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Perceptual difficulty is sometimes used to manipulate selective attention. However, these two factors are logically distinct. Selective atten-
tion is defined by priority given to specific stimuli based on their behavioral relevance, whereas perceptual difficulty is often determined
by perceptual demands required to discriminate relevant stimuli. That said, both perceptual difficulty and selective attention are thought
to modulate the gain of neural responses in early sensory areas. Previous studies found that selectively attending to a stimulus or
increasing perceptual difficulty enhanced the gain of neurons in visual cortex. However, some other studies suggest that perceptual diffi-
culty can have either a null or even reversed effect on gain modulations in visual cortex. According to Yerkes–Dodson’s Law, it is possi-
ble that this discrepancy arises because of an interaction between perceptual difficulty and attentional gain modulations yielding a
nonlinear inverted-U function. Here, we used EEG to measure modulations in the visual cortex of male and female human participants
performing an attention-cueing task where we systematically manipulated perceptual difficulty across blocks of trials. The behavioral and
neural data implicate a nonlinear inverted-U relationship between selective attention and perceptual difficulty: a focused-attention cue
led to larger response gain in both neural and behavioral data at intermediate difficulty levels compared with when the task was more
or less difficult. Moreover, difficulty-related changes in attentional gain positively correlated with those predicted by quantitative model-
ing of the behavioral data. These findings suggest that perceptual difficulty mediates attention-related changes in perceptual performance
via selective neural modulations in human visual cortex.
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Significance Statement

Both perceptual difficulty and selective attention are thought to influence perceptual performance by modulating response
gain in early sensory areas. That said, less is known about how selective attention interacts with perceptual difficulty. Here,
we measured neural gain modulations in the visual cortex of human participants performing an attention-cueing task where
perceptual difficulty was systematically manipulated. Consistent with Yerkes–Dodson’s Law, our behavioral and neural data
implicate a nonlinear inverted-U relationship between selective attention and perceptual difficulty. These results suggest that
perceptual difficulty mediates attention-related changes in perceptual performance via selective neural modulations in visual
cortex, extending our understanding of the attentional operation under different levels of perceptual demands.

Received Mar. 3, 2022; revised Feb. 18, 2023; accepted Mar. 13, 2023.
Author contributions: P.S., S.P., S.In., J.T.S., and S.It. designed research; P.S., A.S., and S.It. performed

research; P.S., P.P., A.S., and S.It. analyzed data; P.S. and S.It. wrote the first draft of the paper; P.S., P.P.,
K.O., S.P., S.In., J.T.S., and S.It. edited the paper; P.P., J.T.S., and S.It. contributed unpublished reagents/
analytic tools; S.It. wrote the paper.
This work was supported by the National Institutes of Health Grant R01-EY025872 and a James S. McDonnell

Foundation award (to J.T.S.). This work was also supported by the National Research Council of Thailand grant (fiscal
years 2021-2024, under project numbers 102976 and 118711); the Thailand Science Research and Innovation (TSRI)
Basic Research Fund: fiscal year 2022 under project number FRB650048/0164, fiscal year 2021 under project number
FRB640008, and fiscal year 2020 under project number 62W1501; the Program Management Unit (PMU) grant (fiscal

year 2023); the Asahi Glass Foundation grant; the research grant from the Research & Innovation for Sustainability
Center, Magnolia Quality Development Corporation Limited, Thailand; the KMUTT Partnering initiative grant (fiscal year
2021) and the startup fund for junior researchers at King Mongkut’s University of Technology Thonburi (KMUTT); and
the KMUTT’s Frontier Research Unit Grant for Neuroscience Center for Research and Innovation (to S.It.).
*J.T.S. and and S.It. contributed equally as senior authors.

The authors declare no competing financial interests.

Correspondence should be addressed to Sirawaj Itthipuripat at itthipuripat.sirawaj@gmail.com.
https://doi.org/10.1523/JNEUROSCI.0519-22.2023

Copyright © 2023 the authors

3312 • The Journal of Neuroscience, May 3, 2023 • 43(18):3312–3330

https://orcid.org/0000-0002-8551-5147
https://orcid.org/0000-0001-9302-0964
mailto:itthipuripat.sirawaj@gmail.com


Introduction
In a wide range of behavioral tasks, performance is modulated by
how much priority is placed on processing information about a
relevant stimulus and how hard is it to detect and discriminate rel-
evant stimulus features (Urbach and Spitzer, 1995; Ahissar and
Hochstein, 1997; McDowd and Craik, 1988; Lavie et al., 2004;
Prinzmetal et al., 2009; Carrasco, 2011; Giesbrecht et al., 2014).
These two factors are known as selective attention and perceptual
difficulty, respectively. While the effects of attention on neural
gain in early visual cortex (Moran and Desimone, 1985; Mangun
and Hillyard, 1987; Desimone and Duncan, 1995; Johannes et al.,
1995; Connor et al., 1997; Hillyard et al., 1998; Mangun and Buck,
1998; McAdams and Maunsell, 1999; Reynolds et al., 2000;
Martínez-Trujillo and Treue, 2002; Reynolds and Chelazzi, 2004;
Maunsell and Treue, 2006; Lee and Maunsell, 2009; Reynolds and
Heeger, 2009; Lee and Maunsell, 2010; Anton-Erxleben and
Carrasco, 2013; Buschman and Kastner, 2015; Luo and Maunsell,
2015; Foster et al., 2021), and the concurrent attention-related
benefits in perceptual performance, have been extensively studied
(Mangun and Hillyard, 1988, 1990; Störmer et al., 2009; Pestilli et
al., 2011; Itthipuripat et al., 2014a, b, 2017; Itthipuripat and
Serences, 2016), it is still unclear how perceptual difficulty medi-
ates neural responses in visual cortex and how perceptual difficulty
interacts with selective attention.

First, prior studies that only manipulated perceptual difficulty
without systematically manipulating attention have found mixed
effects on neural activity in visual cortex. Some early studies in
nonhuman primates found that increasing perceptual difficulty
increased neural firing rates in early visual areas and sharpened
neural tuning functions in mid-level visual areas (Spitzer et al.,
1988; Spitzer and Richmond, 1991). In contrast, a recent study
reported that increasing perceptual difficulty lead to increased
firing rates in some neurons and decreased firing rates in others,
resulting in null effects of perceptual difficulty on the popula-
tion-level activity in early visual cortex (Ruff and Cohen, 2014a).
We hypothesized that different effects of perceptual difficulty on
neural activity were partially because of a nonlinear interaction
between perceptual difficulty and the effects of selective attention
on gain modulations in visual cortex.

This hypothesis is hard to evaluate based on prior work
because of differences in task design and most studies did
not independently manipulate perceptual difficulty and
attention. In a few studies that did jointly manipulate these
factors, perceptual difficulty was manipulated across a lim-
ited range, limiting the ability to observe nonmonotonic
modulations in attentional gain with increased perceptual
difficulty (Chen et al., 2008; Dodson, 1915; also see Motter,
1993; Handy and Mangun, 2000; Handy et al., 2001;
Boudreau et al., 2006; Prinzmetal et al., 2009). Moreover,
data linking difficulty-related changes in attentional modu-
lations of neural activity and behavioral performance are
still lacking.

According to the influential Yerkes–Dodson’s Law, arousal
state should mediate behavioral performance and the underlying
neural processes in line with a nonlinear inverted-U function
(Yerkes and Dodson, 1908; Dodson, 1915; see also Hull, 1943;
Broadhurst, 1957; Duffy, 1957; Anderson et al., 1989; Diamond
et al., 2007). Therefore, increasing perceptual difficulty from easy
to an intermediate level could enhance overall arousal, leading to
larger attentional gain modulations. On the other hand, when a
behavioral task is too difficult, arousal might be too high, leading
to no further increase or even a drop in attentional gain. Based
on this framework, it is possible that some behavioral tasks were

already challenging for the subjects to perform, resulting in no
gain modulation with increasing difficulty (e.g., from ;80% to
;63% accuracy in Ruff and Cohen, 2014a). However, if baseline
perceptual difficulty was low, then increasing difficulty might
lead to large gain modulations (e.g., from ;93% to ;73% accu-
racy in Spitzer et al., 1988). In either case, the unique contribu-
tion of each of these two factors can only be assessed by
parametrically varying the perceptual demand of behavioral tasks
across the entire range of difficulty levels while independently
manipulating the focus of attention.

