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Human learning and decision-making are supported by multiple systems operating in parallel. Recent studies isolating the
contributions of reinforcement learning (RL) and working memory (WM) have revealed a trade-off between the two. An
interactive WM/RL computational model predicts that although high WM load slows behavioral acquisition, it also induces
larger prediction errors in the RL system that enhance robustness and retention of learned behaviors. Here, we tested this
account by parametrically manipulating WM load during RL in conjunction with EEG in both male and female participants
and administered two surprise memory tests. We further leveraged single-trial decoding of EEG signatures of RL and WM to
determine whether their interaction predicted robust retention. Consistent with the model, behavioral learning was slower for
associations acquired under higher load but showed parametrically improved future retention. This paradoxical result was
mirrored by EEG indices of RL, which were strengthened under higher WM loads and predictive of more robust future be-
havioral retention of learned stimulus–response contingencies. We further tested whether stress alters the ability to shift
between the two systems strategically to maximize immediate learning versus retention of information and found that
induced stress had only a limited effect on this trade-off. The present results offer a deeper understanding of the cooperative
interaction between WM and RL and show that relying on WM can benefit the rapid acquisition of choice behavior during
learning but impairs retention.
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Significance Statement

Successful learning is achieved by the joint contribution of the dopaminergic RL system and WM. The cooperative WM/RL
model was productive in improving our understanding of the interplay between the two systems during learning, demonstrat-
ing that reliance on RL computations is modulated by WM load. However, the role of WM/RL systems in the retention of
learned stimulus–response associations remained unestablished. Our results show that increased neural signatures of learn-
ing, indicative of greater RL computation, under high WM load also predicted better stimulus–response retention. This result
supports a trade-off between the two systems, where degraded WM increases RL processing, which improves retention.
Notably, we show that this cooperative interplay remains largely unaffected by acute stress.

Introduction
Everyday behavior, like selecting what to wear and what to eat,
involves reinforcement learning (RL). Canonical RL models
incrementally accumulate expected values of stimulus–action
pairings over the course of multiple experiences. Although this
RL system learns rather slowly and incrementally, it can be aug-
mented by the joint support of working memory (WM), espe-
cially when learning new arbitrary contingencies (Yoo and
Collins, 2021). WM enables fast learning by robustly maintain-
ing, in an accessible form, the representations of relevant stimu-
lus–action associations to support ongoing processing such as
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value-based learning and decision-making. However, when WM
capacity is exceeded, it suffers from interference, causing relevant
representations to be lost or corrupted (Oberauer et al., 2016).
Indeed, although the WM system is beneficial for supporting
early learning, its contribution to successful learning is con-
strained by limited capacity (Collins and Frank, 2012). On the
other hand, the incremental RL system has a much broader
capacity and is more robust as long as the reward contingencies
remain stable. Previous studies have thus shown a transition
from capacity- and delay-sensitive WM to RL over the course of
learning (Collins and Frank, 2012, 2018).

Moreover, previous studies examining the joint contributions
of WM and RL to learning have suggested that these systems are
not modular but rather interactive (Collins et al., 2017a,b;
Collins, 2018; Collins and Frank, 2018). fMRI and EEG studies
provided support for a cooperative interaction; when stimulus–
reward information is stored in WM, neural indices of reward pre-
diction errors (RPEs) are reduced (Collins et al., 2017a; Collins and
Frank, 2018). Conversely, RPEs were larger under high load, leading
to accelerated neural learning curves putatively indicative of more
robust RL (despite slowed behavioral learning because of degraded
WM). This dissociation suggested that although a high WM load
slows learning, it might also improve retention because of accumu-
lative RPEs that reinforce the RL system. Supporting this prediction,
in the surprise test phase, participants showed better retention per-
formance for stimulus–response contingencies and their reward val-
ues when they had been learned under higher compared with lower
WM demands (Collins et al., 2017b; Collins, 2018; Wimmer and
Poldrack, 2022). However, two major limitations remained from
this prior work.

First, the previous study showing enhanced retention of stim-
ulus–response associations had only tested low and high WM
conditions (Collins, 2018), with only subtle albeit significant dif-
ferences in performance (;5% difference between set size 3 vs
6). We thus parametrically manipulated WM demands (Collins
et al., 2017b) to test the prediction that retention performance
of stimulus–response associations would scale monotonically as
a function of increased WM demand, despite monotonically
slowed learning in these conditions. Second, although the neu-
ral and behavioral findings have been documented on their
own, it has not yet been established whether cooperative neural
interactions within WM/RL systems during learning are predic-
tive of future retention. Moreover, it is unclear whether neural
RL learning curves reflect reward expectations or whether they
reflect learned policies (as predicted by Q learning vs actor-
critic algorithms; Li and Daw, 2011; Jaskir and Frank, 2023).
We thus sought to test these relationships directly by recording
EEG during learning and then administering two retention
tests. The EEG measures of RL were used to assess whether
the neural RL measure is predictive of participants’ ability to
retrieve learned reward expectations and/or the retention of
stimulus–response contingencies.

As a secondary aim, we also examined the impacts of acute
stress on RL andWM processes. There is accumulating evidence,
across various domains of learning, that acute stress reduces
goal-directed decision-making and alters prefrontal cortex func-
tioning (for review, see Arnsten, 2009), thereby promoting a shift
from cognitively demanding but flexible systems toward simpler
but more rigid systems (Kim et al., 2001; Schwabe and Wolf,
2009; Vogel et al., 2016; Wirz et al., 2018; Meier et al., 2022). We
thus tested whether stress could reduce the ability of WM to
effectively guide learning and instead enhance the relative contri-
bution of RL processing.

Materials and Methods
Participants
Eighty-six healthy volunteers (43 women, age 18–34; mean = 24.56,
SD = 3.84) participated in this experiment. All participants were right-
handed, had normal or corrected-to-normal vision, and were screened
for possible EEG contraindications. Individuals with a current medical
condition, medication intake, or lifetime history of any neurologic or
psychiatric disorders were excluded from participation. All participants
provided written informed consent before the beginning of testing and
received moderate monetary compensation. The study protocol was
approved by the ethics committee of the Faculty of Psychology and
Human Movement Sciences at the University of Hamburg.

Experimental procedure
Learning task. Interactions of RL and WM were tested using the

RLWM task (Collins and Frank, 2012, 2018; Collins, 2018), programmed
in MATLAB using the Psychophysics Toolbox. In this task (Fig. 1A),
each trial started with a presentation of a stimulus in the center of the
screen on a black background, and participants had to learn which of the
three actions (key presses A1, A2, A3) to select based on trial-by-trial
reward feedback. Stimulus presentation and response time were limited
to 1.4 s. Incorrect choices led to feedback 0, whereas correct choices led
to reward, (reward was 1 or 2 points fixed with the probability of 0.2, 0.5,
or 0.8). Stimulus probability assignment was counterbalanced within
participants to ensure equal overall value of different set sizes (see below)
and motor actions. The key press was followed by audiovisual feedback
(the word Win! with an ascending tone or the word Loss! with a de-
scending tone). If participants did not respond within 1.4 s, the message
Too slow! appeared. Feedback was presented for 0.4–0.8 s and was fol-
lowed by a fixation cross for 0.4–0.8 before the next trial started.

