perception, motor coordination, and feedback (Cassim
et al., 2000, 2001; Gaetz and Cheyne, 2006). Hence, b oscilla-
tions might have a similar role to that of a oscillations in the
visual system, namely, cortical inhibition (Linkenkaer-Hansen
et al., 2004; Klimesch et al., 2007; Engel and Fries, 2010;
Jensen and Mazaheri, 2010; Jones et al., 2010; Haegens et al.,
2011; Händel et al., 2011; Bonnefond and Jensen, 2012; Shin et
al., 2017).
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The interpretation of a and b as inhibitory brain rhythms is
based on observations of sustained (;500ms duration) power
decreases in trial-average waveforms following the stimulus
(Hari et al., 1997; Neuper and Pfurtscheller, 2001; Parkkonen
et al., 2015). A more nuanced spatiotemporal dynamic and
functional role of low-frequency rhythms has been revealed by
focusing on their transient nature. Single-trial analyses, in
case of b oscillations in the somatosensory system, revealed a
short-lived (;150ms, 3 cycles) burst-like behavior of b oscil-
lations (Shin et al., 2017; Lundqvist et al., 2018; Little et al.,
2019). Similar oscillatory transients have been uncovered in
the visual system using reverse correlation between visual
input and output (;10Hz, lasting up to 1 s) (VanRullen and
Macdonald, 2012). Both of these approaches revealed a tran-
sient increase in oscillatory power hidden in global sustained
decreases in power, which suggests a more active than tradi-
tionally assumed and temporally precise role of these rhythms
(e.g., in sequence learning and predictive processing) (Huang
et al., 2018; Alamia and VanRullen, 2019).

In this study, we aimed to investigate the transient nature and
frequency tuning of b oscillations in the somatosensory system
using several complementary approaches: (1) tactile random
white noise (WN) stimulation (all frequencies in a 1–75Hz
range), which allowed us to compute participant-specific impulse
response function (IRF) of the somatosensory system; (2) fre-
quency-by-frequency rhythmic tactile stimulation in a 12–39Hz
frequency range (steady-state somatosensory evoked potentials
[SSSEPs]), which allowed us to estimate the resonance, or maxi-
mal response amplitude, frequency of somatosensory cortex for
each participant; (3) pulsed tactile stimulation, a typical event-
related potential protocol; and (4) spontaneous prestimulus beta
band activity. This broad approach allowed us to compare multi-
ple b oscillatory signatures within somatosensory cortex and
thus provide comprehensive evidence for the link between all of
them.

We found that somatosensory IRFs, just like their a-rhythmic
visual counterparts, contained b -frequency components and
were unique to each participant in frequency (mean= 24.78Hz;
SD=6.18Hz). Tactile stimulation elicited b bursts that lasted on
average for;3 cycles (mean= 2.81 cycles; SD= 0.35 cycles). This
is in line with reports of transient 3-cycle-long movement-related
b bursts (Lundqvist et al., 2016; Little et al., 2019). The peak fre-
quency of somatosensory IRFs was strongly correlated with the
somatosensory resonance frequency determined using an SSSEP
approach, as well as with the peak frequency of stimulus-evoked
and spontaneous b oscillations.

Our findings point to a common oscillatory generator under-
lying spontaneous b bursts in the absence of tactile stimulation
and phase-locked b bursts following stimulation, the frequency
of which is determined by the resonance properties of the soma-
tosensory system. We propose an active role of beta band bursts
in processing tactile information.

Materials and Methods
Participants
Eighteen participants (aged 22-41 yr, 8 females) with normal or
corrected-to-normal vision enrolled in the study. The number of
participants was chosen based on previous literature investigating
somatosensory resonance (Snyder, 1992: N = 17; Tobimatsu et al.,
1999: N = 10; Müller et al., 2001: N = 10; Moungou et al., 2016:
N = 12). Informed consent forms were signed before the experi-
ment. The experiment was conducted in accordance with the pro-
tocol approved by the Center National de la Recherche Scientifique

ethical committee and followed the Code of Ethics of the World
Medical Association (Declaration of Helsinki). Subjects were com-
pensated with 10 Euro/h.

Experimental design
Tactile stimulation was delivered via vibrotactile electromagnetic solenoid-
type actuator (Dancer Design) driven by an audio amplifier connected to a
microcontroller board (Fig. 1A). We used amplitude-modulated stimula-
tion using 150Hz carrier frequency. Such approach is commonly used to
study human touch perception, as time-varying stimulation strongly drives
several types of mechanoreceptors (Moungou et al., 2016).

We used three vibrotactile stimulation protocols: (1) random WN
stimulation, (2) steady-state rhythmic stimulation, and (3) short pulses
(Fig. 1B). Tactile stimulation was applied to the participants’ right index
finger. WN sequences were created by randomly modulating the amplitude
of a 150Hz carrier sine-wave every cycle (i.e., every 1000/150=6.7ms).
The amplitude modulated signal was created by generating a random
number series and normalizing the amplitude of its Fourier components
before applying an inverse Fourier transform. Steady-state stimuli were cre-
ated by amplitude-modulating a 150Hz carrier frequency with a constant
frequency sine-wave signal at one of the frequencies. In total, we used 18
stimulation frequencies covering the beta band frequency range and a few
frequencies below and above: 12–20Hz in steps of 2Hz, 21–30Hz in steps
of 1Hz, and 33–39Hz in steps of 3Hz. Each frequency was presented on
12 trials. The order of frequencies was randomized across trials.