Here, we designed a paradigm to manipulate perceptual diffi-
culty to assess possible nonmonotonic effects on attentional gain
in human visual cortex. We concurrently measured behavioral
performance and the amplitudes of steady-state visually evoked
potentials (SSVEPs) while human participants performed a con-
trast discrimination task (Fig. 1). Moreover, we employed a link-
ing model based on the signal detection theory (SDT) to describe
the interaction between attention and perceptual difficulty based
on brain-behavior modulations (Tanner and Swets, 1954; Pestilli
et al., 2011; Itthipuripat et al., 2014a, 2017; Itthipuripat and
Serences, 2016).

Materials and Methods
Subjects
We recruited seven neurologically healthy male and female human sub-
jects (19–23 years old) from the community at University of California
San Diego (UCSD). All subjects had normal or corrected-to-normal
vision and participated in 6 d of experiments, including 1 d of behavioral
training and 5 d of EEG recording. After the first day of training, one
subject decided not to continue, resulting in the complete datasets from
six subjects in the final analysis (three female, three male, all right-
handed, mean age6 SD=20.56 1.217 years old). Before their participa-
tion, each subject signed an informed consent form approved by the
Institutional Review Board at UCSD. They were compensated for $10
and $15 per hour for participating in behavioral and EEG experiments,
respectively. The use of six subjects is within the typical range for studies
using similar multiple session approaches to measure behavioral and
neural contrast response functions (CRFs) in human subjects (Di Russo
et al., 2001; Morrone et al., 2002, 2004; Carrasco et al., 2004; Pestilli and
Carrasco, 2005; Ling and Carrasco, 2006; Pestilli et al., 2007, 2009, 2011;
Herrmann et al., 2010; Itthipuripat et al., 2014a, b, 2017).

Experimental design and statistical analysis
Stimuli and tasks
Stimuli and behavioral tasks were controlled by a PC running Windows
XP using MATLAB (The MathWorks) and the Psychophysics Toolbox
(version 3.0.8; Brainard, 1997; Pelli, 1997). Subjects sat 60 cm from a
CRT monitor with a gray background of 34.51 cd/m2 and the refresh
rate of 120Hz. We conducted the experiments in the dark room in a
quiet experimental area for the behavioral training sessions and in a
dark, sound-attenuated, and electromagnetically shielded room (ETS
Lindgren) for the EEG recording sessions.

In the main EEG experiment, subjects fixated at the center of the
screen while performing different variants of the attention-cued contrast
discrimination task with differing levels of task difficulty (easy, medium,
and hard; Fig. 1). In our tasks, each trial began with either a focused-
attention or a divided-attention cue, followed by an array of two check-
erboard wedge stimuli (i.e., a target and a nontarget stimulus) appearing
400–600ms after the cue onset for a duration of 1500 ms. The focused-
attention cue pointed directly to the target stimulus appearing on either
the left or the right lower visual quadrant. The divided attention cue
pointed to both quadrants and the target was equally likely to appear in
one of these locations.

The target stimulus contained a contrast increment in either the par-
afoveal or peripheral segments of the stimulus. Subjects reported which
of these segments had the contrast increment as accurately and fast as
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possible by pressing one of the two corresponding
buttons on the keyboard using their right index and
middle fingers, respectively. Note that this contrast in-
crement appeared for the entire stimulus duration of
1500ms. The nontarget stimulus had the same con-
trast value throughout the entire stimulus region. The
spatial frequency of the wedge stimuli was adjusted
along the foveal-to-peripheral axis to emulate the
cortical magnification factor measured in human V1
(Cowey and Rolls, 1974; Sereno et al., 1995; Engel et
al., 1997; Duncan and Boynton, 2003). The inner and
outer edges of the wedge stimuli were placed 7.03°
and 13.46° visual angle away from fixation, respec-
tively. The two lateral edges of these wedge stimuli
were 7.944° apart.

To measure behavioral and neural data as a func-
tion of stimulus contrast, we pseudo-randomized the
pedestal contrasts (or baseline contrasts) of the target
and nontarget stimuli independently from six contrast
levels: 0%, 3.75%, 7.5%, 15%, 30%, and 60%Michelson
contrasts. To simultaneously monitor SSVEPs
evoked by individual stimuli, the visual stimuli on the
lower left and lower right quadrants were flickered on-
off at 24 and 20Hz, respectively. Then, placeholders
came up 300ms after stimulus offset on both sides of
the contrast increment segment of the target stimulus.
These placeholders would change from black to blue, red,
or yellow to provide feedback about whether the subject
responded correctly, incorrectly, or too slowly (i.e., slower
than 1500ms after stimulus onset), respectively. The
intertrial interval was pseudo-randomly drawn from a
uniform distribution spanning 300–500ms.

In order to study the effect of perceptual difficulty
on the attentional modulations of behavioral and
EEG data, we adjusted the contrast thresholds for
each of the attention conditions and the pedestal con-
trast levels across blocks of trials so that the accuracy
levels of the behavioral tasks were maintained at
;91%, ;76%, and ;65% accuracy for the easy, me-
dium, and hard blocks, respectively (see behavioral
results in Fig. 2A). On the first day, subjects under-
went a behavioral training session for 2.5 h, where we
implemented the method of constant stimuli to
estimate initial contrast discrimination thresholds
to be used for the easy, medium, and hard blocks
on the first day of EEG recording. On each of the
5 d of the EEG experiment, subjects underwent six
easy blocks, six medium blocks, and six hard blocks.
Block types changed every three blocks and the
order of blocks types were pseudo-randomized
across subjects. Collectively, the entire EEG experiment
contained 4320 trials where all experimental conditions
were counterbalanced: two attention conditions � two
target locations� six pedestal contrast levels of target�
two contrast increment locations� three difficulty level -
� 30 repeats. Trial order was also pseudo-randomized
so that trial types were not predictable.

Behavioral analyses
The contrast increment values averaged across all EEG sessions were
plotted as a function of pedestal contrasts, yielding threshold versus con-
trast (TvC) functions for all difficulty levels (easy, medium, and hard)
and attention conditions (focused and divided attention). The within-
subject SEMs associated with these contrast increment values were com-
puted and plotted for each level of stimulus contrast (Loftus and
Masson, 1994). There were 120 trials in total for each of these 36 experi-
mental conditions. 3-way repeated-measures ANOVAs were used to
examine the effects of perceptual difficulty (easy/medium/hard), atten-
tion (focused-attention/divided-attention), and contrast (0–60%) on hit

rates, mean reaction times on correct trials (correct RTs) and contrast
discrimination thresholds (Fig. 2). For each difficulty level we also per-
formed two-way repeated-measures ANOVAs to test the main effects of
attention and interactions between attention and contrast on the percep-
tual threshold data. For each ANOVA that yielded a significant main
effect of attention or a significant interaction between attention and con-
trast, we performed subsequent pairwise t tests to examine the effects of
attention on the contrast thresholds across individual contrast levels
(one-tailed because of the predicted direction of attentional modulations,
i.e., attention decreasing contrast thresholds). Multiple comparisons for
6 individual contrast levels were corrected using the Holm–Bonferroni
method (Holm, 1979).