To manipulate WM demands, the number of stimulus–action con-
tingencies to be learned varied by block between one and five, denoted
as not significant (ns), with a new stimuli set presented at each new block
(e.g., colors, fruits, or animals). There were four blocks in which set size =
2, two blocks in which set size = 4, and three block in which set size = 1, 3,
5 for a total of 15 blocks and 645 trials. Within a block, each stimulus was
presented 15 times; 108 stimuli were pseudorandomized, and 43 stimuli
were presented for each participant. Stimulus category assignment to
block set size was counterbalanced across subjects. Block order was also
counterbalanced with the exception of set size = 1, which served as control
(block numbers 8 and 14 were saved for set size = 1).

The following instructions were given to participants: In this experi-
ment, you will see an image on the screen. You need to respond to each
image by pressing one of the three buttons on the Gamepad: 1, 2, or
three with your right hand. Your goal is to figure out which button
makes you win for each image. You will have a few seconds to respond.
Please respond to every image as quickly and accurately as possible. If
you do not respond, the trial will be counted as a loss. If you select the
correct button, you will gain points. You can gain either 1 or 2 points
designated as “$” or “$$”. Some images will give you more points for
correct answers on average than other images. You can only gain points
when you select the correct button for each image. At the beginning of
each block, you will be shown the set of images for that block. Take
some time to identify them correctly. Note the following important rules:
There is ONLY ONE correct response for each image. One response but-
ton MAY be correct for multiple images, or not be correct for any image.
Within each block, the correct response for each image will not change.

Test phase
After the learning phase, participants completed two surprise test phases
(Fig. 1 B,C). The first was a reward retention test that has been used in
earlier studies (Collins et al., 2017b). The reward retention test was
designed to test whether expected values are learned by default as several
previous studies showed that participants can select actions based on
their relative expected values at the transfer phase even when they only
had to learn which item was best (Frank et al., 2007; Palminteri et al.,
2015). In this phase, on each trial participants were requested to select
the more rewarding stimulus from a pair of stimuli that had each been
encountered during the learning phase. All stimuli that were used in the
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learning phase were presented in the test phase at least once. The two
stimuli were pseudorandomly selected to sample across all possible com-
binations of set sizes, blocks, and probabilities. To ensure no new learn-
ing at this phase, participants did not receive any feedback on their
responses. Note that in this test, participants could not leverage informa-
tion they had learned about which response to select (the policy);
instead, they had to use novel response mappings to simply indicate
which stimulus had been more rewarded. Participants’ ability to select
the more rewarding stimulus therefore required successful integration of
the probabilistic reward magnitude history over learning for each
stimulus.

The second test was the stimulus–response retention test, which
assesses whether participants remember the correct response for each
stimulus they had encountered previously during learning. Each of the
stimuli used in the learning phase (except stimuli from block 1 and block

15 to limit primacy and recency effects) was presented four times
individually, and participants were requested to press the key that
was associated with the respective stimulus. Stimulus order was pseu-
dorandomized to make sure that each stimulus was presented in each
quarter of the test phase. No feedback was presented to rule out new
learning during this test phase. Note that because this phase was pre-
ceded by the reward test phase, and because it followed many serial
blocks of learning, it is not plausible that participants could hold infor-
mation for previously encountered stimuli in WM, and thus retention
depends on the memory for stimulus–action associations (the policy)
as formalized by the RL system (Collins, 2018; Jaskir and Frank, 2023).

Behavioral data analysis
Statistical analyses were performed using R software (https://www.r-
project.org/) and the lme4 package (version 1.1–26; Bates et al., 2015).

Figure 1. Experimental protocol of the learning task and the two test phases. A, In the learning phase, in each block participants use deterministic reward feedback to learn which of three
actions to select for each stimulus image. The set size (or the number of stimuli; ns) varies from one to five across blocks. After each response, feedback was presented audiovisually (see text
for more details). B, The surprise reward retention test protocol. In this task, participants are asked to recall the reward value of stimuli learned during the learning phase by choosing the stim-
ulus they perceive to have been more rewarded within a pair of stimuli presented on every trial. C, The surprise stimulus–response retention test protocol is a test of the learned stimulus–
response policy. Here, participants are asked to recall the correct action for the probed stimulus. No feedback was given at either test phase.
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Data were fitted using generalized mixed-effect models (glmer) with the
binomial family function. To avoid the Type I error rate without sacrific-
ing statistical power, we followed the parsimonious mixed-model
approach (Matuschek et al., 2017). We selected the random-effects struc-
ture that contained only variance components that were supported by
the data by running singular value decomposition (Bates et al., 2015;
Matuschek et al., 2017).

Behavioral analysis of learning task
To quantify the effect of RL versus WM, we analyzed learning perform-
ance (the proportion of correct responses) with general mixed-effect
regression on trial-by-trial data from 86 participants as a function of
both WM and RL variables and their interactions. The WM variables
include the number of stimulus–response associations to be learned
(denoted as setSize) and the number of intervening trials since the last
time the stimulus was presented and a correct response was made
(denoted as delay) reflecting WM interference or maintenance time in
WM. The RL variable is the total number of previous correct (Pcor)
responses for a stimulus. Participants and all the predictors were selected
as random variables.

Behavioral analysis of the reward retention test
To quantify the possible effect of expected value learning under different
WM loads, we analyzed test performance (the proportion of selecting
the right vs left stimulus) with general mixed-effect regression on trial-
by-trial data from 86 participants as a function of six variables, value dif-
ference (denoted as delta_Q, positive when the right stimulus had higher
value and negative when the left stimulus had higher value); mean Q
value of the stimulus pair [denoted as mean value (Q)]; mean set size of
the stimulus pair (denoted as mean_setSize); the difference in set size
(denoted as delta_ setSize, positive when the right stimulus was learned
in higher set size); block (the block number in which they were learned,
indicating how recently it was learned); and perseveration (binary coding
of repetitions in response, repeat/switch). Participants, the effect of value
difference (delta_Q), and the effect of set size difference (delta_setSize)
were entered as random variables.