Before the experiment, participants performed a practice session to
become acquainted with a sensation of vibrotactile stimulation and tar-
get detection task. The task involved detecting a 1-s-long 15% decrease
in carrier frequency (from 150 to 127.5Hz). At the end of each trial, par-
ticipants had to press with their left hand the appropriate keyboard but-
ton indicating whether the trial contained a target or not. The responses
were not speeded and only 20% of trials contained targets.

Trial length for both WN and sine-wave stimulation was 6.7 s
(6.6625 s). The practice session consisted of 5 sine-wave stimulation tri-
als all containing targets. After the practice session, participants were
first presented with 200 pulse stimuli (200ms duration, 150Hz vibra-
tion) separated by a random ITI of 1-1.5 s. Thereafter, participants com-
pleted 616 experimental trials: 400 trials of WN sequences and 216 trials
of sine-wave stimulation. Experimental trials were divided into 8 blocks,
with 80 trials each (7 blocks of 80 trials and 56 trials in the last block).
The experimental part ended with an additional 200 single-pulse stimuli.
To make sure that participants could not perform the target detection
task by using auditory information (vibrotactile electromagnetic sole-
noid-type stimulators make a faint yet audible sound), they were using
earplugs.

Data acquisition and preprocessing
We recorded participants’ EEG using a 64-channel ActiveTwo Biosemi
system. Data analysis was performed in MATLAB using the Fieldtrip
toolbox and custom-written MATLAB scripts. Before all preprocessing
steps, we visually identified and removed noisy channels. The EEG data
were then rereferenced to the channel average, bandpass filtered between
1 and 200Hz and line noise was removed using a DFT filter (50, 100,
and 150Hz). We performed independent component analysis to identify
and remove eye movement-related artifacts. Thereafter, the data were
epoched for SSSEP (�1000 to 8000ms relative to stimulus onset), WN
sequences (�1000 to 6625ms relative to stimulus onset), and pulse stim-
ulation (�400 to 600ms relative to stimulus onset) trials separately.
Baseline correction was applied by subtracting average values calculated
from �1000 to 0ms (WN), �200 to 0 ms (SSSEP), or �400 to 0ms
(ERP) from individual trials. For SSSEP analysis, EEG data were high-
pass filtered at 0.5Hz and downsampled to 512Hz. Based on visual
inspection, trials containing large muscle and head-movement related
artifacts were removed.

Statistical analysis
ERP analysis. ERPs were calculated by averaging epochs from

400ms before to 600ms after stimulus presentation and applying abso-
lute baseline correction (baseline window�200 to 0ms).
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Impulse Response Functions. IRFs were calculated by first cross-cor-
relating the z-scored single-trial EEG signal with the WN sequence pre-
sented at that particular trial and then averaging the result over trials.
EEG trials were downsampled to 150Hz before cross-correlation to
match the rate of vibrotactile stimulation amplitude changes (Fig. 2A).
To evaluate statistical significance of IRFs, we created a null hypothesis
distribution by cross-correlating EEG signal with WN sequences from
random trials (surrogate impulse response function). This randomiza-
tion procedure was repeated 10,000 times, and the resulting trial-averaged
IRFs served as the distribution of expected correlation values under the
null hypothesis (H0: EEG and WN are uncorrelated). All stimulus time
points were entered in the cross-correlation, except the first 500ms and
the last 1000ms to avoid influences of the onset and offset ERP to the esti-
mate of tactile IRF. The cross-correlation was calculated for lags between
�300 and 500ms as follows:

IRF tð Þ ¼
X

T

stim Tð Þ:eeg T1tð Þ

with stim and eeg denoting z-scored stimulus sequence and correspond-
ing z-scored EEG signal, respectively.

SSSEPs. Frequency-specific SSSEP responses were isolated using a spa-
tiotemporal source separation method (Cohen and Gulbinaite, 2017;
Cohen, 2022), which is based on generalized eigenvalue decomposition
and allows to maximize signal-to-noise ratio of steady-state responses by
exploiting information present in interchannel covariance matrices.
Importantly, such approach also allowed us to account for individual dif-
ferences in somatotopic organization and to separate narrow-band tactile
stimulation-related activity from temporally co-occurring broadband
movement artifacts in beta band. Thus, instead of analyzing SSSEPs from
a subset of electrodes with maximum power at the stimulation frequency,
we analyzed a linearly weighted combination of signal from all electrodes.

For each participant and stimulation frequency, a separate spatial fil-
ter was constructed by temporally narrow-bandpass filtering (Gaussian

filter) the raw data (X) around the stimulation frequency f (FWHmean=
0.5Hz) and at the two neighboring frequencies (f6 1Hz; FWHmean=
2Hz). Temporally filtered data (500-6500ms relative to stimulus onset)
were then used to compute covariance matrices: one “signal” matrix (S co-
variance matrix) and two “reference”matrices that were averaged (R covari-
ance matrix). The first 500ms contain evoked potentials that have different
sources than SSSEPs (Nangini et al., 2006), and thus were excluded to not
compromise the quality of the spatial filter (Cohen and Gulbinaite, 2017).
Generalized eigenvalue decomposition (MATLAB function eig) performed
on “signal” and “reference” covariance matrices returned matrices of
eigenvalues and eigenvectors. To increase the robustness of the spatial fil-
ters, we applied a 1% shrinkage regularization to the average “reference”
covariance matrix. Shrinkage regularization involves adding a percent of
the average eigenvalues onto the diagonals of the average “reference” co-
variance matrix (Cohen, 2022). This reduces the influence of noise on the
resulting eigen decomposition. The eigenvectors (column vectors with
values representing electrode weights [w]) were used to obtain compo-
nent time series (eigenvector multiplied by the original unfiltered single-
trial time series [wT X]). The component with the highest signal-to-noise
ratio in the power spectra at the stimulation frequency was selected for
further analysis (of total 324 components= 18 subjects � 18 stimulation
frequencies, in 264 of cases the first component had the highest SNR, in
48 cases the second, in 11 cases the third, and only 1 case the fourth com-
ponent). Topographical representation of each component was obtained
by left-multiplying the eigenvector by the signal covariance matrix (wTS).
The obtained topographical maps were normalized, and the sign of eigen-
vector was flipped for 5 subjects that showed spatial peaks opposite to
that of the group average. The sign of the components affects only the
representation of the topographical maps and has no effect on compo-
nent time series (Cohen, 2022).