In addition, we used a combination of d9and Naka–Rushton equa-
tions (see Fig. 3 and Eqs. 1–4 below) to model TvC data of individual
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Figure 1. The attention-cueing contrast discrimination task. Each trial started with a focused-attention or di-
vided-attention cue. The focused-attention cue pointed directly to the target stimulus, but the divided-attention cue
pointed to both target and nontarget stimuli. Subjects had to determine whether the target contained a contrast in-
crement at the inner or outer region of the stimulus. Once it occurred, the contrast increment was presented for the
duration of the stimulus presentation period. Feedback, which indicated the exact position of the contrast increment,
was presented in blue for correct responses and in red for incorrect responses. The pedestal contrasts were independ-
ently and pseudo-randomly selected from 0%, 3.75%, 7.5%, 15%, 30%, and 60% Michelson contrasts. The left and
right stimuli were flickered at 24 and 20 Hz, respectively, to allow the simultaneous monitoring of SSVEPs evoked by
both stimuli. Perceptual difficulty was systematically manipulated across blocks of trials by adjusting the magnitude
of the contrast increments so that hit rates were maintained at;91%,;76%, and;65% for easy, medium, and
hard blocks, respectively.
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subjects (Fig. 4). According to the signal detection theory (SDT), percep-
tual contrast sensitivity (d9) is limited by the difference in neural
responses evoked by the pedestal and increment stimuli (DR) divided by
the magnitude of sensory noise (in this case, the intertrial variability of
the neuronal activity, denoted s ; Tanner and Swets, 1954; Legge and
Foley, 1980; Boynton et al., 1999; Gorea and Sagi, 2001; Huang and
Dobkins, 2005; Pestilli et al., 2011; Hara and Gardner, 2014; Itthipuripat
et al., 2014a, 2017; Itthipuripat and Serences, 2016) as follows:

d9 ¼ DRðcÞ
s

¼ RðcÞ � RðDcðcÞÞ
s

: (1)

Here, c is stimulus contrast and DcðcÞ is the contrast discrimination
threshold (or contrast increment) at each contrast level required to
maintain accuracy levels of ;91%, ;76%, and ;65% for the easy, me-
dium, and hard blocks, respectively (Fig. 3, left). RðcÞ is a hypothetical
contrast response function (CRF; Fig. 3, right) that could be described
by a Naka–Rushton equation as follows:

RðcÞ ¼ Gr
cq

cq 1Gq
c
1 b: (2)

Here, Gr and Gc are response gain and contrast gain factors,
which control the vertical shift and the horizontal position of the

CRF, respectively. b is the baseline offset and q is the exponent that
controls the rate at which the CRF rises and reaches asymptote.
Using the combination of the d9 and Naka–Rushton equations
(Eqs. 1, 2), we estimated the contrast threshold (Dc) based on the
first derivative (i.e., slope) of the hypothetical CRF (Boynton et al.,
1999) as follows:

DcðcÞ ¼ DRðcÞ
dR
dc

: (3)

In this equation, dR=dC is the derivative of the hypothetical CRF.
Since Gr and s jointly control the vertical shift of the TvC function they
were set to 1. Since changes in the additive factor b do not impact the
slope of the TvC function, it was set to 0. In addition, the d’ values of the
two-alternative forced-choice (2AFC) tasks for all difficulty levels of
individual subjects were computed using the following equation:

d9 ¼ ZðhitÞ � ZðfaÞ
ffiffiffi

2
p : (4)

Here, Z is the inverse cumulative distribution function of the stand-
ard normal. For each subject, we fit the TvC data separately for individ-
ual difficulty levels and attention conditions with Equations 1–4 using
MATLAB’s fminsearch function (Nelder–Mead method; nonlinear least
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Figure 2. Hit rates, response times on correct trials (correct RTs) and perceptual thresholds in the contrast discrimination task plotted as a function of pedestal contrast. A, The accuracy levels were suc-
cessfully controlled at ;91%, ;76%, and ;65% for the easy, medium, and hard runs, respectively. Hit rates were also equated across the focused-attention and divided-attention conditions. B,
Correct RTs increased with increasing perceptual difficulty and in the divided compared with focused attention condition. C, The threshold versus contrast (TvC) functions for the easy, medium, and difficult
blocks. The TvC data were fit using a combination of Naka–Rushon and d’ equations (Eqs. 1–4) that describe the link between behavior and the hypothetical neural contrast response functions (CRFs;
Fig. 3). Error bars indicate61 within-subject SEM. Diff*** labels in A and B indicate significant main effects of perceptual difficulty on hit rates and correct RTs with ps, 0.001. Att** in B shows a sig-
nificant main effect of attention on correct RTs with p, 0.01. Att*** and Att x Ct* labels in C indicate a significant main effect of attention and a significant interaction between attention and contrast
on the perceptual thresholds with ps, 0.001 and 0.05, respectively.
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squares) with Gr , Gc, and q as free parameters (the
initial seed values for Gr , Gc, and q were 1, 20%, and
1, respectively). Since the unit of Gr for the hypotheti-
cal CRF is arbitrary, we rescaled the data for individ-
ual subjects across all difficulty levels and attention
using the following formula:

normalizedGr ¼ Gr �minðGrÞ
maxðGrÞ �minðGrÞ : (5)

Where min(Gr) is the lowest Grvalue and max
(Gr) is the highest Gr value across all difficulty levels
and attention conditions for each subject. Lastly, we
used resampling statistics to determine the signifi-
cance of the attention effects on the Gr parameter as
well as the interaction between perceptual difficulty
and attention on these parameters (Fig. 5). First, we
resampled subject labels with replacement 10,000
times, and then computed the probability at which
the resampled Gr in the focused-attention condi-
tion was more or less than that in the divided-atten-
tion condition for each difficulty level (two-tailed).
Here, multiple comparisons were corrected using
the Holm–Bonferroni method (Holm, 1979). Next,
we tested whether the degree of attentional modula-
tions of Gr significantly differed across difficulty
levels. To do so, we computed the probability at
which the attentional modulation of the resampled Gr in the medium
blocks was lower than those in the easy and the difficult blocks (one-
tailed). We also computed the probability that the attentional modula-
tion of the resampled Gr in the difficult blocks was lower than that in
the easy blocks (one-tailed). We used one-tailed statistics here because
of the predicted direction of the interactions between attention and
perceptual difficulty in the observed dataset. Also, multiple compari-
sons were corrected using the Holm–Bonferroni method (Holm,
1979). We then ran the same statistical analyses on Gc.

EEG data acquisition, preprocessing, and analyses
EEG data were recorded using a 64-channel ActiveTwo system (Biosemi
Instrumentation) with the sampling rate of 512Hz. There were 8 addi-
tional external electrodes: a pair of reference electrodes placed on the left
and right mastoids, a pair of electrodes affixed near the outer canthi of
the left and right eyes for monitoring horizontal eye movements, and
two pairs of electrodes affixed above and below the left and right eyes for
monitoring blinks and vertical eye movements. The EEG data were
online-referenced to the CMS-DRL electrode, and the data offset in all
electrodes were maintained 20 V, which is a standard criterion for this
active electrode system.

We used custom MATLAB scripts and EEGLab11.0.3.1b (Delorme
and Makeig, 2004) to preprocess and analyze EEG data. First, the EEG
data from all electrodes were re-referenced to the algebraic mean of the
data recorded from the left and right mastoid electrodes. Then, we
applied the 0.25-Hz high-pass and 55-Hz low-pass Butterworth filters
(third order). The continuous EEG data were segmented into epochs
extending from 500ms before to 3000ms after cue onset. Independent
component analysis was performed to remove prominent eye blinks
(Makeig et al., 1996). Next, we used visual inspection and threshold
rejections to further reject trials confounded by residual eye movements,
muscle activity, drifts, and other artifacts. This step led to the removal of
7.386 4.43% SD of trials across all six subjects.

