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Regional cellular heterogeneity is a fundamental feature of the human neocortex; however, details of this heterogene-
ity are still undefined. We used single-nucleus RNA-sequencing to examine cell-specific transcriptional features in the
dorsolateral PFC (DLPFC) and the subgenual anterior cingulate cortex (sgACC), regions implicated in major psychiat-
ric disorders. Droplet-based nuclei-capture and library preparation were performed on replicate samples from 8 male
donors without history of psychiatric or neurologic disorder. Unsupervised clustering identified major neural cell
classes. Subsequent iterative clustering of neurons further revealed 20 excitatory and 22 inhibitory subclasses.
Inhibitory cells were consistently more abundant in the sgACC and excitatory neuron subclusters exhibited consider-
able variability across brain regions. Excitatory cell subclasses also exhibited greater within-class transcriptional dif-
ferences between the two regions. We used these molecular definitions to determine which cell classes might be
enriched in loci carrying a genetic signal in genome-wide association studies or for differentially expressed genes in
mental illness. We found that the heritable signals of psychiatric disorders were enriched in neurons and that, while
the gene expression changes detected in bulk-RNA-sequencing studies were dominated by glial cells, some alterations
could be identified in specific classes of excitatory and inhibitory neurons. Intriguingly, only two excitatory cell
classes exhibited concomitant region-specific enrichment for both genome-wide association study loci and transcrip-
tional dysregulation. In sum, by detailing the molecular and cellular diversity of the DLPFC and sgACC, we were able
to generate hypotheses on regional and cell-specific dysfunctions that may contribute to the development of mental
illness.
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Significance Statement

Dysfunction of the subgenual anterior cingulate cortex has been implicated in mood disorders, particularly major depressive
disorder, and the dorsolateral PFC, a subsection of the PFC involved in executive functioning, has been implicated in schizo-
phrenia. Understanding the cellular composition of these regions is critical to elucidating the neurobiology underlying psychi-
atric and neurologic disorders. We studied cell type diversity of the subgenual anterior cingulate cortex and dorsolateral PFC
of humans with no neuropsychiatric illness using a clustering analysis of single-nuclei RNA-sequencing data. Defining the
transcriptomic profile of cellular subpopulations in these cortical regions is a first step to demystifying the cellular and molec-
ular pathways involved in psychiatric disorders.

Introduction
The neurobiology underlying psychiatric and neurologic disor-
ders is complex and poorly understood. Two brain regions that
are repeatedly suspected to be dysfunctional in major psychiatric
illnesses are the dorsolateral PFC (DLPFC) and the subgenual
anterior cingulate cortex (sgACC).

The DLPFC is implicated in higher-order cognitive functions,
including attention, working memory, abstract reasoning, and
cognitive control (MacDonald et al., 2000; Egner and Hirsch,
2005; Hare et al., 2009). Accordingly, the DLPFC is considered a
key region of dysfunction in various psychiatric illnesses, espe-
cially schizophrenia (SCZ) (Weinberger et al., 1986; Manoach et
al., 1999; Potkin et al., 2009; Koenigs and Grafman, 2009; Price
and Drevets, 2012). Consequently, the DLPFC has been the tar-
get of postmortem studies of SCZ (Fromer et al., 2016; Gandal et
al., 2018b; Jaffe et al., 2018) and major depressive disorder
(MDD) (Nagy et al., 2020). The less-studied sgACC is involved
in linking emotional and cognitive systems, emotion processing,
and autonomic and emotional arousal (Mayberg et al., 1999;
Price and Drevets, 2012). It has been implicated in mood disor-
ders, particularly MDD and bipolar disorder (BD), and has been
the focus of imaging, postmortem, and treatment studies (Tripp
et al., 2011; Scifo et al., 2018; Akula et al., 2021).