Behavioral analysis of the reward retention test together with EEG RL
index
We ran a new regression model on the reward retention test data
(including only the 77 participants that had EEG data), adding the differ-
ence in the EEG RL index between the pair of stimuli at choice. Because
the neural RL index (see a detailed description of this measure below)
could have both positive and negative values, all the predictors that were
calculated as difference scores were taken as absolute scores and the
model predicted performance accuracy (proportion of choosing the
higher value stimulus). Test performance accuracy was analyzed as a func-
tion of the absolute model estimated value difference between the right
and left stimulus (abs_delta_Q), the absolute difference in the EEG RL
index between the right and left stimulus (abs_delta_EEG_RL), the mean
value (estimated from the model) of the stimulus pair (mean Q value), the
mean set size of the stimulus pair (mean set size), the absolute difference
in the block number where the right and left stimulus were learned (abs_
delta_block), and response bias toward the previously selected response
(perseveration; binary coding of repetitions in response). Participants, the
effect of value difference (abs_delta_Q), and the effect of EEG RL index
difference (abs_delta_EEG_RL) were entered as random variables.

Behavioral analysis of the stimulus–response retention test
In a general mixed-effect regression analysis, we tested accuracy for cor-
rectly recalling the response associated with a presented stimulus learned
during the training phase as a function of set size (the set size block in
which they were learned), block (the block number in which they were
learned, indicating how recently it was learned), and model Q (the
model estimated Q value of each stimulus calculated as the average Q
value of the final six iterations during learning) and perseveration (the
tendency to repeat the response selected in the previous trial at test
coded as 1 for repeat and 0 for switch). The interactions between set size
and model Q value, set size and block, and between set size and

perseveration were also added as predictors. Participants and the interac-
tion between model Q and set size were entered as random variables.

Behavioral analysis of the stimulus–response retention test together with
EEG RL index
We ran the same regression model on the stimulus–response reten-
tion test data as before (including only the 77 participants that had
EEG data), adding two new predictors, the average EEG RL index
for each stimulus–response association (see a detailed description of
this measure below) and the interaction between EEG RL index and
set size. Participants, the interaction between model Q and set size,
and the interaction between EEG RL index and set size were entered
as random variables.

EEG recording and processing
During the learning task, participants were seated ;80 cm from the
monitor in an electrically shielded and sound-attenuated cabin. EEG was
recorded using a 64-channel BioSemi ActiveTwo system with sintered
Ag/AgCl electrodes organized according to the 10–20 system. The sam-
pling rate was 2048Hz. The signal was digitized using a 24-bit A/D con-
verter. Additional electrodes were placed at the left and right mastoids,
;1 cm above and below the orbital ridge of each eye and at the outer
canthi of the eyes for measurement of eye movements. The EEG data
were rereferenced off-line to a common average. Electrode impedances
were kept below 30 kV. EEGs and EOGs were amplified with a low cut-
off frequency of 0.53Hz (= 0.3 s time constant).

The EEG data were processed using EEGLAB (Delorme and Makeig,
2004) and ERPLAB (Lopez-Calderon and Luck, 2014) toolboxes. The
continuous EEG was bandpass filtered off-line between 0.5 and 20Hz
and downsampled to 125Hz, then it was segmented into epochs ranging
from 500ms prestimulus up to 3000ms poststimulus. The epoched data
were visually inspected, and those containing large artifacts because of
facial electromyographic activity or other artifacts, except for eyeblinks,
were manually removed (e.g., large fluctuations in voltage across several
electrodes that were in an order magnitude above neighboring activity).
Independent components analysis was next conducted only on the 64
scalp electrodes using the EEGLAB runica algorithm. Components con-
taining blink or oculomotor artifacts were subtracted from the data,
resulting in an average of 1.6 components removed per participant
(ranging between zero and three components). Finally, the epoched data
were subjected to an automatic bad electrodes and artifact-detection
algorithm (100mV voltage threshold with a moving window width of
200ms and a 100ms window step), which was followed by manual veri-
fication. Bed electrodes were interpolated, and trials containing large
artifacts were removed. Nine participants were removed from all the
reported EEG analyses because of a high EEG artifact rate (.40% in one
or more of the conditions) resulting in 77 participants who were used in
the EEG analysis.

Data processing for behavior and EEG regression analysis
Omission trials, trials with very fast reaction times (RTs; ,200 ms), and
trials before the first correct response was made were excluded from all
analyses. Setting the delay and Pcor variables to have one as their lowest
level was done to ensure an interpretable analysis of these variables
(Collins and Frank, 2012). The delay predictor (the number of trials
since the stimulus was presented and a correct response was made) used
in the regression analyses was inverse transformed (�1/delay) to avoid
the disproportion effect of very large but rare delays (when a correct
response was given early in the block but was then followed by several
error responses for that stimulus).

Modeling
RL and WM contributions to participants’ choices were estimated with
the previously developed RLWM computational model (the model
described below is identical to that used in Collins and Frank, 2018,
where more details are provided). The RLWM is a mixture of a standard
RL module with a delta rule and a WMmodule that has perfect memory
for information that is within its limited capacity and is sensitive to delay
(reflecting memory decay and interference from other intervening stim-
uli). For each stimulus–action association, the RL module estimates the
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expected value (Q) and updates those values incrementally on every trial
as a function of the reinforcement history. This computation is comple-
mented by the WM module, where information in the capacity-limited
WM feeds into RL expectations, thereby affecting RL prediction errors
and learning (Fig. 2).

Basic RL module. To maintain consistency with prior studies with
this task and model, and to keep the model as simple as possible, we use
Q learning for the model-free algorithm, but an actor-critic algorithm
could also have been used (there are multiple options to capture incre-
mental model-free RL, including methods that learn expected values for
each choice and select on that basis; a canonical instance is Q learning
and is often used in human studies) as well as methods that learn to
directly optimize the policy (a canonical variant is an actor-critic
model). Both classes of models similarly predict behavioral adjust-
ment in RL tasks, and specific designs are needed to distinguish
between them (Gold et al., 2012; Geana et al., 2022). The main goal
here is to simply summarize the incremental RL process as distinct
from the WM process.

Reward values were coded as zero or one for correct or incorrect
(model fits are not improved if using one vs two points in the Q learning
system, and behavioral learning curves are similar for stimuli that yield
higher or lower probability of two points; Collins et al., 2017b). For each
stimulus s and action a association, the RL module estimates the
expected reward value Q and updates those values incrementally on ev-
ery trial as follows:

Qt11 s; að Þ ¼ Qt s; að Þ1a� d t:

The Q value was updated as a function of the learning rate a (reflect-
ing how fast reward expectations are updated) and the reward prediction
error delta (d ), calculated as the difference between the observed reward
Rt and the expected reward Qt at each trial as follows: d t= Rt –Qt .

Choices were probabilistically determined using a softmax choice
policy as follows:

p ajsð Þ ¼ exp bQ s; að Þ� �
=
X

exp bQ s; aið Þ� �� �
:

Here, b is the inverse temperature determining the degree to which
differences in Q values are translated into more deterministic choices,
and the sum is over the three possible actions. Q values were initialized
to 1/nA, where nA = 3 is the number of actions (i.e., the prior that any
action is correct is one-third).