Next, the epoched data were time-locked to stimulus onset and the
baseline activity was subtracted from �100 to 0ms relative to the stimu-
lus onset. The data were then sorted into the following experimental
bins: focused-attention target stimuli, focused-attention nontarget
stimuli (e.g., ignored stimuli), and divided-attention stimuli separately
for the easy, medium, and hard blocks. For each of these bins, trials
were also sorted into 12 subbins depending on the contrast and the
location of the stimulus of interest (six contrast levels � two target

locations). Following this data sorting step, the EEG data in all subbins
were then averaged to obtain event-related potentials (ERPs) for each
condition. Next, the ERPs were filtered with a Gaussian wavelet func-
tion with a 0.1 fractional bandwidth and center frequencies of 20 and
24Hz, resulting in frequency-domain coefficients at the stimulus driv-
ing frequencies. Given this small fractional bandwidth, the frequency-
domain standard deviation of the SSVEP signals were 0.8493 and
1.0192Hz for 20- and 24-Hz flickers, respectively. In turn, we obtained
the amplitudes of the SSVEPs evoked by individual stimulus-flicker
frequencies by computing the absolute value of the coefficients. For
each subject, the SSVEP amplitudes in individual subbins were then
averaged across five contralateral posterior occipital electrodes where
the SSVEP amplitudes collapsed across contrast levels, stimulus types,
difficulty levels, and attention conditions were maximal. The data were
then averaged across a 0–500 ms poststimulus window to avoid poten-
tial confounds from including data after a response had been made
which was around 550–850 ms across all conditions (Fig. 2B). Here,
the within-subject SEMs associated with the averaged SSVEP were
computed for each level of stimulus contrast (Loftus and Masson,
1994). The mean SSVEP amplitudes and their SEMs were then plotted
as a function of stimulus contrast, yielding SSVEP-based CRFs for each
of the difficulty levels and attention conditions. On the contrast axis of
the CRFs, the stimulus contrast values for the ignored stimulus were
fixed at 0%, 3.75%, 7.5%, 15%, 30%, and 60% Michelson contrasts.
However, the contrast values in the focused-attention and divided-
attention conditions were obtained from the average contrast values
between the pedestal and increment segments because the target stim-
uli contained both pedestal and contrast increment segments. Since the
fit parameters were obtained from individual CRFs with true mean
physical contrasts of all stimulus segments (i.e., instead of directly com-
paring SSVEP amplitudes for each pedestal contrast), any task-related
and attention-related modulations of fit parameters associated with
neural CRFs should be minimally affected by low-level physical differ-
ences in visual stimuli.

Next, we fit SSVEP-based CRFs for each difficulty level and attention
condition of individual subjects with the Naka–Rushton equation (Eq. 2),
where (RðcÞ) is the SSVEP amplitude as a function of stimulus contrast.
First, we exhaustively searched for the value of exponent q from 1, 2, 3, 4,
and 5 that provided the best fit to the SSVEP-based CRFs. From this step,
we selected q of three because it yielded the highest goodness of fit (R2),
averaged across all experimental conditions and all subjects. Since past
EEG studies have consistently reported no changes in the response
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baseline of CRFs based on early visually evoked
responses, we subtracted the response baseline from all
SSVEP-based CRFs and fixed b at 0 (cf. Di Russo et al.,
2001; Kim et al., 2007; Lauritzen et al., 2010; Wang
and Wade, 2011; Itthipuripat et al., 2014a, b, 2017). We
used five initial seed values for Gc (i.e., 1%, 10%, 20%,
50%, and 100% contrast) and five initial seed values for
Gr (i.e., the difference between maximum and minimum
responses divided by 0.5, 1, 2, 4, and 8). For individual
subjects, we chose the seed values for Gc and Gr that
yielded the best fit for each difficulty level and attention
condition. The fitting procedure was constrained so that
0% � Gc � 100% contrast and was optimized using the
least square error estimation method (fminsearch
function in MATLAB). This method yielded esti-
mates of the maximum response or G9r (i.e., the
SSVEP response at 100% contrast minus baseline)
and the half-maximum contrast or G9c (i.e., the con-
trast at which the response reached half-maximum),
which we used as proxies for the response gain and
contrast gain of the SSVEP-based CFRs, respectively.
Next, we ran resampling statistics to determine the
significance of the attention and perceptual difficulty
effects on the G9r, and G9c parameters as well as the
interaction between the two factors on these fitting
parameters. First, we resampled subject labels with
replacement 10,000 times, and then computed the
SSVEP responses across the resampled datasets (i.e.,
bootstrapping). For each iteration, we fit the boot-
strapped SSVEP data using the Naka-Rushton equation
(Eq. 2) to obtain G9r and G9c parameters, and then exam-
ined the main effects of attention and perceptual
difficulty as well as their interaction on these fit param-
eters. We did the resampling method this way instead
of directly resampling the fit parameters of individual
subjects to prevent the influence of potential spurious
fits of the CRFs at the individual-subject level on the
statistics. We also ran an auxiliary analysis where we
did not subtract the response baseline from all
SSVEP-based CRFs. Here, we estimated the b param-
eter by finding the minimum value of the SSVEP
data across all contrast bins separately for each atten-
tion condition, each difficulty level, and each subject
(see Fig. 9B).

There were three main sets of statistical comparisons
we employed to test the effects of attention and their
interactions with perceptual difficulty. First, we tested
the overall differences across focused-attention, di-
vided-attention stimuli, focused-attention nontarget
(or ignored) stimuli from the data collapsed across all
difficulty levels. To do so, we computed the probabil-
ity at which the resampled G9r , G9c, and b of the
focused-attention target stimuli was more or less than
those of the focused-attention nontarget (or ignored)
stimuli and the divided-attention stimuli for the data
collapsed across all difficulty levels (two-tailed). The
same method was applied to determine differences
between the divided-attention and ignored condi-
tions. Multiple comparisons were corrected using the
Holm–Bonferroni method (Holm, 1979). Second, we
examined these differences separately for each of the
difficulty levels using the same resampling methods.
Finally, we tested for an interaction between attention
and perceptual difficulty level by assessing whether
the degree of attentional modulations of G9r, G9c, and b
significantly differed across difficulty levels. To do so,
we computed the probability that the attentional
modulations of the resampled G9r , G9c, and b in the me-
dium blocks were lower than those in the easy and the
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Figure 4. Individual fits for the threshold versus contrast (TvC) functions across all subjects.
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difficult blocks (one-tailed). We used one-tailed statistics here
because of the predicted direction of the interactions between atten-
tion and perceptual difficulty in the observed dataset. We also com-
puted the probability that the attentional modulations of the
resampled G9r, G9c, and b in the difficult blocks were lower than that in
the easy blocks (one-tailed). Here, multiple comparisons were cor-
rected using the Holm–Bonferroni method (Holm, 1979).

Note that in the current study, the stimulus duration of 1500 ms and
the time window of the main analysis (0–500ms) are not perfectly
aligned. We chose this analysis window based on the protocol from a
recent SSVEP from our group that used a similar contrast discrimination
task (Itthipuripat et al., 2018). In this prior study, we knew that subjects
made a behavioral response ;500ms after stimulus onset, and that
motivated the choice of the analysis window. That said, we opted to keep
the stimulus duration at 1500ms because we also manipulated percep-
tual difficulty which could result in longer RTs. As it turned out,
responses were made ;550–850 ms after stimulus onset in the present
study. So, restricting the SSVEP window to 0–500ms helped minimize

confounds from motor-related activity and ensured that we only exam-
ined attentional modulations while subjects were still actively attending
to the stimuli. That said, we also conducted the similar analyses for the
data averaged across 500–1000ms and across 1000–1500ms to investi-
gate the effects of attention and perceptual difficulty at these later time
windows.

Although we chose the stimulus flickers (20 and 24Hz) above the a
range (;10 Hz) to avoid contaminations from alpha band oscillations,
one of our stimulus flickers (i.e., 20Hz) still overlapped with the second
harmonic of endogenous alpha band activity. In order to rule out the
potential confound from the second harmonic of a, we conducted an
additional analysis where we examined the effects of perceptual difficulty
and attention on the CRFs based on the mean amplitude of induced
EEG activity at 20Hz. We first applied a wavelet filter at 20Hz to the
trial-by-trial EEG data and then computed the amplitude of the wavelet
coefficients. We then averaged the amplitude data across trials to com-
pute the induced EEG activity at 20Hz as a function of stimulus contrast
separately for different difficulty levels and attention conditions. Note
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that this method is different from the analysis performed to obtain
SSVEP, where we averaged trial-by-trial EEG data first to isolate the
20-Hz steady-state response before applying the wavelet filter. We then
bootstrapped data using the similar resampling and fitting procedures
performed in the main SSVEP analysis.