Detailed characterization of the cellular composition of these
brain regions is essential because mechanisms of psychiatric dis-
eases might act through distinct classes of cells. Single-nucleus
RNA-sequencing (snRNA-seq) has recently emerged as a high-
throughput method to characterize cell populations based on
each individual nucleus’s transcriptional profile (Darmanis et al.,
2015; Habib et al., 2016, 2017; Krishnaswami et al., 2016). This
unsupervised approach is advantageous for its ability to elucidate
subtle gene expression differences on the individual cell level,
undetectable at the bulk-tissue level. Single-cell transcriptomics
has already proved useful in understanding various mental ill-
nesses, such as the dysregulation of corticocortical projection
neurons in autism spectrum disorder (ASD) (Velmeshev et al.,
2019). While earlier snRNA-seq studies have largely used mouse
brains, more recent studies have studied various cortical areas of
the human brain, including the PFC (Lake et al., 2016, 2018;
Habib et al., 2017). In the DLPFC, recent snRNA-seq studies
have demonstrated cell subtype-specific abnormalities in MDD
(Nagy et al., 2020) and SCZ (Ruzicka et al., 2020; Reiner et al.,
2021). In the sgACC, there is only one study with snRNA-seq in
5 individuals (Tran et al., 2021). Additional studies using more
subjects are necessary to create a consensus profile of cell types
in these brain regions and elucidate how the molecular profiles
of these two brain regions inform their functional roles.

This study seeks to map the molecular and cellular landscape
of the DLPFC and sgACC using snRNA-seq in human postmor-
tem brain. We profiled a total of 87,279 nuclei from both brain

regions in 8 individuals without a history of psychiatric or neuro-
logic disorders. Our large dataset allowed us to identify con-
served and unique cell populations between the two cortical
regions. Using enrichment analyses, we localized psychiatric dis-
order-relevant transcriptional and heritability signals in the con-
text of our cellular characterization. Overall, this study provides
a resource that catalogs the transcriptomic heterogeneity of these
key cortical regions at single-cell resolution.

Materials and Methods
Contact for reagent and resource sharing. Further information and

requests for resources and reagents should be directed to and will be ful-
filled by S.M. (marencos@mail.nih.gov).

Experimental design and statistical analysis. snRNA-seq data were
generated from the DLPFC and sgACC of 8 male subjects (age= 44.8 6
11.2 SD; sex = male; race = 5 White and 3 Black; postmortem
interval = 24.3 6 7 h; pH=6.5 6 0.17), each without a history of psychi-
atric (including substance use disorders) or neurologic disorders during
their lifetime (for detailed demographics, see Extended Data Fig. 1-1).
Technical replicates for all 16 unique specimens at the droplet-based
nuclei capture step resulted in 32 total samples. Quality control steps
(detailed in snRNA-seq data preprocessing) eliminated seven samples
with low total cDNA yield resulting in 25 samples with 105,047 nuclei
and 28,195 genes. Pearson correlations were performed to compare tech-
nical replicates.

Unsupervised clustering algorithms in the Seurat version 4.1.0 (Hao
et al., 2021) pipeline were used to assign nuclei into general cell classes
and to identify and eliminate doublets, clusters with high mitochondrial
contamination, and artifact nuclei (for details, see Unsupervised cluster-
ing, quality control, and clustering) yielding a final dataset of 63,901
nuclei. Additional subclustering was performed on Ex and In cells using
Seurat version 4.1.0 tools. The default nonparametric Wilcoxon rank
sum test with Bonferroni correction was applied to identify cluster
markers. Pearson correlation was used to compare our cell classification
to published snRNA-seq datasets (for details, see Comparison with pub-
lished human snRNA-seq datasets).

To define consensus cell class identities, our data were integrated
with the Allen Cell Types Database Human Multiple Cortical Areas
SMART-seq dataset via reciprocal PCA in Seurat version 4.1.0, and a
nearest centroid classifier was applied to map each cell onto the cluster
labels in the Allen dataset. Regional subpopulation proportional repre-
sentation was assessed using the GLIMMIX (generalized linear mixed
model) procedure with logit function and the option of b distribution
with default covariance structure in SAS version 9.4 to test for effects of
subpopulations, brain region, and their interaction (see Regional differ-
ences in subclusters). Differential expression between regions and sub-
clusters was tested using a pseudo-bulk approach using the edgeR
likelihood ratio test (for details, see Regional differences in subclusters).

Linkage disequilibrium score regression (LDSC) was implemented to
examine cell type enrichment for GWAS signals from studies of ASD
(Grove et al., 2019), attention-deficit/hyperactivity disorder (ADHD)
(Demontis et al., 2019), BD (Stahl et al., 2019), MDD (Wray et al., 2018),
and SCZ (Schizophrenia Working Group of the Psychiatric Genomics
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Consortium, 2014) (for details, see Cell type-specific genes and psychiat-
ric disorder enrichment).