WMmodule. This module updates stimulus–action–outcome associ-
ations in a single trial. It assumes that stimulus–action–outcome infor-
mation, when encoded and maintained in WM, could serve to update
reward expectation rapidly and accurately (i.e., perfect retention of infor-
mation from the previous trial). When not limited by capacity and decay
(see below), the WM module is therefore represented by a Q learning
system with a learning rate of 1 (a = 1).

Decay. To account for potential forgetting on each trial because of delay
orWM interference, we included a decay parameter f (0, f , 1), which
pulls the estimates of Q values toward their initial value [Q0 = 1/nA, number
of actions nA = 3] as follows:

Q Q1 f ðQ0 � QÞ:

Only the WM module was subject to forgetting (decay parameter
wWM) to capture the well-documented short-term stability of WM in
contrast to the robustness of RL.

WM contributes to choice. Because WM is capacity limited, only K
stimulus and action associations can be remembered. A constraint factor
reflects the a priori probability that the item was stored in WM as fol-
lows: wWMð0Þ ¼ P0 ðWMÞ ¼ K=ns (i.e., the set size in the current block
relative to capacity K) and implies that the maximal use of WM policy
relative to RL policy depends on the probability that an item is stored in
WM. This probability is then scaled by r (0 , r , 1), the participant’s
overall reliance of WM versus RL (where higher values reflect greater
confidence in WM), in the following:

wWMð0Þ ¼ r �minð1;K=nsÞ:

Cooperative model. Although the original model (Collins and Frank,
2012) assumed independent RL andWMmodules that compete to guide
behavior, our more recent work suggests that WM expectations influ-
ence RL updating (Collins and Frank, 2018). Thus, WM contributes part
of the reward expectation for the RL model, according to the following
equation: d t ¼ Rt� ½wWM � QWMþ ð1� wWMÞ � QRL�; where wWM is
the weighting parameter (the degree to which WM is weighted relative
to RL, which is stronger in low set sizes), and QWM is the expected
reward from the WMmodule. This RPE is then used to update the RL Q
value as follows: Qtþ1 ¼ Qt 1a� d t:

This interactive computation of RL forms the basis of the simulated
predictions shown in Figure 2. Nevertheless, as explained in Collins and
Frank (2018), we test these predictions by fitting models in which RL
and WM modules are independent. (Independence is assumed in the
original models, which still provide good fits to the data because when
information is within WM, WM dominates updating and contributes to
rapid learning curves, and hence the smaller RPEs and RL Q values of
the interactive models for small set sizes are not influential on behavioral
accuracy during learning; however, this model makes differential predic-
tions for neural learning curves and future retention.) We then assess
systematic deviations from independence informed by these simulations
(e.g., neural Q learning curves should grow more rapidly in high than in
low set sizes; Fig. 2).

Data processing for univariate EEG analysis
To extract the neural correlates in the EEG signal of conditions of inter-
est, we used a mass univariate approach (Collins and Frank, 2018). A

Figure 2. Cooperative interaction between the RL and WM systems (adapted from Collins and Frank, 2018). A, Both WM and RL inform expected Q values and thus inform RPEs. When the
number of stimuli to learn, set size (ssz) is within WM capacity (e.g., left, ssz = 2) the expected Q value of each contingency can be held in WM, thereby reducing RPEs during early learning
compared with those that would occur from RL alone. When set size exceeds WM capacity (e.g., right, ssz = 5), degraded WM results in larger RPEs. B, Computational model simulations (re-
created from Collins and Frank, 2018) capture the RL and WM interaction, showing that larger RPEs persist for longer when WM load is taxed (high ssz), thereby accumulating expected Q val-
ues in the RL system. C, Note that Q learning curves in B evolve more rapidly in high ssz, despite the opposite pattern in simulated behavioral learning curves (whereby WM contributes to
rapid learning in low ssz).
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multiple regression analysis was conducted for each participant in which
the EEG amplitude at each electrode site and time point was predicted
by the conditions of interest, the set-size (number of stimulus–response–
outcome associations given in a block), model-derived RL expected value
(denoted as Q), delay (number of trials since this stimulus was presented
and a correct response was given), and the interaction of these three
regressors while controlling for other factors like reaction time (log
transformed) and trial number within block. Furthermore, the EEG sig-
nal was reduced to a selected window of �100 to1700ms around stim-
ulus onset and was baseline corrected from –100 to 0ms before the
onset of the stimulus. To account for remaining noise in the EEG data,
the EEG signal (at each time point and electrode) was z-scored across all
trials and so were all the predictors before they were entered to the ro-
bust multilinear regression analysis (Collins and Frank, 2018).

Corrected ERPs
To plot corrected ERPs, we computed the predicted voltage using the
multiple regression model described above while setting a single regres-
sor to zero (set size, delay, expected Q value, or reaction time); we sub-
tracted this predicted voltage from the true voltage (for every electrode
and time point within each trial), leaving only the fixed effect, the var-
iance explained by that regressor, and the residual noise of the regression
model. ERPs were computed as the average corrected voltage from all
trials that belong to the same level of condition. Note that the array of
expected Q values was divided to four quartiles, and trials within each
quartile were averaged for plotting ERPs.

Trial-by-trial similarity index of WM and RL
As explained above, a multiple regression analysis was conducted for
each participant in which the EEG amplitude at each electrode site and
time point was predicted by the conditions of interest (set size, delay, RL
expected value, and their interactions). We used the previously identified

analysis method (Collins and Frank, 2018; Rac-Lubashevsky and Frank,
2021) to identify spatiotemporal clusters (masks) of the three main pre-
dictors in the GLM (set-size, delay, and model-derived RL expected
value). Specifically, we tested the significance of each time point at each
electrode across participants against zero using only trials with correct
responses.

We then used cluster-mass correction by permutation testing with
custom-written MATLAB scripts. Cluster-based test statistics were cal-
culated by taking the sum of the t values within a spatiotemporal cluster
of points that exceeded the p = 0.001 threshold for a t test significance
level. This was repeated 1000 times, generating a distribution of maxi-
mum cluster-mass statistics under the null hypothesis. Only clusters
with a greater t value sum than the maximum cluster mass obtained
with 95% chance permutations were considered significant. We then
assessed the neural similarity of each trial to the spatiotemporal mask by
computing the dot product between the activity in the individual trial
(voltage maps of electrode � time) and the identified masks (t value
maps of electrode� time). This computation produced a trial-level simi-
larity measure intended to assess the trial-wise experienced WM load
and delay effects, as well as trial-wise RL contributions.

The EEG RL index predictor used in the general mixed-effect regres-
sion analyses of both test phases was calculated by averaging the EEG RL
index in the final six iterations of each stimulus. This was done for each
stimulus–response association within each participant.