Correlation analysis
We examined how difficulty-related changes in attention-induced
response gain modulations observed in the SSVEP data related to those
predicted by modeling the TvC data at the intersubject level. To do so,
we first computed differences in attention-induced changes in the
rescaled Gr predicted by the TvC data (focused minus divided attention)
between the medium and easy blocks, between the medium and hard
blocks, and between the hard and easy blocks. Next, we performed the
same analysis for the G9r obtained from fitting in the SSVEP data meas-
ured from 0 to 500, 500 to 1000, and 1000 to 1500 ms poststimulus,
respectively. Last, we correlated these difficulty-related differences in
attention-induced changes in the behavioral and SSVEP data using the
repeated-measures correlation method with paired measures assessed
across different pairs of task comparisons (medium vs easy, medium vs
hard, and hard vs easy) using the “rmcorr” function in R (R Core Team,
2020). Multiple comparisons were corrected using the Holm–Bonferroni
method (Holm, 1979).

Data sharing
The stimulus presentation and analysis code as well as the behavioral
and EEG data have been made available on The Open Science
Framework (see the following links: https://osf.io/bc3hj/?view_only=
326b8c4ffeb842dcbb81673f7f3a852c and https://osf.io/rbnm6/?view_
only=aee48f6f9fae44d6a4e917af99aa709d).

Results
The present study used the attention-cueing contrast discrimi-
nation task shown in Figure 1 to simultaneously monitor
attentional modulations of perceptual thresholds and SSVEPs
measured as a function of stimulus contrast (the threshold vs
contrast functions, or TvCs, and the SSVEP-based contrast
response functions, or CRFs, respectively). Each trial started
with a focused-attention cue pointing to the target stimulus or
a divided-attention cue pointing to both target and nontarget
stimuli. Subjects determined whether the target contained a
contrast increment either in the more foveal or the more pe-
ripheral region of the target stimulus as accurately and quickly
as possible using a button-press response. The pedestal (or
baseline) contrasts for the visual stimuli were pseudo-ran-
domly selected from 0%, 3.75%, 7.5%, 15%, 30%, and 60%
Michelson contrasts. The left and right stimuli were flickered
at 20 and 24Hz, respectively, so that we could simultaneously
monitor SSVEPs evoked by both stimuli. To manipulate percep-
tual difficulty, we adjusted the magnitude of contrast increments
every three blocks to control hit rates in the easy, medium, and
hard blocks.

Behavioral results
Perceptual difficulty for the easy, medium, and hard blocks
was successfully controlled at ;91% (mean= 91.34%, 61.60%
SEM), ;76% (mean = 76.27%, 60.97% SEM), and ;65% accu-
racy (mean = 65.27%, 62.95% SEM), respectively (Fig. 2A). A
repeated-measures ANOVA showed a significant main effect of
perceptual difficulty on accuracy (F(2,10) = 174.88, p, 0.001).
Since perceptual difficulty was intentionally equated across
attention tasks and contrast levels, there was no main effect of
attention (F(1,5) = 0.22, p= 0.659), no main effect of contrast
(F(5,25) = 2.04, p= 0.108), and no interaction between attention
and perceptual difficulty on hit rates (F(5,25) = 1.99, p= 0.115).

Increasing perceptual difficulty significantly increased correct
RTs (F(2,10) = 57.46, p, 0.001) and divided attention increased
correct RTs compared with focused attention (F(1,5) = 34.87,
p= 0.002; Fig. 2B). In addition, we found no main effect of
contrast (F(5,25) = 2.33, p = 0.072), and no interaction between
attention, perceptual difficulty, and contrast on correct RTs
(ps� 0.305).

The manipulation of perceptual difficulty across blocks
of trials led to significant decreases in contrast discrimination
thresholds as a function of perceptual difficulty (Fig. 2C; a main
effect of perceptual difficulty on contrast discrimination
thresholds: F(2,10) = 21.30, p, 0.001). Compared with divided
attention, focused attention significantly reduced contrast dis-
crimination thresholds (a main effect of attention on contrast
discrimination thresholds: F(1,5) = 10.83, p = 0.023), consistent
with previous results (Huang and Dobkins, 2005; Pestilli et al.,
2011; Hara and Gardner, 2014; Itthipuripat et al., 2014a, 2017,
2019). Note that these changes in contrast thresholds were not
because of differences in perceptual difficulty across attention
tasks because accuracy levels were successfully equated across
the focused-attention and divided-attention conditions and
across the 6 pedestal contrasts (see the statistics in the previ-
ous paragraph).

The attention-induced decreases in contrast thresholds were
mainly driven by a significant main effect of attention in the me-
dium difficulty blocks (F(1,5) = 23.14, p=0.005). At this difficulty
level, there is no interaction between focused/divided attention
and contrast (F(1,5) = 2.26, p= 0.080). Post hoc paired t tests
revealed significant decreases in contrast discrimination thresh-
olds in the focused-attention compared with the divided-atten-
tion conditions for all of the 6 pedestal contrast levels at this
difficulty level (t(5)s = �2.76, �5.75, �3.78, �3.28, �3.31, and
�2.50 with ps = 0.020, 0.001, 0.006, 0.011, 0.011, and 0.027 for
0–60% contrast levels, respectively; one-tailed because of the
known direction of the main effect of attention without the
interaction with attention and contrast; i.e., the reduced thresh-
olds with focused attention, passing the Holm–Bonferroni cor-
rected threshold of 0.05; Fig. 2C). This finding is consistent
with data reported in previous studies where perceptual diffi-
culty was controlled at a similar accuracy level (Huang and
Dobkins, 2005; Pestilli et al., 2011; Hara and Gardner, 2014;
Itthipuripat et al., 2014a, 2017, 2019). In contrast, we observed
no significant main effects of attention on contrast thresholds
in the easy or in the hard blocks (F(1,5) = 4.17, p= 0.097, and
F(1,5) = 3.88, p= 0.106, respectively). That said, in the hard
blocks, there was a significant interaction between attention
and pedestal contrast on the contrast threshold data, which was
driven by a significant decrease in threshold for the highest
contrast level; i.e., 60% contrast (t(5) = �4.02, p= 0.005, one-
tailed, Holm–Bonferroni corrected) with no significant and
some marginal attentional modulations at the lower contrast
levels (t(5)s = 0.33, �2.66, �2.15, �1.25, and 0.54 with
ps = 0.377, 0.022, 0.042, 0.134, 0.205 for 0%�30% contrast lev-
els, respectively; one-tailed, not passing Holm–Bonferroni cor-
rected threshold of 0.0083).

To estimate how much neural attentional gain is needed to
account for the attention-induced changes in contrast thresholds,
we employed a linking model based on the signal detection
theory (SDT; Tanner and Swets, 1954; Legge and Foley, 1980;
Boynton et al., 1999; Gorea and Sagi, 2001; Huang and Dobkins,
2005; Pestilli et al., 2011; Hara and Gardner, 2014; Itthipuripat et
al., 2014a, 2017; Itthipuripat and Serences, 2016; Fig. 3). Under
this modeling framework, the perceptual contrast threshold (Dc)
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derived from the TvC function (Fig. 3, left) is predicted based on
the neural responses evoked by the pedestal and incremental
stimuli (DR) divided by the derivative (dR=dc) of the hypotheti-
cal neural contrast response function (CRF; Fig. 3, right; see
Materials and Methods, Behavioral analyses). Accordingly, we
predicted that the lower contrast thresholds observed in the
focused-attention compared with the divided-attention condi-
tions at medium difficulty levels (Fig. 2C) should be because of
the increase in response gain (Gr; compare black and blue curves
in Fig. 3). While past studies have shown that attention could
also increase contrast gain (Gc), or shift neural CRFs leftward,
this would lead to an increase instead of a decrease in the percep-
tual thresholds at the highest contrast levels (compare black and
red curves in Fig. 3), which is inconsistent with the observed be-
havioral data (Fig. 2C).

Based on the model fitting procedure, we obtained estimates
of the response gain (Gr) and contrast gain (Gc) parameters that
best predict each subject’s TvC function (Fig. 4). Overall, the
linking model performed very well at fitting the TvC data from
individual subjects (R2 6 SME= 0.9291 6 0.0099). In the me-
dium difficulty blocks, lower perceptual thresholds in the
focused-attention compared with the divided-attention condi-
tions were highly consistent across all subjects. In contrast,
changes in perceptual threshold in the easy and hard blocks
were less robust at the individual-subject level. Next, boot-
strapping (i.e., resampling with replacement) was employed to
assess the significance of the main effect of attention and the
interaction between attention and perceptual difficulty on
each of the model parameters (see Materials and Methods,
Behavioral analyses). Figure 5 illustrates the mean values and
the 68% confidence intervals (error bars) from the boot-
strapped distributions of the response gain (Gr) and contrast
gain parameters (Gc) as well as the fit values of individual sub-
jects (color dots).