Power at each stimulation frequency was computed using FFT on
single-trial component time series in the 500-6500ms time window (rel-
ative to the stimulus onset) and zero-padded to obtain power exactly at
the stimulus frequency with 0.1Hz resolution. The absolute value of FFT
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Figure 1. Stimulation protocol and task. A, Tactile stimulation was applied to participants’ right index finger with a vibrotactile actuator. B, Three protocols were used: (1) WN stimulation was created
by random amplitude modulation of the 150 Hz carrier sine-wave. The spectral content of WN sequences was flattened between 0 and 75 Hz. (2) SSSEP stimulation was created by rhythmic amplitude
modulation of the 150 Hz carrier sine-wave at one specific frequency on each trial (12-39 Hz). Perceptual targets were embedded in both WN and SSSEP sequences by decreasing the frequency of the car-
rier sine-wave from 150 to 127.5 Hz. (3) Single-pulse stimulation consisted of 200ms fixed amplitude increases of a carrier 150 Hz wave. C, Experimental procedure and stimulation protocols.
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coefficients was squared and averaged across trials. To facilitate compari-
son across SSSEPs elicited by different stimulation frequencies, SSSEP
power values were expressed in SNR units:

SNR fð Þ ¼ Fðf Þ
1
2N

X
k¼66 p ;67;:::;6N

Fðf 1Df � kÞ

where N = 6 1.5Hz (15 bins), excluding 0.5Hz (5 bins) around the fre-
quency of interest.

For each participant, we plotted SSSEP power and eigenvalues as a
function of frequency (frequency tuning curves) and selected the fre-
quency with the highest power as resonance frequency for that partici-
pant. In cases when frequency tuning curves contained double peaks, the
frequency with the highest eigenvalue was selected. The eigenvalue indi-
cates how well the associated eigenvector separates the “signal” and “ref-
erence” matrices and thus can be used as additional selection criterion
when comparing components. The statistical significance of SSSEPs was
evaluated by repeating the above procedure (constructing spatial filters,
obtaining component time series, computing power spectra) using trials in
which neither the stimulation frequency nor its harmonics were present.
Eigenvector associated with the highest eigenvalue was selected to construct
spatial filters expected when no SSSEPs are present. This procedure allowed
to determine the SNR values that can be expected when no stimulation at a
particular frequency was delivered and to test whether the stimulation pro-
tocol induced any significant SSSEP response.

IRF and ERP time-frequency analysis. Time-frequency decomposi-
tion for IRFs and evoked potentials in response to single-pulse stimula-
tion were performed via continuous wavelet transformation. The total

power of the ERP was calculated by multiplying the power spectrum of
single-trial EEG data with the power spectrum of complex Morlet wave-
lets (ei2p fi te�t2=ð2s2ÞÞ, where t is time, fi is frequency that ranged from 2
to 50Hz in 1Hz steps, and s is the width of each frequency band
defined as n/(2p fi), where n is a number of wavelet cycles). Following
publications by Sherman et al. (2016) and Shin et al. (2017), we used
7-cycle Morlet wavelets for all frequencies. Similarly, the spectral con-
tent of the IRFs was analyzed by time-frequency decomposition
of trial-average IRFs. Power spectra for IRFs and ERPs (Fig. 4B,
E) were computed by averaging time-frequency representations
(TFRs) in the 0-200 ms time window at the subject-specific channel
of interest.

To extract the non–phase-locked part of the EEG response (Fig. 4G),
we first averaged the time-domain signal and subtracted it from all trials
before time-frequency decomposition. The phase-locked part of the sig-
nal (Fig. 4D) was calculated by subtracting non–phase-locked power
from the total power. Decibel baseline correction was applied to ERP

TFRs according to the following formula ð10 p log10ð
signal
baseline

Þ) using a

baseline window from �400 to 100ms before stimulus onset. Absolute
baseline correction was applied to the TFR of the IRF by subtracting the
average power values calculated from lags between �400 and �100ms
from all frequency bands, respectively.

Given some variability for maximum amplitude IRF channel across
subjects (individual differences in anatomy and thus projection on the
scalp), subject-specific channels of interest were defined as follows: The
TFR of IRFs was averaged over all channels, and the time-frequency win-
dow of interest (0-200ms, 15-40Hz), showing increased beta band
power, was defined based on visual inspection (Fig. 3B,E). The channel
with the largest power value within this window was selected as the
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channel of interest for this subject (Fig. 3C,F). The frequency at which
the largest power was observed was taken as the individual’s IRF peak
frequency.