Stress manipulation
All testing took place in the morning between 8:00 A.M. and noon. On
their arrival in the lab, participants’ baseline measures of blood pres-
sure and salivary cortisol were taken. Afterward, participants were pre-
pared for the EEG and completed the Multidimensional Mood State
Questionnaire (Steyer et al., 1994) that measures subjective mood on
the scales, negative versus elevated mood, calmness versus restlessness,

Figure 3. Behavioral results from the learning phase. A–B, Performance learning curves and RTs for each set size as a function of the number of iterations of a stimulus (stim). C,
Performance as a function of WM load, the detrimental effect of delay is greater in high set sizes. D–E, Reduced effects of both delay and set size as learning progresses from early (up to 2 pre-
vious correct choices) to late (the last 2 trials of each stimulus) trials in a block, suggestive of a transition from WM to RL.
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and wakefulness versus tiredness, before and after the treatment as well
as after the learning task. Forty-two participants underwent the
Socially Evaluated Cold Pressor Test (SECPT; Schwabe et al., 2008),
and 44 participants were assigned the warm water control condition.
The SECPT is a standardized stress protocol in experimental stress
research that combines physiological and psychosocial stress elements
and has been shown to result in robust stress responses (Schwabe and
Schächinger, 2018). During the SECPT, participants in the stress group
immersed their right hand for 3 min in ice water (0–2°C) while being
videotaped and evaluated by a nonreinforcing, cold experimenter. In
the control condition, participants immersed their hands in warm
water (35–37°C), without being videotaped or evaluated by an experi-
menter. About 25min after the treatment, participants received the
learning task instructions and completed a brief training session, after
which they completed the learning task and test phases 1 and 2. In
total, the experiment lasted;130min.

Results
In line with previous findings in this task (Collins et al., 2017b),
our data demonstrated separable contributions of RL and WM
systems to performance. The contribution of incremental RL
was observed as the proportion of correct responses increased
with the progress in the block (Fig. 3A) and with the increase in
reward history [Pcor, b = 0.67, SE = 0.05, z(46926) = 13.17, p
, 0.001]. WM contributions were observed as learning was
strongly affected by set size with a greater proportion of correct
responses in low set sizes than in high set sizes [set size, b =
�0.28, SE = 0.05, z(46926) = �5.39, p , 0.001]. Learning
curves were more gradual in higher set sizes than in low set
sizes (Fig. 3A; and slower, Fig. 3B). Moreover, performance

decreased with increasing delay in larger set sizes [delay �
ns, b = �0.09, SE = 0.05, z(46926) = �2.59, p = 0.009; Fig.
3C]. These relative contributions of WM decreased with
learning as the detrimental effect of delay attenuated with the
increase of accumulated rewards [ns � Pcor, b = 0.13, SE =
0.04, z(46926) = 3.35, p , 0.001; delay � Pcor, b = 0.34, SE =
0.04, z(46926) = 9.17, p , 0.001; ns � delay � Pcor, b = 0.20,
SE = 0.03, z(46 926) = 6.37, p , 0.001; Fig. 3D,E], reflecting a
transition from WM to RL. Together these results confirm the
cooperative interaction of early WM contributions that dimin-
ish as RL becomes more dominant.

Behavioral performance: reward retention test
Results replicated previous findings in this phase (Collins et al.,
2017b). Participants were more likely to select the stimulus for
which they had been rewarded more often during learning as a
function of the difference between the number of rewards experi-
enced for these stimuli [delta_Q, b = 0.41, SE = 0.04, z(19796) =
9.76, p , 0.001]. Moreover, also replicating previous findings,
this value discrimination effect was enhanced when stimulus val-
ues were learned under higher set sizes rather than under lower
set sizes [mean_setSize� delta_Q, b = 0.11, SE = 0.02, z(19796) =
6.04, p , 0.001]. For display purposes, the median split in the
absolute delta_Q score is shown as high- and low-value differences
(Fig. 4A). Furthermore, participants were generally less likely to
select the stimulus learned under a higher set size than under
a low set size [delta_setSize, b = �0.69, SE = 0.09, z(19796) =
�7.61, p , 0.001], an effect previously attributed to participants
learning a cost of mental effort in a high set size (Collins et al.,

Figure 4. Behavior performance at the test phase. A, Effect of value difference and set size on the reward retention test performance. The proportion of correct selection of the more reward-
ing stimulus from a pair of the probed stimuli increases as a function of differences in the number of experienced rewards (Q value diff) and the set size in which they were learned. diff,
Difference. The median split of absolute value differences is shown (red, high-Q value difference trials; blue, low-Q value difference trials). B–C, Effect of set size on the stimulus–response
retention test performance. The proportion of correct recall in the test phase increases as a function of the estimated Q values of the probed association and as a function of the set size in
which it was learned. The median split of the estimated stimulus–response Q values is shown (red, high Q value associations; blue, low Q value associations). D, Effect of EEG RL index on the
reward retention test performance. The proportion of correct selection of the more rewarding stimulus from a pair of the probed stimuli increases as a function of the set size in which they
were learned but was not further modulated by the magnitude of the EEG RL index of the stimuli. The median split of absolute differences in EEG RL indices is shown (red, high-EEG RL index
difference; blue, low-EEG RL index difference). E, Effect of the neural RL index on recall accuracy in the stimulus–response retention test. The neural RL index is shown as the median split across
all the RL indices. Stimuli with high RL index are depicted in red and stimuli with low RL index are depicted in blue. F, The EEG RL index increases parametrically with the increase in accumu-
lated rewards. These neural learning curves parametrically increase with set size. Error bars indicate SE.
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2017b). There was no effect for the difference in the block in
which the item values were learned, nor was the set size effect
modulated by block number (p. 0.82). We also controlled for
response perseveration; no significant tendency was observed for
repeating the same response used in the previous trial (p. 0.69).

Behavioral performance: stimulus–response retention test
Supporting the key model prediction that retention of stimu-
lus–response associations should improve as load increases, we
observed better recall performance for associations learned
under high rather than low set sizes [set size, b = 0.84, SE =
0.05, z(11894) = 15.83, p , 0.001]. And, indeed, this effect was
parametric, with substantially better performance as set size
increased (Fig. 4B,C). This effect is particularly striking given
that performance is parametrically worse for the higher set size
items during learning (compare Fig. 3A, Fig. 4C). Not surpris-
ingly, recall accuracy in the test phase was positively predicted
by the estimated Q value of the probed stimulus–response
association [model Q, b = 0.27, SE = 0.04, z(11 894) = 6.97,
p , 0.001]; that is, associations that were learned better
were also better remembered. Importantly, this effect grew
when the set size was high [model Q � set size, b = 0.15, SE =
0.04, z(11 894) = 3.64, p , 0.001; Fig. 4B]. Recall accuracy was
also subject to the influence of recency as associations learned

during more recent than early blocks were also recalled more
accurately [block, b = 0.22, SE = 0.03, z(11894) = 8.61, p ,
0.001]. This recency effect increased for associations learned
under higher set sizes [set size � block, b = 0.09, SE = 0.02, z
(11894) = 4.13, p , 0.001]. No effect of perseveration in
responses was observed (p. 0.11).