Postmortem human specimen collection and dissection. Postmortem
brains were collected at the Human Brain Collection Core (HBCC),
National Institute of Mental Health Intramural Research Program,
with permission from the legal next-of-kin according to the National
Institutes of Health Institutional Review Board and ethical guidelines
under protocol 17 M-N073. Cases were obtained from the Offices of
the Chief Medical Examiner of the District of Columbia, Northern
Virginia, and Central Virginia. Clinical, neuropathological, and toxico-
logical characterization was performed as previously described (Deep-
Soboslay et al., 2005; Lipska et al., 2006; Kunii et al., 2015).

Samples were dissected from frozen coronal slabs using a dental drill.
For the DLPFC (BA9/46) dissections, gray matter tissue from the mid-
point of the middle frontal gyrus was targeted. Subcortical white matter
was carefully excluded. For the sgACC (BA24/25), the portion of the
cingulum immediately ventral to the genu of the corpus callosum was
dissected.

snRNA-seq nuclei extraction and isolation. The nuclei isolation pro-
tocol was adapted from Krishnaswami et al. (2016) with additional
washes to reduce mitochondrial contamination. To maximize our abil-
ity to capture the entire cellular diversity in an anatomically defined
brain region during dissection, we obtained two separate 50-80mg ali-
quots from each frozen dissected block and combined them after nuclei
isolation.

Frozen samples were physically dissociated in a homogenizing buffer
using a Dounce homogenizer (DWK Life Sciences), five strokes with a
narrow pestle followed by 15 strokes with a wide pestle. The resulting
nuclear suspensions were filtered through a 35 mm mesh cell strainer.
Nuclear suspensions were washed 3 times, pelleting the nuclei with cen-
trifugation at 1200 � g for 9 min before resuspending the pellets in 0.5
ml of wash buffer. Nuclear suspensions from the same frozen block
(described above) were combined at this step and thoroughly mixed.

For nuclei counting, a 10 ml aliquot of each nuclear suspension was
stained 1:1 with 0.4% Trypan Blue. Nuclei were counted using a hemocy-
tometer under a bright-field microscope. Concentrations ranged from 1
million to 1.5 million nuclei per milliliter. A final aliquot of 50,000 nuclei
in 1 ml of storage buffer was taken for the 10� Genomics nuclei capture.

10� genomics nuclei capture and library construction. We followed
the Chromium Single Cell 39 Reagent Kits User Guide version 2
Chemistry (CG00052) and used Chromium Single Cell 39 Library
& Gel Bead Kit version 2 (PN-120237) to produce Single Cell 39
libraries ready for Illumina sequencing (https://support.10xgenomics.
com/). Droplet-based nuclei-capture and library preparation experi-
ments were conducted using materials and support from the Single
Cell Analysis Facility, National Cancer Institute.

First, we created technical duplicates from the nuclei suspensions
and loaded them onto the Chromium Controller microfluidic device.
We loaded volumes provided in the Cell Suspension Volume Calculator
Table of the 10� user guide to target a recovery rate of 6000 nuclei per
sample. The microfluidic device partitioned single nuclei into bar code-
containing Gel Bead-In-Emulsions (GEMs). Samples were incubated,
and poly-adenylated mRNAs were reverse-transcribed into cDNAs con-
taining a unique molecular identifier (UMI) and a cell bar code unique to
each GEM. Afterward, GEMs were broken, and the barcoded cDNAs
were amplified by PCR. Next, a sample index, R2 (read 2 primer
sequence), and standard P5 and P7 primers used in Illumina bridge
amplification were added during library construction via End Repair, A-
tailing, Adaptor Ligation, and PCR. The 16 bp 10� bar code and 10 bp
UMI were encoded at the start of Read 1 while the 8 bp sample index in-
formation was incorporated into the i7 index read, and cDNA insert
sequenced as Read 2.

Sequencing, bar code processing, and alignment. Sequencing was per-
formed by the Center for Cancer Research Sequencing Facility at the
Frederick National Laboratory for Cancer Research. Thirty-two 10�
Genomics Chromium Single Cell 39 version 2 paired-end libraries were
multiplexed and sequenced on one run on the HiSeq 4000. Base-calling
was performed with Illumina instrument runtime analysis software,
RTA version 2.4.11. The output raw base call (BCL) files were

demultiplexed using Bcl2fastq version 2.17, allowing one mismatch in
barcodes, to generate FASTQ files. Sequence alignment and bar code
processing were performed with 10� Genomics’s processing software,
Cell Ranger version 2.1.1 (Zheng et al., 2017). A customized human ref-
erence genome, GRCh38-1.2.0_premRNA (described below), was used
for counting reads and the “expect-cells” parameter for estimating num-
ber of nuclei in each sample above a background expression level was set
to 6000, consistent with the number of nuclei targeted during library
preparation.