For the behavioral data collected in the medium and hard
blocks, the model predicted an increase in Gr in the focused-
attention compared with the divided-attention conditions
(ps = 0 and 0.004 for medium and hard, respectively, two-

tailed with a Holm–Bonferroni’s corrected threshold of
p, 0.025). However, no significant modulation of Gr was pre-
dicted in the easy blocks (p = 0.794, two-tailed). The degree of
attention-induced increase in Gr in the medium-difficulty
block was also significantly higher than the modulation pre-
dicted in the easy and hard blocks (ps = 0.036 and 0.008,
respectively, one-tailed because of the predicted direction of
the interactions).

The response gain parameters predicted from the TvC data
were expressed in arbitrary units. Thus, we rescaled the predicted
response gain parameters so that overall predicted response gain
parameters across individual subjects spanned a range of 0–1.
Since this rescaling step was performed using the minimum and
maximum values of the response gain predicted by the behav-
ioral data across all task and attention conditions (not within
individual conditions), it did not produce substantial effects
or interact with task-related and attention-related modula-
tions. Specifically, the normalized Gr data yielded qualita-
tively similar results, where there was a significant increase
in response gain in the focused-attention compared with
the divided-attention conditions in the medium and hard
blocks (ps = 0 and 0.002 for medium and hard, respectively,
two-tailed with a Holm–Bonferroni’s corrected threshold of
p, 0.025) and no significant modulation of Gr was found in
the easy blocks (p = 0.794, two-tailed). In addition, the
degree of attention-induced increase in response gain in the
medium-difficulty block was also significantly higher than
the modulation found in the easy and hard blocks (ps = 0.024
and 0.007, respectively, one-tailed because of the predicted
direction of the interactions).

Unlike Gr, we found no attention-induced changes in Gc for
any difficulty level (ps = 0.083, 0.329, 0.720 for easy, medium,
and hard, respectively, two-tailed). In addition, Gc did not
change as a function of perceptual difficulty (ps = 0.114–0.827,
two-tailed). Overall, the model linking the behavioral data are
consistent with a nonlinear inverted-U relationship between per-
ceptual difficulty and attention-induced response gain modula-
tions of the hypothetical neural CRFs.
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SSVEP results
To determine whether the actual pattern of attentional modu-
lations in neural responses followed the pattern predicted by
the SDT model (Fig. 3), we measured SSVEP responses over
human visual cortex. SSVEP responses are the phase-locked
EEG responses generated from early visual areas in response
to rhythmically presented stimuli (Regan, 1989; Andersen et
al., 2012; Norcia et al., 2015). Many past studies have shown
that attention can either increase response or contrast gain of
the SSVEP-based CRFs (Hillyard and Anllo-Vento, 1998; Di
Russo et al., 2001; Lauritzen et al., 2010; Wang and Wade,
2011; Itthipuripat et al., 2014a,b, 2018), making it a sensitive
measure to test this specific prediction. In the current study,
we computed the SSVEP amplitudes at the driving stimulus
frequencies of 24 and 20Hz for the left and right stimuli,
respectively (see Materials and Methods, EEG data acquisition,
preprocessing, and analyses). According to the full frequency
spectrum of the EEG data from the contralateral posterior occi-
pital electrodes, we found that our stimulus flicker rates of 20
and 24Hz induced robust SSVEP signals that peaked around
the central frequencies throughout the entire stimulus presenta-
tion period (i.e., 0–1500 ms; Fig. 6). The amplitudes of the
SSVEP responses scaled with stimulus contrast. Importantly,
the amplitude at the SSVEP frequencies were far higher than
the amplitude associated with the frequencies of early visually
evoked potentials (VEPs; 8–9 Hz) that appeared ;0–500 ms
poststimulus onset. This ensured that our SSVEP results were
minimally confounded by modulations of slow-going VEPs and
a oscillations.

We then averaged the SSVEP amplitudes across contralat-
eral posterior occipital electrodes where the responses, col-
lapsed across contrast levels, stimulus types, difficulty levels,
and attention conditions, were maximal. Finally, we plotted the
mean amplitude of the SSVEP responses as a function of stimu-
lus contrast, producing SSVEP-based CRFs for all difficulty lev-
els (easy, medium, and hard) as well as attention conditions
[i.e., the focused-attention target, the focused-attention nontar-
get (or ignored), and the divided-attention stimuli; see Fig. 7].

Overall, we found a nonmonotonic inverted-U relationship
between perceptual difficulty and attentional gain modulations
in the SSVEP-based CRFs. In the medium difficulty blocks, there
was a robust increase in response gain in the SSVEP-based CRFs
in the focused-attention target compared with the divided-atten-
tion and the focused-attention nontarget (ignored) stimuli (see
Figs. 7, 8 for the grand-averaged SSVEP data and individual sub-
jects’ data, respectively). However, attention-related response
gain modulations of the SSVEP-based CRFs were smaller in the
easy and hard blocks. This pattern of results was also consistent
at the individual-subject level (Figs. 8, 9).

To more precisely characterize the impact of perceptual diffi-
culty and attention on response and contrast gain modulations
of these SSVEP-based CRFs, we next fit the data with a Naka–
Rushon equation (see Materials and Methods, EEG data acquisi-
tion, preprocessing, and analyses; and Eq. 2). We used the G9r
and G9c parameters as proxies for response and contrast gain
modulations, respectively (see Itthipuripat et al., 2014b, 2017,

2018, 2019). The G9r (or Rmax) parameter is the level of the
SSVEP response at the maximal contrast level (i.e., 100% con-
trast) and G9c (or C50) is the contrast value at which the SSVEP
response reached half its maximum response. Overall, the Naka-
Rushton equation fits the SSVEP-based CRF data of individual
subjects well (R2 6 SME=0.85066 0.1162). Next, bootstrapping
(i.e., resampling with replacement) was used to assess the main
effect of attention at different difficulty levels and to test for any
interactions between attention and perceptual difficulty. Figure
9A shows the corresponding mean and the 68% confidence
intervals of the G9r and G9c values associated with the SSVEP-
based CRF data across different attention conditions and diffi-
culty levels.

There were three main sets of statistical comparisons we
employed to test the effects of attention and possible interactions
with perceptual difficulty. First, we tested for overall differences
across focused-attention, divided-attention stimuli, focused-
attention nontarget (or ignored) stimuli using data collapsed
across all difficulty levels. Second, we examined these differences
separately for each of the difficulty levels. Finally, we tested for
an interaction between attention and perceptual difficulty level.
Specifically, we examined whether the attentional modulations
(focused minus divided attention) were different across the me-
dium and easy blocks, across the medium and hard blocks, and
across the hard and easy blocks, respectively.

Collapsed across all difficulty levels, we observed signifi-
cant increases in G9r for the focused-attention target compared
with the divided-attention stimuli, for the focused-attention
target compared with the focused-attention nontarget (or
ignored) stimuli, and for the divided-attention stimuli com-
pared with the ignored stimuli (ps = 0.003, 0.001, and 0.016,
respectively, two-tailed, Holm–Bonferroni corrected). When
examining these differences in individual difficulty levels, we
found that they were driven predominantly by changes in the
medium difficulty condition.

Specifically, we observed significant increases in G9r for the
focused-attention target stimuli compared with the divided-
attention stimuli only in the medium and hard blocks, but not in
the easy block (Fig. 9A; ps = 0.501, 0.004, and 0.027 for the easy,
medium, and hard blocks, respectively, two-tailed, Holm–
Bonferroni corrected). Similarly, when comparing the focused-
attention target to the ignored stimuli, we observed a significant
increase in the G9r for the medium and the hard blocks but not in
the easy block (ps = 0.438, 0, and 0.009 for the easy, medium, and
hard blocks, respectively, two-tailed, Holm–Bonferroni cor-
rected). That said, when comparing the divided-attention to the
ignored stimuli, we also found significant increases in G9r in the
medium and easy blocks, but not in the hard block (ps = 0.010,
0.001, and 0.644 for the easy, medium, and hard blocks, respec-
tively, two-tailed, Holm–Bonferroni corrected).