EEG correlates of WM and RL during learning
The model-based EEG analysis indicated significant effects for
all three variables of interest—set size, delay, and RL. Consistent
with previous EEG results in this task (Collins and Frank, 2018)
and with the prediction that separable systems contribute to
learning, the neural signals of RL exhibited an early frontal activ-
ity (;300ms poststimulus onset; Fig. 5) that preceded the parietal
neural signal of set size (peaked at ;540ms; Fig. 5), supporting
the engagement of the RL system early in the trial followed
by the cognitively effortful WM process. The neural signals of RL
exhibited an additional late temporal activity (;600ms poststi-
mulus onset) that overlapped in time with the set size effect.
Finally, a significant frontal and parietal effect of delay was also
observed to initiate early at 300ms.

To quantify how the neural measure of RL is modulated by
WM and RL processes, we analyzed the trial-by-trial level EEG
RL index (reflecting how strong the RL computation is at a given

Figure 5. EEG decoding of RL and WM effects during choice. Corrected ERPs exhibiting the effect of three main predictors (top to bottom rows; green, set size; blue, delay; red, RL value
quartiles) on the voltage of significant electrodes (FCz, CPz, and Poz for set size and delay, and FCz, CPz, and C3 for RL). The black line reflects the significant time points after permutation cor-
rection. Right, The effect of each predictor in the row is exhibited with a scalp map topography at early (300ms) and late (540ms) time points. The color in the scalp map represents significant
thresholded t values.
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trial) with linear effects regression from 77 participants, as a
function of set size (setSize = 1, 2, 3, 4, 5), the number of previous
correct (Pcor = 1:15), and the interactions between them (see
above, Materials and Methods). As expected because of incre-
mental learning, neural indices of RL increased parametrically as
a function of reward history (Pcor, b = 0.17, t(38,377) = 34.77, p,
0.001). Importantly, confirming model predictions, neural RL
signals increased to a larger extent as the set size grew (Pcor �
setSize, b = 0.04, t(38,377) = 7.53, p, 0.001; Fig. 4F). This finding
corroborates previous reports that RL computations are larger in
high set sizes because of diminishing WM contributions and
thus increasing the accumulation of reward prediction errors
(Collins et al., 2017b; Collins and Frank, 2018).

We next assessed the core prediction that the neural RL index
is related to future retention, and more specifically the coopera-
tive model prediction that the speeded neural RL curves in high
set sizes are related to better retention of learned contingencies.
Notably, although this prediction did not hold for the reward
retention phase (abs_delta_EEG_RL, p = 0.65; mean_setSize �
abs_delta_EEG_RL, p = 0.61; Fig. 4D), it was clearly borne out
for the stimulus–response retention phase [EEG RL, b = 0.23, z
(10613) = 4.51, p, 0.001; Fig. 4E]. Stimuli that had been associ-
ated with a larger EEG RL index during learning were associated
with better recall of the associated response at test; this effect held
even when controlling for the non-neural predictors (which repli-
cated the prior analysis). Figure 4E shows that a high EEG RL
index (by median split) was predictive of better retention perform-
ance at test. The finding that the neural index of RL is related to
policy retention but not reward retention is relevant for models
that dissociate whether model-free RL in the brain encodes
expected values or policies (see above, Materials and Methods,
model method; see below, Discussion). Note that a slightly differ-
ent regression model was used for testing the neural RL index
effect on the reward retention test performance from the behavior
model used previously (see above, Materials and Methods).
Nevertheless, the key behavior results were replicated in this analy-
sis as performance increased with the increase in the absolute
value differences [abs_delta_Q, b = 0.31, SE = 0.03, z(17743) =
8.82, p , 0.001], and although this effect was not further modu-
lated by set size (mean_setSize � abs_delta_Q, p = 0.63), perform-
ance accuracy did improve with set size [mean_setSize, b = 0.07,
SE = 0.02, z(17743) = 3.23, p = 0.001; Fig. 4D].

Acute stress modulation of RL andWM interaction
Manipulation check
Subjective, autonomic, and endocrine data indicated that the
stress induction by the SECPT was successful. The SECPT was
rated as significantly more unpleasant, stressful, and painful than
the warm water control procedure (more difficult, t(84) = 9.941,
p , 0.001, d = 2.14; more unpleasant, t(84) = 9.088, p , 0.001,
d = 1.96; more stressful, t(84) = 7.72, p , 0.001, d = 1.66; and
more painful t(84) = 11.42, p , 0.001, d = 2.46; Table 1 and
Table 2). Furthermore, we observed significant Treatment-by-
Time interactions for subjective stress ratings (negative mood,
F(2,164) = 10.53, p , 0.001, h g

2 = 0.02; restlessness, F(2,164) = 9.47,
p , 0.001, h g

2 = 0.02) and autonomic arousal measures (systolic
blood pressure, F(4,336) = 26.22, p , 0.001, h g

2 = 0.06; diastolic
blood pressure, F(4,336) = 26.99, p , 0.001, h g

2 = 0.09; and heart
rate, F(3,252) = 10.70, p , 0.001, h g

2 = 0.02). As expected, these au-
tonomic responses returned relatively quickly to baseline after the
treatment (Fig. 6). The stress and no-stress control groups did not
differ in any of the autonomic arousal measures pretreatment (all
p values. 0.07).

Salivary cortisol (sCORT) responses were assessed by running
ANOVA with Time (T1, T2, T3, T4) as the within-subject factor
and Treatment (SECPT vs warm water control group) as the
between-subject factor. We observed a significant effect for Time
(F(3,234) = 28.53, p , 0.001, hp

2 = 0.27) but not for Treatment
(F(1,78) = 3.03, p = 0.08, hp

2 = 0.04). An expected Treatment �
Time interaction was observed (F(3,234) = 6.97, p , 0.001, hp

2 =
0.08), with the stress group displaying greater sCORT levels im-
mediately before the learning task (23min posttreatment; t(78) =
2.80, p = 0.006, d = 0.63), but only marginal difference was
observed at half time during learning task (50min post-treat-
ment; t(78) = 1.90, p = 0.06, d = 0.43). No difference in sCORT
levels was observed at baseline (t(78) = 0.61, p = 0.54), nor at the
end of the learning task (80min posttreatment; t(78) = 0.11, p =
0.91), suggesting that stress-induced cortisol elevations gradually
decreased during the learning task (Fig. 6). Note that six partici-
pants were excluded from the cortisol analysis because they did
not provide sufficient saliva for analysis.