Duration of IRF at the channel of interest was quantified in the fol-
lowing steps. First, we extracted the power envelope of IRF at individu-
als’ IRF peak frequency (fmax) determined from the TFR of IRF (Fig.
2C). Then, the IRF duration was defined as the FWHM between the
maximum IRF power and intercepts x1 and x2, which were defined as
the time points where IRF power envelope exceeded the 95% quantile of
IRF surrogate power values (null hypothesis distribution).

TFRs of IRFs were statistically assessed by comparing each individual
observed time-frequency power value to the corresponding distribution
of power values from the surrogate distribution (Fig. 4A). If the observed
power exceeded 95% quantile of the surrogate distribution, it was con-
sidered significant. TFRs of phase-locked and non–phase-locked EEG
responses were assessed by comparing all participants time-frequency
power values (N= 18) to the baseline power values at the corresponding
frequency using t tests. Correction for multiple comparisons was done
using false discovery rate (FDR). Before comparison, baseline power
values were averaged between �400 and �100ms for each individual
frequency. We only considered the largest cluster of significant time-fre-
quency points for further analysis.

Spontaneous b burst analysis. Spontaneous b bursts were extracted
from the �500 to 0ms baseline activity from all 3 paradigms (WN stim-
ulation, SSSEP, and single-pulse stimulation). Single-trial TFRs were cal-
culated at subject-specific IRF channels of interest as described in
section IRF and ERP time-frequency analysis. Power thresholds for b

burst detection were set to be 3 times the SD of all beta band (15-40Hz)
power values calculated over all trials. Before calculating the SD, we
removed 1% of the largest power values to reduce noise stemming from
high-power artifacts. We used MATLAB’s imregionalmax function to
detect peaks (between 15 and 40Hz) in the TFRs that exceeded the
power threshold. From the bursts that matched our selection criteria, we
calculated individual frequency histograms. Individual peak frequencies
were defined as the highest peak in the frequency histograms.

Results
The power of ongoing (non–phase-locked) b oscillations is
generally decreased in response to tactile stimulation and motor
actions (Salmelin and Hari, 1994 ; Hari et al., 1997; Salenius et
al., 1997; Neuper and Pfurtscheller, 2001; Parkkonen et al.,
2015). More recent work capitalizing on single-trial analysis has
demonstrated that spontaneous b bursts occurring in close
temporal proximity to tactile targets deteriorate stimulus detection
(Shin et al., 2017; Lundqvist et al., 2018; Little et al., 2019). These
and other findings have led to the hypothesis that somatosensory
b oscillations serve as an inhibitory brain rhythm that is gener-
ally absent during periods of increased processing demands
for incoming information (Karvat et al., 2021). Given the afore-
mentioned reports on burst-like nature of b oscillations
and previous findings of the impulse response function in
the visual domain (VanRullen and Macdonald, 2012), we
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set out to test whether the somatosensory system also responds
to WN vibrotactile stimulation with a rhythmic IRF, a transient
increase in beta band power. We first characterized the fre-
quency and duration of the IRF in response to WN, and then
we tested whether the properties of the IRF are related to: (1)
the resonance properties of the somatosensory system meas-
ured in a SSSEP paradigm; (2) dynamic changes in beta power
in response to single-pulse stimulation; and (3) spontaneous b
bursts occurring during the intertrial interval (a proxy for the
resting state beta band activity).

Random noise stimulation reveals oscillatory impulse
response function
Cross-correlation of WN tactile stimulation sequences with con-
comitantly recorded EEG signal revealed an oscillatory response
present for lags up to ;200ms, the IRF of the somatosensory
system (Fig. 3). Topographically, the IRF amplitude was maximal
over the left parietal and frontal channels. The TFR of IRF
showed that these fluctuations in response to tactile impulses
were constrained to the beta band. Spatial and frequency charac-
teristics of the somatosensory IRF were similar to previous
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of electrodes that were identified as a subject-specific channel of interest. D, TFR (averaged over individual channels of interest) and b topography of the phase-locked EEG response (ERP). E,
Grand-average power-spectra calculated in the 0-400 ms time window over individual channels of interest for the phase-locked EEG response. G, Grand average TFR of non–phase-locked EEG
response. Black contours represent regions in which contiguous time-frequency points were significantly different from the prestimulus baseline at p, 0.05 (corrected for multiple comparisons
using FDR). Purple contours represent a region, in which the real IRF was significant (the same as black contour in A). H, Same as in E, but for non–phase-locked EEG response. Individual sub-
jects showed local minima at frequencies distributed around a mean of 23.1 Hz. F, I, Topography of beta band power (15-40 Hz, 0-400 ms) for the phase-locked and non–phase-locked part of
the EEG response.
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reports on vibrotactile stimulation, with the highest beta power
observed contralaterally to the stimulated hand (Nangini et al.,
2006; Bardouille and Ross, 2008; Bardouille et al., 2010; Spitzer et
al., 2010; Langdon et al., 2011; Colon et al., 2012; Vlaar et al.,
2015), thus indicating a genuine somatosensory response (Fig.
4B).

To test whether the b oscillatory response to WN tactile
stimulation was merely a result of a general increase in beta
power in response to tactile stimulation, we repeated the same
analysis steps; however, this time we cross-correlated WN
sequences with random EEG trials 10,000 times and reper-
formed spectral analyses. We statistically compared the
observed average power values at every time-frequency point
to the distribution of power values from the surrogate distri-
bution. Real IRF power values were significantly higher for
lags between 0 and ;200ms and frequencies between 10 and
60Hz. The power spectra calculated by averaging over all time
points between 0 and 200ms showed a distinct peak at 20.1Hz,
which was not present in the surrogate distribution (Fig. 4B).
Together, this initial assessment suggests that the somatosen-
sory system responds to tactile stimulation with an oscillatory
b burst that is: (1) phase-locked to tactile stimulation and (2)
specific to the exact WN sequence that was presented on that
particular trial.