Because snRNA-seq captures precursor mRNA (pre-mRNA) tran-
scripts that have not been alternatively spliced, these transcripts have
retained intronic features. Recent RNA-seq and comparative studies of
single nucleus and single-cell RNA-seq datasets have shown that includ-
ing reads mapping to intronic regions as gene counts accurately esti-
mates true gene expression (Gaidatzis et al., 2015; Lake et al., 2017;
Bakken et al., 2018). Additionally, this method has an added benefit for
downstream clustering analysis by increasing read depth for inherently
low coverage snRNA-seq datasets. Therefore, a customized, pre-mRNA
reference genome was created following recommendations from 10�
Genomics. “Gene_biotype” tags in the original GTF file were modified
such that Cell Ranger’s count function included intronic features as gene
counts.

snRNA-seq data preprocessing. Data processing, analysis, and han-
dling were performed using the R package Seurat version 4.1.0 (Hao
et al., 2021). Filtered gene count matrices were read into R using
Seurat’s Read10X function. After initial review of experimental and
sequencing quality control (QC) characteristics, 7 of 32 total samples were
identified as “dropout” samples and removed from the dataset. These sam-
ples displayed low total cDNA yield calculated from BioAnalyzer electro-
pherograms. They contained high sequence duplication rate (.45%)
calculated with the sequencing QC tool FastQC (Andrews, 2010) and high
sequencing saturation rate (.85%) from Cellranger QC outputs. Together,
these QC results suggested inadequate RNA capture and subsequent
PCR overamplification of these “dropout” samples Twenty-five sam-
ples (14 DLPFC, 11 sgACC) remained for downstream analysis and
were assessed for further quality control. Detailed 10� Genomics
Library capture, sequencing, and alignment data for each sample of
brain tissue is listed in Extended Data Fig. 1-2.

Filtering of noisy genes and outlier nuclei was performed; 5475 genes
detected in fewer than three nuclei were filtered from the data. Nuclei
with ,200 genes do not contain enough transcriptional information
for effective clustering and subsequent biological interpretation. This
threshold is like those used in published snRNA-seq studies (Hu et al.,
2017). No nuclei fell below this threshold in our data. Nuclei with large
library sizes (.5000 genes detected and 15,000 UMIs) are likely to be
“doublets” or “multiplets,” which are expected technical artifacts of the
microfluidic droplet technology (Habib et al., 2017; Hu et al., 2017;
Lake et al., 2018). We excluded 227 nuclei whose values exceeded
these thresholds (0.2% of total nuclei). Next, the fraction of reads
mapping to mitochondrially encoded genes was calculated for each
barcoded nucleus. Mitochondrially encoded mRNA transcripts
represent false transcriptional signals and thus should not be pres-
ent in snRNA-seq data. Nuclei with.20% of reads mapping to
mitochondrially encoded genes were filtered out (25,273 nuclei).
Subsequently, mitochondrially encoded genes were removed from
the count matrix. After these preprocessing QC steps, 105,047
nuclei and 28,195 genes were retained for analysis.

Correlation between technical replicates of samples. To assess similar-
ity between technical replicates, we calculated the Pearson correlation
coefficient between average gene expression of replicates using the cor
function in R (Extended Data Fig. 1-3). Correlations of average expres-
sion across all genes and then across only highly variable genes were
assessed. Correlation of gene expression (Pearson r. 0.998) and correla-
tion of number of nuclei obtained (Pearson r=0.992) across the techni-
cal replicates was high (Extended Data Fig. 1-3). Given the high
correlation coefficient values between technical replicates and the added
clustering power that is achieved with larger sample size (number of
nuclei), technical replicates were combined for subsequent downstream
analyses. Technical replicates could be treated as additional samples of
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the same subject because they were separate aliquots from nuclei suspen-
sions, representing different nuclei from the same subject.