Learning phase performance by stress group
To test the hypothesis that acute stress may reduce the ability of
WM to effectively guide learning, thereby weakening the relative
contribution of WM in the training phase in the stress group
compared with the control group, we ran the same general
mixed-effect regression model on trial-by-trial training data
from 86 participants but added stress group as a factor (42 partic-
ipants in the stress group and 44 participants in the control
group). This analysis revealed that learning by set size interaction
was modulated by stress [Pcor � set size � stress_group, b =
�0.20, SE = 0.08, z(46926) = �2.60, p = 0.009] and so was the
learning by delay interaction [Pcor � delay � stress_group, b =
0.22, SE = 0.07, z(46 926) = 3.04, p = 0.002]. To understand the
nature of these interactions, we ran two follow-up analyses using

Table 1. The mean and SD (in parentheses) of the ratings before and after the
procedures are reported for the control group

Control group

Procedure ratings Before After End of testing day

Subjective mood
Depressed mood vs elevated mood 33.69 (4.99) 34.26 (4.72) 33.86 (4.66)
Restlessness vs calmness 32.476 (6.08) 33.83 (5.14) 33.24 (4.61)
Sleepiness vs wakefulness 28.571 (6.48) 28.31 (6.88) 26.64 (6.78)

Rating of control procedure
Difficult — 4.09 (13.21) —
Unpleasant — 9.52 (21.88) —
Stressful — 4.20 (15.23) —
Painful — 3.79 (14.62) —

Table 2. The mean and SD (in parentheses) of the ratings before and after the
procedures are reported for the stress group

Stress group

Procedure ratings Before After End of testing day

Subjective mood
Depressed mood vs elevated mood 33.76 (3.51) 31.57 (5.32) 33.43 (3.99)
Restlessness vs calmness 32.99 (4.24) 30.45 (6.14) 32.43 (4.72)
Sleepiness vs wakefulness 28.98 (5.71) 29.86 (6.16) 26.45 (6.12)

Rating of stressor
Difficult — 50.69 (28.01) —
Unpleasant — 58.73 (28.09) —
Stressful — 40.17 (26.70) —
Painful — 55.40 (25.97) —
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the same general mixed-effect regression model on trial-by-trial
training data, separately in the control (N = 44) and the stress
group (N = 42). These analyses showed that learning curves were
additive to the set size effect in the stress group (Pcor � set size,
p = 0.74) but not in the control group [Pcor � set size, b = 0.22,
SE = 0.05, z(24 031) = 4.30, p , 0.001], which showed a greater
drop in performance during high set sizes (Fig. 7A,B). The atte-
nuated delay effect with learning was significant for both the
stress group [Pcor � delay, b = 0.47, SE = 0.05, z(22895) = 8.41,
p , 0.001] and the control group [Pcor � delay, b = 0.23, SE =
0.05, z(24031) = 4.74, p, 0.001; Fig. 7C,D].

Reward retention test performance by stress group
To test the hypothesis that acute stress may reduce the ability of
WM to effectively guide learning, thereby strengthening RL con-
urbations during the training phase and leading to better reten-
tion of learned information in the stress group compared with
the control group, we ran the same general mixed-effect regres-
sion model on trial-by-trial reward retention test data from 86
participants but added stress group as a factor (42 participants in
the stress group and 44 participants in the control group) and
analyzed test performance (the proportion of selecting the right
vs left stimulus). This analysis replicated the results of the behav-
ior analysis without the group factor. No effect of stress was
observed (p. 0.15; Fig. 7E).

Stimulus–response retention test performance by stress
group
To test the hypothesis that acute stress may reduce the ability of
WM to effectively guide learning, thereby strengthening RL con-
urbations during the training phase and leading to better

retention of learned information in the stress group compared
with the control group, we ran the same general mixed-effect
regression model on trial-by-trial stimulus–response retention
test data from 86 participants but added stress group as a factor
(42 participants in the stress group and 44 participants in the
control group) and analyzed test performance. This analysis
revealed that the effect of set size on recall accuracy of stimulus–
response associations interacted with stress [set size � stress_
group, b = 0.22, SE = 0.10, z(11894) = 2.30, p = 0.02; Fig. 7F],
but follow-up analysis on each group separately showed signifi-
cant effect of set size on recall accuracy in both the control group
[b = 0.72, SE = 0.07, z(6129)=10.72, p , 0.001] and the stress
group [b = 0.95, SE = 0.08, z(5765) = 11.76, p, 0.001].

Discussion
Together, our findings provide insight into the intricate interplay
between WM and RL during learning, and its opposing influen-
ces on acquisition versus retention of stimulus–response associa-
tions. A previous study proposed a cooperative WMRL model,
whereby RPEs in the RL system are not only computed relative
to RL expected values but are also modulated by expectations
held in WM (Collins and Frank, 2018). This model accounted
for fMRI and EEG findings in which neural RPEs were dimin-
ished for smaller WM loads (Collins et al., 2017a; Collins and
Frank, 2018). Moreover, this model accounted for findings that
on a given trial, larger neural indices of WM expectations were
predictive of subsequent RPEs during the outcome, even within
a given set size (Collins and Frank, 2018). This model led to a
key prediction that enhanced RL processes under high WM load
would support more robust retention of learned association, de-
spite the substantially slower acquisition. Preliminary behavioral

Figure 6. Successful stress induction. A–D, The exposure to the stressor led to significant increases in systolic blood pressure (A), diastolic blood pressure (B), heart rate (C), and salivary cor-
tisol levels (D). Error bars indicate SEs. The control group is depicted in dark blue and the stress group in red; ppp, 0.01, pppp, 0.001 for the comparison between the stress group and
the control group.
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evidence for such a behavioral prediction had been reported by
Collins (2018), who showed enhanced retention of items learned
in set size 6 compared with set size 3. However, that study did
not employ neural recordings and thus did not test whether the
neural WMRL interaction was the underlying mechanism for
these effects. Here, we provide several lines of evidence in sup-
port of this claim.

First, our behavioral and EEG results replicated key findings
in the RLWM task and in the subsequent memory tests. In the
learning task, we observed worse acquisition with increasing set
size and with delays between successive stimulus presentations,
but as learning progressed (with the increase in reward history)
the negative effect of delay in high set sizes diminished consider-
ably. This observation further supports the model prediction that
RL dominates over WM with the accumulation of rewards
over time. Second, at the neural level, we also replicated find-
ings in which neural RL indices preceded the cognitively
costly WM process during stimulus processing (Collins and

Frank, 2018). Moreover, we found robust evidence that EEG
signals of RL increased more rapidly across trials under high
than low load (Fig. 4F), a key prediction of the cooperative
model (Fig. 2), although behavioral learning was slower in
these conditions.