Next, we quantified individual participants’ IRF peak fre-
quency to estimate the length of individual IRFs and to com-
pare its spectral properties to other b signatures. Analyzing the
maxima in participants TFRs at individual channels of interest
allowed us to identify individual peak frequencies ranging from
18 to 39 Hz (mean = 25.1, SD = 6.12). These frequencies are
well within the beta band, although IRF peak frequency of
2 subjects (39Hz) neared the upper edge of classically defined
beta band.

Duration of IRFs
Visual IRFs can be observed for up to 1 s, and last on average 4
or 5 a cycles (Brüers, 2017). We were curious if the short
(;200ms) duration of tactile IRFs compared with the visual
ones was a result of oscillatory frequency difference between tac-
tile and visual IRFs: Albeit temporally shorter, tactile IRFs might
oscillate for the same number of cycles as their visual counter-
part. We therefore quantified the length of each subject’s tactile
IRFs (at the channel of interest) based on the power envelope at
individual peak frequency (Fig. 2B). The average duration (FWHM
relative to 95% quantile surrogate distribution) of individual tactile
IRFs was 116.58ms (SD=19.13). We used the following formula to
calculate the number of cycles for a given individual peak fre-

quency
duration

1000=peakfrequency
. Average length in cycles (calculated

from FWHM) across subjects was 2.81 (SD = 0.3544). Thus,
while tactile IRFs are slightly shorter than visual IRFs, they
closely match the length (3 cycles) of spontaneous b bursts
reported in previous work (Lundqvist et al., 2018; Little et
al., 2019).

Non–phase-locked beta power and IRF share spectral
properties
To directly compare the spectral properties of IRFs with beta
band activity in response to traditional sparse stimulation proto-
cols, we performed time-frequency analyses of ERP data. We
separately analyzed non–phase-locked and phase-locked activity
(for details, see Materials and Methods). Similar to previous

reports (Salmelin and Hari, 1994; Hari et al., 1997; Salenius et al.,
1997; Neuper and Pfurtscheller, 2001; Parkkonen et al., 2015),
non–phase-locked beta power decreased significantly as a result
of tactile stimulation (Fig. 4G). This decrease was most pro-
nounced over the left parietal/frontal channels (Fig. 4I). For
each participant, we identified the peak frequency at which
the strongest decrease in beta power occurred by detecting
power troughs following the stimulus onset (Fig. 4H).
Individual minima occurred at frequencies ranging from 19
to 33 Hz (mean = 23.1 Hz, SD = 3.34 Hz). To test whether
the non–phase-locked b signatures and IRFs might share a
common neural generator, we correlated individual b
trough frequencies. Spearman correlation between IRF and
decreases in non–phase-locked beta power revealed a sig-
nificant relationship (r = 0.55, p = 0.0216; see Fig. 7), indi-
cating that both b signatures might rely on a common
oscillatory generator.

Phase-locked beta power and IRF share spectrotemporal
properties
The phase-locked part of the EEG response showed a broad band
increase in power over somatosensory areas (Fig. 4D,F). Statistical
analysis of the TFRs revealed a cluster of significantly increased
power across a large frequency band (15-60Hz) between ;0 and
;200ms that was followed by a more frequency-specific increase
in the 15-30Hz range (;200 to 400ms; Fig. 4D).

Intriguingly, the TFRs of phased locked ERPs closely
resembled the TFRs of the IRFs (Fig. 4A,D). Related, we
found beta band topographies to be highly similar (Fig. 4C,
F). To test whether IRFs constitute the initial part of the
commonly investigated ERPs, we sought to identify spectral
peaks in the TFR of phase-locked ERPs and compare them
with the IRF peak frequency. We could identify spectral
peaks in all subjects (mean = 16.28 Hz, SD = 5.04); however,
for 4 of these subjects, the peaks did not fall within the sig-
nificant cluster (Fig. 4D) but were significantly lower (6–
12 Hz). Furthermore, the peak frequencies did not correlate
with IRF peak frequencies (r = �0.21, p = 0.4, Spearman).
This null finding reflects the fact that TFR of ERP is dominated
by the low frequencies (Figs. 4D, 5E), and frequency-based analy-
ses are suboptimal to uncover short-lived high-frequency spectral
components. We thus performed time-frequency decomposition
of ERPs and directly compared TFRs of IRFs and ERPs. Our ra-
tionale was as follows: If phase-locked ERPs contain IRFs and if
IRFs vary between participants, then within-participant ERP
and IRF correlation should be higher compared with between-
participant ERP and IRF correlation.