Importantly, when examining the interaction between atten-
tion and perceptual difficulty, we found significant differences in
attentional modulations (focused minus divided attention)
between the medium and easy blocks and between the hard and
easy blocks but not between the medium and hard blocks
(ps = 0.010, 0.014, and 0.573, respectively, one-tailed because of
the known direction of the modulations, Holm–Bonferroni cor-
rected). Taken together, the observed response gain patterns sug-
gest nonlinear changes in attentional modulation of response
gain as a function of perceptual difficulty.

For the contrast gain data, we found a decrease instead of an
increase in contrast gain. Specifically, focused attention shifted
the CRFs rightwards instead of leftwards. There were significant

/

respectively, plotted separately for different contrast levels, attention conditions, and diffi-
culty levels. The data were averaged from 0 to 500 ms poststimulus onset. For both left and
right stimuli, focused attention produced the highest effects on SSVEP amplitudes at high
contrast levels in the medium difficulty compared with the easy and hard blocks.
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increases in the G9c values for the focused-
attention target and the divided-attention
stimuli compared with the ignored stimuli
(ps = 0.008 and 0, respectively, two-tailed,
Holm–Bonferroni corrected). However,
there was no difference between the fo-
cused-attention target and the divided-
attention stimuli themselves (p= 0.166,
two-tailed).

An auxiliary analysis that examined
changes in baseline (b) of the CRFs showed
no significant differences between the
focused-attention target and the divided-
attention stimuli, between the focused-
attention target and the ignored stimuli, or
between the divided-attention stimuli and
the ignored stimuli (p = 0.042–0.910; Fig.
9B, bottom panels). That said, the patterns
of response and contrast gain patterns
were highly similar to those observed
with the baseline subtraction methods
(compare Fig. 9A and B).

Notably, nonlinear changes in atten-
tional modulations of response gain as
a function of perceptual difficulty in the
SSVEP data (Fig. 9A,B, top panels) were
only observed in the time period before
(from 0 to 500ms poststimulus), but not dur-
ing or after subjects, made responses (from
500 to 1500 ms poststimulus; Fig. 10).
Specifically, from 500 to 1000 ms poststi-
mulus, there was a significant difference
in the G9r values between the focused-
attention target and ignored stimuli for the
data collapsed across all difficulty levels (p=
0.001, two-tailed, Holm–Bonferroni cor-
rected), but there were no differences
between the focused-attention target
and divided-attention stimuli and between
the divided-attention and ignored stimuli
(ps=0.243 and 0.852, two-tailed). Impor-
tantly, there was no significant difference in
attentional modulations (focused minus di-
vided attention) between different levels of
perceptual difficulty (ps=0.059–0.460, one-
tailed). From 1000 to 1500 ms poststimulus,
there was no significant difference in the G9r
values between attention conditions for the
data collapsed across all difficulty levels
(ps=0.693–0.854, two-tailed) and no signifi-
cant difference in attentional modulations in
any of the difficulty levels (ps=0.777–0.939,
one-tailed).

For contrast gain, there was no significant
difference in the G9c values between attention
conditions for the data collapsed across all
difficulty levels (ps=0.028–0.638, two-tailed,
not passing the Holm–Bonferroni corrected
threshold of 0.0167) and no significant dif-
ference in attentional modulations in any of
the difficulty levels from 500 to 1000 ms
poststimulus (ps=0.017–0.829, one-tailed,
not passing the Holm–Bonferroni corrected
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Figure 8. Individual fits for the SSVEP-based contrast response functions (CRFs) across all subjects.
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threshold of 0.0167). Similarly, from 1000 to
1500 ms, contrast gain did not differ across
attention conditions (ps=0.073–0.870, two-
tailed) and attentional modulations in con-
trast gain did not vary across difficulty levels
(ps = 0.081–0.486, one-tailed).

Although we chose to flicker our stimuli
in frequencies (i.e., 20 and 24Hz) that were
far above the a range (;10 Hz), the ampli-
tude of the SSVEP response at 20Hz could
potentially be mediated by the harmonic of
endogenous alpha band oscillations. In
order to test this possibility, we conducted
an additional analysis where we examined
the effects of perceptual difficulty and atten-
tion on the CRFs based on the mean ampli-
tude of induced (total) EEG activity at
20Hz. Unlike the SSVEP results, we found
no significant modulations of perceptual dif-
ficulty (ps = 0.941–0.969) and attention (ps =
0.228–0.918) and no interactions between
these two factors on the response gain pa-
rameters describing the neural CRFs based
on the 20-Hz-induced EEG oscillation
(ps = 0.384–0.667, all ps are two-tailed; Fig.
11). Accordingly, it is unlikely that the
inverted-U-shaped SSVEP results were con-
taminated by modulations of the harmonic
of endogenous a oscillations.

Correlations between behavioral and
SSVEP data
Overall, the effect of attention and its interac-
tion with perceptual difficulty on the SSVEP-
based CRFs was consistent with modulatory
patterns of response gain predicted by the be-
havioral data. This suggests a robust connec-
tion between the effects of perceptual difficulty
on attentional gain modulations and changes
in behavioral performance. To more for-
mally evaluate this relationship, we eval-
uated between-subject correlations between
the difficulty-related changes in attentional
modulations of response gain predicted by
the SDT-based modeling of the TvC data
and those observed in the SSVEP-based
CRFs. To do so, we examined whether diffi-
culty-related changes in attention-related
response gain in the SSVEP data posi-
tively correlated with those predicted by
the TvC data on a between-subject basis.
We first calculated the magnitude of the
response gain modulations predicted by
the modeling of the TvC data (focused
minus divided attention) for individual
subjects (same as above), and then com-
puted the differences between the me-
dium and easy blocks (Fig. 11, triangles),
between the medium and hard blocks
(Fig. 11, diamonds), and between the hard
and easy blocks (Fig. 11, circles). Next, we
repeated these steps for the normalized
response gain modulations observed in the
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SSVEP data separately for 0–500, 500–1000, and 1000–1500 ms
poststimulus. Finally, we correlated these difficulty-related differ-
ences in attention-induced response gain modulations obtained
from the behavioral and SSVEP data using a repeated-measures
correlation method. We observed a significant positive correla-
tion between the difficulty-related differences in response gain
modulations in the behavioral and SSVEP data measured only
before response period (0–500 ms poststimulus; Rho= 0.689,
p=0.009; Fig. 12). That said, no significant correlations were
found between the behavioral and SSVEP data measured
during and after response period (Rhos = 0.115 and 0.103 and
ps = 0.708 and 0.737 for 500–1000 and 1000–1500 ms poststimu-
lus, respectively). Note that the correlation results reported here
should be interpreted with caution because of a small sample size.

Together, the data suggest a robust link between neural and
behavioral attentional modulations across changes in perceptual

difficulty and that the interactive effects between attention and
perceptual difficulty on selective sensory information processing
only occur at the time period relevant to behavior.

Discussion
The present study tested how perceptual difficulty influenced
attentional modulations of the population-based neural activity
in human visual cortex. We found that perceptual difficulty had
a nonlinear inverted-U-shaped impact on response gain modula-
tions of the behavioral TvC functions and on neural CRFs.
Importantly, this nonlinear relationship could be accounted
for by SDT-based quantitative modeling of perceptual con-
trast discrimination thresholds. Furthermore, positive cor-
relations between these metrics suggest a close relationship
between difficulty-related differences in attention-related
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response gain in the behavioral and neural data. Together,
our results suggest that perceptual difficulty regulates be-
havioral performance in part by mediating the magnitude
of attentional gain modulations in visual cortex.

Past behavioral studies have investigated the influence of per-
ceptual difficulty on selective attention (Dosher and Lu, 2000; Lu
and Dosher, 2000; Prinzmetal et al., 2009). One study compared
the effects of perceptual difficulty on endogenous and exogenous
attention (Prinzmetal et al., 2009). They found that increasing
perceptual difficulty increased the beneficial effect of endogenous
attention on behavioral performance but produced the opposite
effect on exogenous attention (Prinzmetal et al., 2009). Our study
used endogenous attention cues and showed similar behavioral
effects: increasing perceptual difficulty from easy to intermediate
levels improved perceptual performance. That said, making the
task harder did not lead to a better performance and actually led
to smaller attentional effects on behavior.