Importantly, we observed that associations learned under
higher WM load had increasingly higher recall accuracy in the
stimulus–response retention test (Fig. 4C). This result extends
the previously reported retention benefit of associations learned
under high compared with low set sizes (Collins, 2018). We
showed that this effect is parametric across five levels of WM
load, and moreover that the greatest retention deficits occurred
for the very lowest set sizes in which participants could easily
learn the task purely via WM. Furthermore, we replicated previ-
ous results in the reward retention test (Collins et al., 2017b) and
demonstrated that participants have differential sensitivity to the
proportion of trials in which they were rewarded for either of the
stimuli and this effect grew with set size.

Figure 7. Stress effects during the learning and test phases. A, B, Learning curves across iterations as a function of set size in the control group (A) and stress group (B). C, D, Learning
curves across the number of previous correct as a function of delay (1–5 where 5 reflects delay of 5 and above) in the control group (C) and stress group (D). E, Effect of stress on the reward
retention test performance. The proportion of correct selection of the more rewarding stimulus from a pair of the probed stimuli increases as a function of the set size in both the control group
(black) and in the stress group (red). F, Effect of stress on recall accuracy in the stimulus–response retention test. The proportion of correct recall in the stimulus–response test increases as a
function of the set size in both the control group (black) and the stress group (red). Error bars indicate SEs.
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Finally, to gain a better understanding of the mechanism re-
sponsible for the benefits in both retention tests, we leveraged a
within-trial neural indexing approach of EEG dynamics. We
showed that neural indices of RL during acquisition were predic-
tive of subsequent retention in the stimulus–response retention,
even after controlling for set size. This result supports the key
model prediction that RL processes during learning, which are
stronger under highWM load, are responsible for increasing pol-
icy retention whenWM is no longer available. In contrast, neural
indices of RL were not predictive of performance in the reward
retention test.

This result supports theoretical and empirical studies suggest-
ing that model-free learning in the brain (especially the cortico-
striatal system) directly learns a stimulus–response policy using
prediction errors from another system (actor-critic; Collins and
Frank, 2014; Klein et al., 2017; Jaskir and Frank, 2023). By this
account, the actor selecting policies would have no direct access
to experienced reward values but only the propensity for a spe-
cific response for each of them. Participants could plausibly
access their critic values for each stimulus and compare them in
the reward retention phase, but they would not have had to do
so during learning. Indeed, participants show above chance per-
formance in such discriminations but only subtly (accuracy rises
up to 60% at best); in contrast, accuracy in the stimulus–response
retention test, which directly assesses what the actor would have
learned, is far superior (;80% for the higher set sizes), despite
being tested with further delays since learning.

For most simple RL tasks, these two classes of model-free RL
algorithms (those that focus on learning expected values and the
actor-critic), are largely indistinguishable as they both predict
that an agent progressively chooses those actions that maximize
reward. However, several theoretical and empirical studies sug-
gest that the basic RL system in humans satisfies predictions of
an actor-critic in behavior, imaging, and in theoretical models of
corticostriatal contributions to RL (Li and Daw, 2011; Gold et al.,
2012; Collins and Frank, 2014; Klein et al., 2017; Geana et al.,
2022; Jaskir and Frank, 2023). Moreover, the model fits here did
not improve if we allowed the Q learning agent to learn the
difference between two versus one point and instead suggested
that participants learned to simply maximize task perform-
ance, which effectively makes Q learning equivalent to an
actor-critic at the level of task performance. Nevertheless, Q
learners would, at minimum, learn the reward value of a stim-
ulus in terms of the percentage of times they were correct (i.e.,
whether they got one or two points versus zero). Yet, the EEG
marker of RL is still not related to performance in the reward
retention test even when a correct performance there would
be counted as simply choosing the stimulus that had yielded
higher proportion of correct responses. Although our neural
RL index cannot distinguish between an EEG metric of Q val-
ues or actor weights, the findings that it only predicts perform-
ance in the stimulus–response test provides initial evidence
supporting the actor interpretation where the neural RL index
reflects the policy rather than its reward value.

Although we focused mainly on how the RLWM mecha-
nism informs retention, we also tested whether the interaction
between RL and WM can be modulated by acute stress. Stress
is known to have a major impact on learning and decision-
making processes (Starcke and Brand, 2012; Raio et al., 2017;
Cremer et al., 2021). Previous work had shown that acute
stress alters prefrontal cortex functioning, thus impairing execu-
tive control over cognition (cognitive inhibition, task switching,
working memory maintenance; Schwabe et al., 2011; Schwabe

and Wolf, 2011; Plessow et al., 2012; Hamilton and Brigman,
2015; Bogdanov and Schwabe, 2016; Vogel et al., 2016; Goldfarb
et al., 2017; Brown et al., 2020). On the other hand, acute stress
was also shown to increase striatal dopamine activity (Vaessen et
al., 2015) leading to better working-memory updating (Goldfarb
et al., 2017) and improving executive control over motor actions
(i.e., response inhibition; Schwabe and Wolf, 2012; Leong and
Packard, 2014). We, therefore, predicted that stress would affect
the WM versus RL trade-off such that it will impede the contri-
bution of WM to learning and will instead enhance the relative
contribution of RL computations. Current results did not con-
firm this hypothesis as only subtle differences were observed
between the stress and control groups during the learning task
and at the tests.

It is possible that the 25 min delay between the stressor and
the beginning of the learning task hindered the stress response
on behavior as it was previously suggested that both noradrena-
line and cortisol levels need to be elevated in order for stress to
affect WM performance (Elzinga and Roelofs, 2005; Roozendaal,
et al., 2006; Barsegyan et al., 2010). Another intriguing possibility
is that individuals with higher WM capacity were more resilient
against cognitive impairments induced by stress and were also
less biased toward habitual decision-making (Otto et al., 2013;
Quaedflieg et al., 2019; Cremer et al., 2021). Future work should
test directly the specific effect of stress on WM and RL interac-
tions while taking into account participants’ WM capacity as a
factor.

To conclude, our results contribute to a better understanding
of the coupled mechanism of WM and RL that can dynamically
shift between relying more on the effortful, but fast and reliable
WM system or the slow, more error-prone RL system that has
retention benefits. We reported trial-by-trial evidence in the neu-
ral signal for this trade-off during learning and showed that
greater reliance on the RL system when WM is degraded (i.e.,
when WM load is high) predicted better memory retention of
learned stimulus–response associations. An intriguing possibility
that remains to be tested is that the shift between the two systems
is strategic and can be modulated by one’s preference or ability
to maximize immediate learning versus retention. However, it
remains to be seen whether clinical populations with impair-
ments in one or both systems of WM and RL might alter the
flexible shifting between the two systems, possibly biasing the
use of one system more than the other even when it is less
advantageous.
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