All time-frequency values of an individual IRF cluster
(Figs. 4A, 5A) were correlated (Pearson’s r) with the corre-
sponding time-frequency values of the ERP (Figs. 4D, 5A)
within and between subjects yielding a correlation matrix,
in which diagonal compared with off-diagonal correlation
values should be significantly higher (Fig. 5B). We averaged
all row and column vectors corresponding to individual di-
agonal entries and compared the resulting values to the di-
agonal using a t test (Fig. 5C,D). TFRs of individuals IRF
were significantly higher correlated with the same individu-
als ERP compared with the ERP of all other individuals
(Fig. 5D, t(17) = 2.28, p = 0.035, effect size d = 0.437). This
indicates that some spectral components of the phase-
locked ERP might indeed be oscillatory IRFs, embedded in
the ERPs low-frequency components.
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Somatosensory resonance frequency matches the frequency
of somatosensory IRFs
From the linear dynamical systems perspective, the frequency
response of a system, the system’s response to a sinusoidal input
with variable frequency, should be similar to the frequency trans-
form of its impulse response function. To test this hypothesis
and determine subject-specific resonance frequencies of the
somatosensory cortex, we used sine-wave stimulation in 12–
39Hz frequency range (SSSEP paradigm). Steady-state evoked
potentials were extracted using a spatiotemporal source sepa-
ration method that allows to linearly combine information
from all the channels instead of analyzing SSSEPs from chan-
nels with maximum power at the stimulation frequency
(Cohen and Gulbinaite, 2017).

As expected, vibrotactile right index finger stimulation
elicited maximal response over the contralateral somatosen-
sory cortex (Fig. 6A). Although for all participants SSSEPs
were strongest over the frontocentral left-hemifield channels,
substantial across-subject variability was evident. To accom-
modate for individual differences in SSSEP scalp projections,
which are likely caused by anatomic differences, we linearly
combined information from all the channels by computing
spatial filters (channel weights) that optimally isolate frequency-

specific SSSEPs (for details, see Materials and Methods).
This was done separately for each participant and each
stimulation frequency.

Figure 6B depicts normalized spatial filter weights for the res-
onance stimulation frequencies averaged across participants. The
putative anatomic estimate of SSSEPs determined from the sub-
ject-average spatial filter was localized, as expected, over the left
somatosensory cortex (Fig. 6B).

The subject-average response power (expressed in SNR units)
plotted as a function of stimulus frequency showed the strongest
responses at the stimulation frequency (diagonal). Harmonic
responses that are sometimes reported for rhythmic vibrotactile
stimulation paradigms are not visible here because spatial
filters were designed to isolate responses to narrow-band
rhythmic stimulus and suppress temporally co-occurring
activity at other frequencies. All stimulation frequencies eli-
cited statistically significant SSSEPs (for all stimulation fre-
quencies, p, 0.001, corrected for multiple comparisons
across frequencies using cluster-based permutation test-
ing), as indicated by the small SNR at each of the 18 tested
frequencies on trials when stimulation frequency was not
present (Fig. 6D; for details, see Materials and Methods).
The highest amplitude SSSEPs, or resonance frequency, on
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average was ;26Hz (22–39Hz range, SD= 5.32Hz). These
findings are consistent with previous reports that used a “best”
electrode(s) approach and reported a resonance of human
somatosensory cortex in the 20-26Hz range (Snyder, 1992;
Tobimatsu et al., 1999; Müller et al., 2001).

We extracted individual peak resonance frequencies from all
subjects and compared them with the frequency of IRFs and
non–phase-locked beta power decreases following stimulation.
Resonant frequencies were correlated significantly with
peak frequencies of IRF and stimulus-related beta power
decreases (p = 0.0003 and 0.0195, respectively, Spearman
correlation; Fig. 7). This result suggests that the frequency
of increasing and decreasing beta power signatures during
stimulus processing might be determined by the fundamen-
tal resonance frequency of the somatosensory system.

Spontaneous b bursts and IRFs share spectral properties
Recent studies focused on beta band oscillations at a single-trial
level and revealed that instead of sustained b oscillations present
in trial-average TFRs, b oscillations are transient burst-like
events (Shin et al., 2017; Lundqvist et al., 2018; Little et al., 2019).
The duration (3 cycles), frequency range (15-30Hz), and loca-
tion (somatosensory cortex) of the reported transients is highly
similar to the spectro-temporal properties of IRFs that we report
here (mean= 2.8, frequency range 18-39Hz). To investigate
whether the two share neural generators, we quantified average
b burst frequency in our dataset and compared them with indi-
vidual IRF peak frequencies. Beta burst analysis was performed
in the prestimulus window (�500 to 0ms) from all trials (SSSEP,
WN, and single-pulse ERP trials). Bursts were detected from sin-
gle-trial TFRs by using a threshold of 3 SDs (for details, see
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Materials and Methods). We could identify
peaks in all subjects in the 17–30Hz range
(mean=19.44, SD=3.06). Individual burst
peak frequencies were significantly corre-
lated with peak frequencies of SSSEP res-
onance (p = 0.038), IRF (p = 0.014), and
non–phase-locked beta power decreases
(p = 0.0003) (Spearman correlation, Fig.
7). Our analysis provides evidence that
several well-investigated b phenomena
are all strongly correlated, and poten-
tially reflect activity of the same neural
generators, linked to the fundamental
resonant properties of the somatosen-
sory system.

Discussion
The visual system’s response to an impulse
of light is oscillatory (“perceptual echo”) and
strongly correlates with the endogenous
alpha rhythm (VanRullen and Macdonald,
2012), a feature revealed by cross-correlating
stimulus WN sequences with the corre-
sponding EEG trials. These findings sug-
gested that response to visual stimulation is
phase-locked to the stimulus and may play
an active role in processing stimulus-specific
information. Here we extend these findings
to the somatosensory domain by showing
that the somatosensory cortex responds
to tactile stimulation with a phase-locked
3-cycle-long reverberation in the beta
band akin to a burst. These stimulus-
locked b bursts were significantly correlated
in peak frequency with the non–phase-
locked decrease in beta power follow-
ing tactile stimulation, the individual
participants’ tactile resonance frequency (determined in
SSSEP paradigm), and the frequency at which spontaneous b
bursts occur during rest. Our findings suggest a common oscil-
latory generator underlying all b signatures characterized in
this study, and reveal a supramodal mechanism in sensory
processing.