To assess attentional gain of population-level activity in visual
cortex, we measured the effect of attention on SSVEPs. SSVEPs
reflect the synchronized activity in visual cortex that oscillates
in synchrony with periodic sensory inputs (for review, see
Andersen et al., 2012; Norcia et al., 2015; also see Regan, 1989;
Müller et al., 1997; Srinivasan et al., 2006; Di Russo et al., 2007;
Andersen et al., 2008, 2012; Fuchs et al., 2008; Andersen and
Muller, 2010; Störmer et al., 2013; Störmer and Alvarez, 2014).
Note that the flicker frequencies of the driving stimuli (20 and
24Hz) in the present study were far above those of the slow-
going VEPs and alpha power. The full frequency spectrum of the
EEG data also showed robust SSVEP signals peaked at the flicker
frequencies. Thus, task-related attentional modulations of
SSVEP activity reported here should be minimally influenced by
those of the VEPs and alpha activity. Indeed, an analysis of
induced power at 20Hz (i.e., power not phase locked to the driv-
ing stimulus) revealed no attentional modulations. This suggests
that our data were not contaminated by modulations of the sec-
ond harmonic of endogenous alpha band oscillations at;10 Hz.

Consistent with the single-unit data reported by Chen and
colleagues (Chen et al., 2008), we found that increasing percep-
tual difficulty from an accuracy level of 91% to 76% significantly
increased response gain of SSVEP-based CRFs. However, when
perceptual difficulty was increased further to 65% accuracy, there

was no further increase in response gain. Instead, response gain
was modestly attenuated, consistent with an inverted-U relation-
ship between perceptual difficulty and attentional modulations.
We speculate that we observed an inverted-U relationship, in
contrast to a monotonic increase, because the difficulty range in
our experiment was broader compared with previous studies
(65–91% accuracy vs 86–98% accuracy in Chen et al., 2008).

Since contrast increments were independently adjusted for
the focused-attention and divided-attention conditions in the
present study, there were low-level differences in the target stim-
uli across these two conditions. However, it is unlikely that these
low-level differences substantively contributed to the observed
task-related attentional modulations of the SSVEPs. First, instead
of using the pedestal contrast as contrast values to plot neural
CRFs, we used the mean contrast values computed across all seg-
ments of the visual stimulus (both pedestal and incremental con-
trasts). Since the fit parameters were obtained from individual
CRFs with true mean physical contrasts of all stimulus segments
(i.e., instead of directly comparing SSVEP amplitudes for each
pedestal contrast), we believe that any task-related and attention-
related modulations of fit parameters associated with neural
CRFs were minimally affected by low-level physical differences
in visual stimuli. Second, overall mean stimulus contrast in the
divided attention condition was higher than in the focused atten-
tion condition and contrasts in the easy block were higher than
in the medium and hard blocks. If differences in our SSVEP data
were because of these low-level physical differences, we should
have observed task-related and attention-related modulations of
the SSVEP data in opposite directions. For example, focused
attention should have reduced the overall SSVEP amplitudes
compared with divided attention. Moreover, the easy block
should have generally produced the highest response amplitudes,
compared with the medium and hard blocks. However, these
were not the patterns of results we observed.

The nonlinear inverted-U relationships between perceptual
difficulty and attentional gain modulations observed in our study
are consistent with Yerkes–Dodson’s Law, which describe how
global cognitive factors and arousal states regulated behavioral
performance (Yerkes and Dodson, 1908; Dodson, 1915; see also
Broadhurst, 1957; Duffy, 1957; Anderson et al., 1989; Diamond
et al., 2007). Indeed, a recent study conducted by Fischer and
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(circles), and between the hard and easy blocks for individual subjects (diamonds). The data from the same subject are assigned the same color, with corresponding lines showing the repeated
measures correlation fit for each subject.
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colleagues (2008) found that increasing task demands while
human participants were racing in a driving simulator imacted
overall cortical excitability measured in the frontal cortex fol-
lowing an inverted-U function (Loveless and Sanford, 1975;
Elbert and Rockstroh, 1987; Birbaumer et al., 1990; Aeschbach
et al., 1999; Nagai et al., 2004). That said, it is unclear how
changes in perceptual difficulty, known to mediate arousal lev-
els and cortical excitability, affect changes in selective informa-
tion processing in the early sensory areas. The present study
provides evidence suggesting that perceptual difficulty indeed
regulates attention-induced response gain modulations at the
earliest stages of visual cortical information processing.

Similar to the mixed effects of perceptual difficulty on gain
modulations reported in previous studies, other global cogni-
tive factors such as stress, anxiety, emotion, aversive stimuli,
and expected rewards have been shown to either up-regulate
or down-regulate the level of early sensory responses and in
turn led to either an improvement or an impairment in per-
formance (Gray et al., 2003; Keil et al., 2005; Phelps et al.,
2006; Bakardjian et al., 2011; Hajcak et al., 2013; Schönwald
and Müller, 2014; Song and Keil, 2013, 2014; Wieser et al.,
2014; Baruni et al., 2015; Bekhtereva et al., 2015; Bekhtereva
and Müller, 2015; Paczynski et al., 2015; Zhang et al., 2016;
Chang et al., 2020). It is likely that some of these mixed results
could be in part explained by Yerkes–Dodson’s Law (Yerkes
and Dodson, 1908; Dodson, 1915; see also Broadhurst, 1957;
Duffy, 1957; Anderson et al., 1989; Diamond et al., 2007; Hull,
1943). However, there is still a paucity of research studies that
parametrically manipulate the strength of these cognitive fac-
tors. Future studies could adopt our approach to determine
whether similar inverted-U relationships can be generalized to
explain the influence that other cognitive factors may have on
selective information processing and perceptual performance.

Recent studies have proposed that heightened arousal states
could desynchronize local neural activity and thus reduce corre-
lated variability between neurons. In turn, reducing noise corre-
lations may increase the efficiency of information processing in
visual cortex (Ruff and Cohen, 2014b; Beaman et al., 2017). The
difficulty-related changes in attentional gain observed here could
in part reflect arousal-dependent changes in the synchrony of
local neural activity, which could disrupt the SSVEP response (cf.
Ruff and Cohen, 2014a; Kohn et al., 2016; Cohen and Kohn,
2011; Cohen and Maunsell, 2009; Mitchell et al., 2007, 2009). At
the systems and neurotransmitter levels, arousal is also thought
to increase local glutamate levels, which interact with norepi-
nephrine and acetylcholine to amplify high priority sensory rep-
resentations and inhibit low priority sensory representations (for
review, see Mather et al., 2016). These neurotransmitters have
been found to regulate receptor pathways that independently
mediate neural gain amplification and neural noise modulations
(Kirkwood et al., 1999; Herrero et al., 2008, 2013; Polack et al.,
2013). That said, the links between neural mechanisms that sup-
port arousal-dependent attention at the neuromolecular, sys-
tems, physiological, and behavioral levels are not clear. This is a
challenging research question that will likely require combining
multimodal methods (e.g., pharmacological intervention, single-
unit recording, local field potential, and EEG) and using compu-
tational models to integrate results across different levels of anal-
ysis (Wyler et al., 1982; Herrero et al., 2008, 2013; Purcell et al.,
2013; Cosman et al., 2018; for review, see Itthipuripat and
Serences, 2016).

In conclusion, we found that perceptual difficulty regulates
attentional gain measured at the population level in human

visual cortex: attentional gain was highest when perceptual diffi-
culty was at an intermediate level and lower when the task was
easier or harder. Moreover, the interaction between perceptual
difficulty and attentional gain in visual cortex was correlated
with difficulty-related modulations in perceptual performance.
Taken together, our data suggest an inverted-U relationship
between perceptual difficulty and selective processing of early
sensory information, partly reconciling contradictory results of
perceptual difficulty on attentional gain modulations in the early
visual cortex.
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