Unsupervised clustering, quality control, and clustering. Normalization
of gene expression to account for library size and expression level was
performed with the Seurat function NormalizeData using default set-
tings. Next, highly variable genes (HVGs) in our dataset were identified
using the Seurat function FindVariableGenes for unsupervised cluster-
ing. Briefly, genes were first binned into 20 bins based on their mean
expressions. Z scores were calculated within each bin. This method of
binning controlled for the correlation between gene expression and vari-
ability. After binning, genes with SD. 0.65 and mean log normalized
expression between 0.015 and 4 were selected as HVGs. Next, the Seurat
function ScaleData was used to compute z scores for each gene in the list
of HVGs. We calculated z scores by fitting gene expression to a negative
binomial model because it more accurately resembles gene expression
distributions. In this regression, the total number of UMIs detected and
fraction of mitochondrial genome encoded gene counts per nucleus
were regressed out to further eliminate library size effects on the down-
stream clustering analysis. Next, for linear dimensional reduction, a
principal component analysis (PCA) was performed on the z scores of
the HVGs using the Seurat function RunPCA. The top 50 principal com-
ponents (PCs) were selected after assessment of PCs with an elbow plot
and were used as input to Seurat’s unsupervised clustering algorithm
function FindClusters. In this algorithm, Euclidean distances between
nuclei were calculated in the PCA space (top 50 PCs) and a K-nearest
neighbor (KNN) graph-based approach was used to group nuclei into
clusters. The resolution parameter, which represents the granularity of
the clustering analysis, was set at 3, and all other parameters were set at
default settings. For two-dimensional t-distributed stochastic neighbor
embedding (tSNE) visualization, the RunTSNE function from Seurat was
performed at default settings on the same principal components that
were used for clustering.

After clustering, a variety of methods were used to identify and dis-
qualify clusters. The distribution of number of genes, number of UMIs,
fraction of mitochondrial gene counts, and fraction of ribosomal protein
gene counts were visually assessed for each unbiased cluster using violin
plots. To assess similarity of these clusters to each other, hierarchical
clustering analysis on the average expression for each cluster was per-
formed using R function hclust, a pairwise correlation heatmap between
all clusters was generated with R function cor to view similar mean
expression profiles, and distances of tSNE coordinates were visually
assessed. Doublet or mixed clusters, identified by high numbers of genes
and UMIs detected in addition to the combined expression of multiple
canonical cell class marker genes, and clusters with very low numbers of
detected genes, low UMI counts, and lack of distinguishing expression
profiles, were discarded. The remaining subset of nuclei were reclustered
using new HVGs calculated from the subset. Cluster removal and reclus-
tering were repeated until all clusters that formed could be identified by
their specific expression of canonical cell-type marker genes from exist-
ing literature and could not be removed by quality control as described
above. A total of 87,729 of 105,047 nuclei remained after cluster
curation.

Finally, to remove artifact nuclei, which include collections of ambi-
ent RNA encapsulated during the droplet experiment or doublets/mul-
tiplets, we curated each cluster by calculating cell-type scores for each
nucleus (barnyard curation). Cell-type scores were calculated as a
nucleus’s average expression of the top five specific genes for each
broad cell class, listed in Extended Data Figure 1-4. Top five specific
genes were determined as the five highest-ranked genes when signifi-
cant differentially expressed genes (DEGs) for each broad cell cluster
were ranked by specificity (percent of in-group nuclei expressing the
gene/percent of out-group nuclei expressing the gene). An additional
criterion for top five specific genes for broad cell classes was that the
genes were required to overlap with marker genes from at least one
other single-cell or nucleus RNA-seq dataset (Darmanis et al., 2015;
Lake et al., 2016; Habib et al., 2017; Hu et al., 2017; Sathyamurthy et al.,
2018). By assessing each nucleus’s score for each of the broad cell clus-
ter, nuclei with “promiscuous” cellular identity (i.e., having scores
greater in cell classes other than the cell class to which it belongs) were

filtered out from further analysis. A total of 63,901 of 87,279 nuclei
remained after barnyard curation.

Following QC, 63,901 nuclear expression profiles remained from 25
samples, averaging 93 million reads per sample and 27,061 reads per nu-
cleus, slightly above the range (19,000-26,000 reads per nucleus) typically
required for sequencing saturation with 10� Genomics version 2 chem-
istry in human brain snRNA-seq (Habib et al., 2017). Using 10�
Genomics’ software Cell Ranger for read alignment and counting, 1641
median UMIs and 1100 median genes per nucleus were detected, which
is consistent with other snRNA-seq studies in postmortem human brain
samples (Habib et al., 2017; Lake et al., 2018). A modified human refer-
ence genome was used to incorporate intronic reads as gene counts
(Gaidatzis et al., 2015; Lake et al., 2017; Bakken et al., 2018). Ninety per-
cent of reads mapped confidently to the customized genome.