Phase-locked b bursts in response to tactile stimulation
The cross-correlation between tactile WN sequences and the
corresponding EEG signal revealed oscillatory signatures that
showed strong power in the beta band (;22Hz) over somato-
sensory cortex. Theoretically, the IRF revealed using cross-corre-
lation should resemble a classical time-domain averaged ERP
(Polge and Mitchell, 1970). Our findings, however, revealed sig-
nificant differences. The spectral content of the phase-locked
part of the ERP was dominated by frequencies in the 1–15Hz
range (Fig. 4D). The IRF, on the other hand, showed very little
low-frequency components and contained a burst-like increase
in beta power, that lasted for;3 cycles.

The most surprising finding, in the context of previous
research, is the phase-locked nature of somatosensory echoes. In
contrast, previous reports have highlighted spontaneous occur-
rence of beta band bursts in the empty intervals before target
detection (Shin et al., 2017), working memory delay intervals
(Lundqvist et al., 2018), or movement preparation and response

errors (Little et al., 2019). This precise time-locking strongly sug-
gests that somatosensory echoes are directly involved in the
processing of tactile stimuli and do not likely reflect secondary
processes related to movement planning or working memory
maintenance. Which functional role could such an oscillatory
signature play? Communication through coherence assumes pre-
cise phase alignment to be the key factor in information transfer
(Bastos et al., 2015; Fries, 2015). While high-frequency oscilla-
tions, such as g , usually increase in power following stimu-
lation, low-frequency rhythms, such as a or b , decrease in
power in these critical moments of information transfer
(Fig. 3G). Our finding of phase-aligned low-frequency b
oscillations during this critical early stage of processing
indicates that b might be fundamentally involved in bot-
tom-up transfer of tactile information.

The relationship between ERPs and IRFs
Tactile stimulation of the skin or electrical stimulation of the me-
dian nerve is generally accompanied by two EEG signatures in
the somatosensory system: One is a broad-band, phase-locked
increase in power, and the other is a non–phase-locked initial
suppression of m and beta rhythm followed by an increase (so-
called “b rebound”) (Hari et al., 1997; Neuper and Pfurtscheller,
2001; Parkkonen et al., 2015). It has been a matter of debate
whether the initial phase-locked broad-band EEG response
(ERP) is generated, at least partially, by phase reset of ongoing
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oscillations (Sauseng et al., 2007). Somatosensory evoked poten-
tials (SEPs) commonly show two early components (N20 and
N60), the interpeak difference between which is ;40ms and
variable across individuals (Niedermeyer and da Silva, 2005).
The interpeak timing could potentially correspond to a 25Hz os-
cillation and is similar to average somatosensory IRF frequency,
as well as the peak of somatosensory frequency tuning curves
reported here. High correspondence in spectro-temporal charac-
teristics between these different electrophysiological measures of
somatosensory system (SEPs, somatosensory IRFs, peak of soma-
tosensory tunning curves) indicates that they all capture reso-
nance characteristics of the underlying neural network.

While ERPs could also be considered IRFs, there are some
important differences between the two: First, ERPs are responses
to sparse tactile stimuli whereas IRFs reflect responses to contin-
uous increments and decrements of tactile stimulation intensity.
Second, the WN stimulation technique is much more efficient:
While in the computation of ERPs, one sample per ERP-time
point is collected per trial, the cross-correlation considers all
samples to calculate similarity between the signals. Third, short
and sparse presentation of stimuli used in experiments strongly
differs from natural tactile stimulation and perception. Natural
perception is much more continuous and incoming information
fluctuates dynamically at multiple frequencies. Thus, IRFs might
be a more accurate characterization of neural EEG correlates of
sensory processing. Notably, calculating the IRF via cross-corre-
lation assumes a linear relationship between input and output
which is likely violated in neural processing (e.g., because of
the involvement of multiple mechanoreceptors that bandpass
filter the input frequencies) (Handler and Ginty, 2021). The
IRF will hence only capture a linear part of brain response
and ERP and IRF might therefore reflect different aspects of
the same underlying physiological process. Furthermore,
although arguably nonlinear, the visual IRF does, to a certain
degree, capture functionally relevant components that can
predict perceptual outcomes (Brüers and VanRullen, 2018).

Characterizing the resonant properties of the somatosensory
system
Experiments using rhythmic stimulation have shown that the
somatosensory system responds more strongly to beta band fre-
quency stimulation (Snyder, 1992; Tobimatsu et al., 1999; Müller
et al., 2001). Using an SSSEP paradigm in combination with a
spatiotemporal source separation method, we investigated the
resonance properties of the somatosensory system and compared
it with the spectral characteristics of tactile IRFs, and spontane-
ous b bursts occurring during intertrial intervals. In line with
previous reports, we found the mean resonance frequency (high-
est SSSEP power) to be ;25Hz (Snyder, 1992: 26Hz; Müller et
al., 2001: 27Hz; Tobimatsu et al., 1999: 21Hz). Statistical analysis
revealed a significant positive correlation between individual
SSSEP peak frequencies, individual IRF peak frequencies, and
spontaneous b burst frequencies. We interpret these consistent
correlations as evidence for a common neural generator that is
primarily determined by the resonance properties of the somato-
sensory system.

A remaining question is to which extent peripheral mecha-
noreceptors could give rise to the observed b oscillations. The
time-varying stimuli we used (150Hz carrier frequency and 12–
39Hz amplitude modulated sine-wave stimulation) likely acti-
vate two types of mechanoreceptors responsive to vibrations of
the skin: Pacinian corpuscles are most sensitive to high frequency
100–400Hz vibrations and Meissner’s corpuscles, which respond

optimally to 40–60Hz vibrations (Handler and Ginty, 2021).
The here reported rhythmic responses (IRF: 25Hz, resonance:
26Hz) fall below the optimal (resonance) frequencies of these.
The amplitude modulation contained frequencies between 0 and
75Hz and could therefore potentially drive Meissner’s cor-
puscles. These receptors, however, have phasic responses and
only fire on initial contact with an object to the vibrations caused
by the movement between object and skin (Abraira and Ginty,
2013). As we discarded the initial 500ms and the last 1000ms of
each individual epoch, we find it unlikely that the responses of
these receptors could have given rise to the specific beta band
oscillations observed in the EEG. Last, our stimulation could
have activated Merkel’s discs as they respond to sustained point
pressure. The firing rate of these cells lies in the 60Hz range and
is hence also unlikely to lead to consistent 20Hz oscillatory ac-
tivity in the scalp EEG signal (Iggo and Muir, 1969). We con-
clude that the observed rhythms most likely hallmark active
processing and originate from cortical or subcortical regions.

IRFs as multimodal signatures of cortical processing
Beta oscillations have been associated with a multitude of
processes, such as motor stiffening (Baker et al., 1997),
attention (Buschman and Miller, 2007; Lee et al., 2013), sta-
tus quo maintenance (Engel and Fries, 2010), sensorimotor
integration (Gilbertson et al., 2005; Androulidakis et al.,
2006, 2007; Baker, 2007), working memory (Haegens et al.,
2017; Spitzer and Haegens, 2017; Lundqvist et al., 2018;
Schmidt et al., 2019), time perception (Baumgarten et al.,
2015; Wiener et al., 2018), and top-down communication
(Buschman and Miller, 2007; Lee et al., 2013; Cannon et al.,
2014; Bressler and Richter, 2015). Importantly, these theo-
ries propose an active role of b oscillations in temporally
organizing incoming information. The stimulus specific nature
and strict temporal alignment of beta band somatosensory IRFs,
as we demonstrate here, thus could provide a rhythmic temporal
structure for these processes.

Two recent studies have implicated the IRFs in regularity
learning and predictive coding processes. Repeated presenta-
tion of a single visual WN sequence leads to a gradual
increase in oscillatory alpha power in the corresponding IRF
(Chang et al., 2017). This increase is persistent even when
the repetition is interleaved with a novel WN sequence. The
authors hypothesized that, in line with the idea that the vis-
ual system dynamically encodes visual sequences, the IRF is a
signature of this regularity learning mechanism. The authors
discussed the possibility that IRFs might reflect a rhythmic
updating of predictions about expected stimulation patterns,
thus giving rise to 10 Hz oscillations. This line of arguments
was later supported by a simple computational predictive
coding model capable of generating physiologically plausible
IRFs, which propagated as traveling waves along the visual
hierarchy (Alamia and VanRullen, 2019). Their results were
verified in human EEG studies that showed similar traveling
wave dynamics that altered their direction depending on
whether visual input was present or not (Pang et al., 2020).
Together, these results suggest that visual IRFs might reflect
predictive coding processes that continuously generate and
update predictions about the incoming information at an alpha
rhythm (Friston, 2005; Linares et al., 2009; Clark, 2013; Seth,
2014). Their locus of generation might therefore lie in the inter-
actions between different columns in the visual hierarchy
hypothesized to implement predictive coding computations,
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potentially through canonical microcircuits (Bastos et al.,
2012).

The fact that similar oscillatory IRFs are found in two dis-
tinct modalities (tactile and visual) might reflect a general
process that is fundamental to cortical processing. Previous
work has attempted to quantify auditory IRFs and found
ERP like responses (Lalor et al., 2009; Lalor and Foxe, 2010).
Notably, however, oscillatory IRFs have not been found in
the auditory domain, potentially because of architectural dif-
ferences between visual and auditory cortical hierarchies
(_Ilhan and VanRullen, 2012). It was also suggested that the
auditory system could rely on fundamentally different strat-
egies to process sensory inputs as auditory information, in
contrast to visual and tactile information, is defined in terms of
temporal fluctuations across multiple frequency bands
(VanRullen et al., 2014). It might well be that auditory IRFs
could be revealed using more naturalistic stimuli, such as speech,
as speech contains multifrequency “perceptual units” (in the
words of Giraud and Poeppel, 2012) that range from low fre-
quencies (syllabic rates; 1–8Hz) to high frequencies (phonetic
features; 30–40Hz) (Dikker et al., 2020).

In conclusion, we find that, similarly to the visual domain,
the impulse response function of the somatosensory system is os-
cillatory, with a maximum in the beta band. This means that the
response to a single tactile impulse is reverberated in the beta
band for ;3 cycles. These reverberations significantly correlate
in frequency with the resonance frequency of the somatosensory
system and spontaneously occurring b bursts during rest, point-
ing to a common oscillatory generator. Our findings provide evi-
dence that the beta rhythm is actively involved in tactile stimulus
processing. Furthermore, the existence of rhythmic IRFs in the
somatosensory domain as well as the visual domain supports the
idea that they reflect a more basic, modality-agnostic signature of
sensory processing.
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