Determination of cluster marker genes. The FindMarkers and
FindAllMarkers functions in Seurat were applied with default settings to
identify marker genes for each cluster (i.e., genes enriched in a cluster
compared with all other clusters). The default test used was a nonpara-
metric Wilcoxon rank sum test. Only genes whose expression value
were. 10% of the nuclei in the in-group, whose Bonferroni corrected p
values, 0.05, and whose log fold-change. 0.25 were saved as marker
genes. This approach was used to identify marker genes for broad cell
clusters (Extended Data Fig. 1-5), and excitatory and inhibitory neuron
subclusters (Extended Data Fig. 2-1).

Subclustering inhibitory and excitatory neurons. Transcriptional sig-
nals that differentiate neurons from glial cells may not be the same sig-
nals that differentiate subtypes of neurons, excitatory and inhibitory,
from each other (Tasic et al., 2018). The signals that differentiate excita-
tory from inhibitory neurons, in turn, may also not be the same signals
that differentiate canonical inhibitory neuron subtypes from each other.
To effectively resolve the transcriptional diversity of inhibitory neuron
subtypes without the influence of noninhibitory neurons, we performed
subclustering on the restricted set of nuclei identified as inhibitory neu-
rons. We implemented the same data-driven QC approaches described
above for the broad cell class clustering analysis with an added step of
merging nonunique clusters. From an initial 24 inhibitory neuron sub-
clusters, we reassigned nuclei of one subcluster that did not have a
uniquely identifiable expression signal (,10 unique DE genes) and one
subcluster that mostly consisted of nuclei from one individual. This pro-
cess is called “merging” and is performed by reassigning the identity of
each nucleus individually to the subcluster with the highest average
shared nearest neighbors. This process reassigned nuclei to subclusters
that had very similar transcriptional profiles to its original cluster.
Similarity of subclusters could be assessed by correlation heatmaps and
relative position to one another in a hierarchical clustering tree. This
resulted in 22 final inhibitory neuron subclusters. DE analysis was per-
formed as described above for each subcluster against all other inhibitory
neurons to identify potential marker genes. Subclustering was also per-
formed for the excitatory neurons. From the initial 29 subclusters that
formed, nine subclusters were identified as nonunique cell types and
nuclei of these subclusters were reassigned to subclusters with highest
average shared nearest neighbors. Merging these subclusters resulted in
20 final excitatory neuron subclusters represented by all 8 individuals.
Statistics for the final list of subclusters are shown in Extended Data
Figure 2-1.

Comparison with published human snRNA-Seq datasets. For com-
parison with published human brain snRNA-Seq datasets, we read in
count matrices (Lake et al., 2016; Habib et al., 2017; Lake et al., 2017;
Tasic et al., 2018; D. Wang et al., 2018) into R as Seurat objects. Average
gene expression was computed for each cluster from each dataset. A
Pearson correlation coefficient was calculated using R function, cor, on
mean expression for all pairwise comparisons of clusters. We limited our
genes for correlation comparisons to 3310 HVGs (disregarding 78 ribo-
somal protein genes) to reduce noise from gene expression signals that
are less informative among brain cells and to avoid dataset-specific tech-
nical artifacts. All heatmaps were plotted with either the ggplot2 R pack-
age or the pheatmap R package with colors palettes generated from the
RColorBrewer R package. Correlation heat maps are shown in Extended
Data Figure 2-4.
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Dataset integration in Seurat and nearest centroid classification.
snRNA-seq count data from multiple cortical areas were downloaded
from the Allen Cell Types Database (https://portal.brain-map.org/
atlases-and-data/rnaseq/human-multiple-cortical-areas-smart-seq) and
imported into Seurat (version 4) along with HBCC data. Nuclei with a
missing cluster label were removed. Inhibitory neurons, excitatory neu-
rons, and non-neuronal cells were analyzed separately. For each major
subclass, cells were log-normalized and the top 2000 most variable genes
across both datasets were selected using the SelectIntegrationFeatures
function in Seurat. PCA was run separately on both HBCC and Allen
Institute data for the selected genes. Integration anchors were obtained
via the FindIntegrationAnchors function using reciprocal PCA on the
top 30 principal components and a k.anchor default value of 5. Datasets
were integrated via the IntegrateData function with a k.weight default
value of 100.

For classification of HBCC data based on Allen Institute labels, a
nearest centroid classifier was implemented via the lolR library and was
trained on the Allen cluster labels with the integrated gene expression
values from 2000 genes as described above. This classifier was then
applied to predict the Allen cluster label of each cell in the HBCC data. A
contingency figure of the original HBCC cluster ID and predicted Allen
label was created, and the fraction of HBCC cells mapping to each Allen
label was visualized in a heatmap (see Fig. 2E,F).

Regional differences in subclusters. To establish whether particular
neuronal subpopulations were unequally represented in the DLPFC or
the sgACC, we calculated the proportion of neuronal subpopulations
using all neurons as the denominator, then used the GLIMMIX (general-
ized linear mixed model) procedure with logit function and the option
of b distribution with default covariance structure in SAS version 9.4 to
test for effects of subpopulations, brain region, and their interaction.
Subject (id) was used as random effect, assuming subjects participating
in the study are a random sample of all possible subjects. This procedure
was repeated on absolute counts of each neuronal subpopulation (omit-
ting the b distribution).

Differential expression analysis between subclusters and brain
regions was conducted using a conservative pseudo-bulk approach via
edgeR likelihood ratio test (Robinson et al., 2010), while adjusting for
donor status using the Libra R package (Squair et al., 2021). DEGs were
defined as those that passed false discovery rate (FDR)-corrected
p, 0.05 and had an absolute logFC. 0.1. To explore the relevance of
DEGs, these genes were used as input into gene enrichment analysis
with the Gene Ontology (GO) (Gene Ontology Consortium, 2001),
Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and
Goto, 2000), and DisGeNET (Piñero et al., 2015) as implemented in
the ClusterProfiler (Yu et al., 2012) and disgenet2r R packages (Piñero
et al., 2020).

Cell type-specific genes and psychiatric disorder enrichment. To test
the association between cell type-specific genes and the heritability
for psychiatric disorders, we used LDSC, as implemented previously
(Finucane et al., 2015; Skene et al., 2018; Bryois et al., 2020). In brief,
single-nucleus RNA expression data were scaled to a total of 1 mil-
lion UMIs for each cell type, separately for each cortical region. A
specificity metric was calculated as a ratio of the expression of each
gene in a given cell type cluster over the total expression of that gene
across all cell types (Skene et al., 2018; Bryois et al., 2020). The top
10% most specific genes for each cell type were used as input for LD
score regression. Genome Wide Association Study (GWAS) data for
the following psychiatric disorders were used: ASD (Grove et al.,
2019), ADHD (Demontis et al., 2019), BD (Stahl et al., 2019), MDD
(Wray et al., 2018), and SCZ (Schizophrenia Working Group of the
Psychiatric Genomics Consortium, 2014), accessed through the
Psychiatric Genomics Consortium data sharing portal (https://www.
med.unc.edu/pgc/). Gene coordinates were extended by 100 kb upstream
and 100 kb downstream for each as done previously (Finucane et al.,
2015; Bryois et al., 2020). p values were FDR-corrected for 7 broad cell
types, and 47 subclusters (Benjamini and Hochberg, 1995).

The same top 10% of cell specific genes were used to test for enrich-
ment with DEGs from a recently published large RNA seq study of ASD,
SCZ, and BD samples (Gandal et al., 2018b). Hypergeometric tests were

used to assess the enrichment or overlap between gene sets, and the p
values were corrected as described above.

RNA ISH (RNAscope). For RNAscope validation of cell types, 10-
mm-thin cryosections were taken from the DLPFC and sgACC dissected
from postmortem brain samples (Extended Data Fig. 2-7). The sections
underwent post-fixation in 10% NBF at 4°C for 1 h. Tissue was dehy-
drated and stained following the Advanced Cell Diagnostics protocol for
RNAscope 2.5 Duplex Chromogenic Assay (Anderson et al., 2016) with
the following modifications: Protease IV treatment reaction time was
reduced to 15min; amplification reaction time was optimized to obtain
the best resolution of puncta for the different target probes labeled with
HRP-based green; counterstaining was done with 25% Hematoxylin 560
MX (Leica 042817) diluted in dH2O, for 10 s; alternatively, Nissl staining
was done with 1% thionine for 30 s, subsequent wash in dH2O for 30 s
twice, and differentiated in acidified ethanol for 5-15 s. Whole slide
image acquisition was performed on a NanoZoomer S60 Digital Slide
Scanner (Hammamatsu).

Code/software. Raw FASTQ files, final Seurat R Object containing
nuclei expression data, and metadata are publicly available for down-
load on the National Institute of Mental Health Data Archive (https://
nda.nih.gov/experimentView.html?experimentId=1852&collectionId=
3151) and Synapse (https://doi.org/10.7303/syn48374287.1). R code for
this project is available for download on our GitHub repository: https://
github.com/NIMH-HBCC. A shareable interactive user interface using
iSEE (Rue-Albrecht et al., 2018) and Binder 2.0 (https://elifesciences.org/
labs/8653a61d/introducing-binder-2-0-share-your-interactive-research-
environment) is also accessible from the GitHub HBCC repository.
Datasets and gene sets from referenced literature were obtained online
from supplementary data.

Results
Classification of nuclei into broad cell types
Unsupervised clustering of the nuclei that survived quality con-
trol and preprocessing steps (see Materials and Methods;
Extended Data Figs. 1-1, 1-2, and 1-3) generated 47 initial clus-
ters. Initial clusters of the same broad cell type were grouped
together, which ultimately resulted in seven distinct broad
clusters: excitatory neurons (Ex), inhibitory neurons (In),
astrocytes (Astro), oligodendrocytes (Oligo), oligodendrocyte
precursor cells (OPCs), endothelial cells (Endo), and micro-
glia (Micro) (Fig. 1; Extended Data Figs. 1-4 and 1-5) (Habib
et al., 2017; Lake et al., 2018; D. Wang et al., 2018). Neuronal
nuclei contained a higher median number of genes and UMIs
(1225 and 1875, respectively) than non-neuronal nuclei (674
and 915, respectively), as expected of the physically larger nu-
clear sizes and greater functional complexity of neurons.

Transcriptional diversity in excitatory neurons
To investigate the diversity of neuronal subtypes, excitatory neu-
ronal nuclei were extracted from the larger dataset and iteratively
reclustered to yield 20 robust, transcriptionally distinct Ex sub-
clusters (Fig. 2A,C). Each subcluster was given a simple assign-
ment (e.g., Ex18), in which the number corresponds to the
relative size of each subcluster in descending order (e.g., Ex01 is
the largest group of excitatory cells). Differential gene expression
was determined for each Ex subcluster versus all other Ex sub-
clusters to identify enriched cell type-specific markers for each
subcluster (Extended Data Fig. 2-1). Each subcluster contained
at least one nucleus from all 8 subjects, thereby avoiding individ-
ual-biased clusters (Extended Data Fig. 2-1).

Ex subclusters were categorized into upper (L2-3), middle
(L4-5), and lower (L6-6b) cortical layer groups based on the
expression of known layer-specific marker genes: CARTPT (L2-
3), CUX2 (L2-4), RORB (L3-5), FOXP2 (L6), PCP4 (L5),
GRIN3A (L5), GRIK3 (L5-6), TLE4 (L5-6), and CTGF (L6b)

3586 • J. Neurosci., May 10, 2023 • 43(19):3582–3597 Kim et al. · Single-Nucleus RNA-Seq in Human sgACC and DLPFC

https://portal.brain-map.org/atlases-and-data/rnaseq/human-multiple-cortical-areas-smart-seq
https://portal.brain-map.org/atlases-and-data/rnaseq/human-multiple-cortical-areas-smart-seq
https://www.med.unc.edu/pgc/
https://www.med.unc.edu/pgc/
https://doi.org/10.1523/JNEUROSCI.0830-22.2023.f2-7
https://nda.nih.gov/experimentView.html?experimentId=1852&amp;collectionId=3151
https://nda.nih.gov/experimentView.html?experimentId=1852&amp;collectionId=3151
https://nda.nih.gov/experimentView.html?experimentId=1852&amp;collectionId=3151
https://doi.org/10.7303/syn48374287.1
https://github.com/NIMH-HBCC
https://github.com/NIMH-HBCC
https://elifesciences.org/labs/8653a61d/introducing-binder-2-0-share-your-interactive-research-environment
https://elifesciences.org/labs/8653a61d/introducing-binder-2-0-share-your-interactive-research-environment
https://elifesciences.org/labs/8653a61d/introducing-binder-2-0-share-your-interactive-research-environment
https://doi.org/10.1523/JNEUROSCI.0830-22.2023.f1-1
https://doi.org/10.1523/JNEUROSCI.0830-22.2023.f1-2
https://doi.org/10.1523/JNEUROSCI.0830-22.2023.f1-3
https://doi.org/10.1523/JNEUROSCI.0830-22.2023.f1-4
https://doi.org/10.1523/JNEUROSCI.0830-22.2023.f1-5
https://doi.org/10.1523/JNEUROSCI.0830-22.2023.f2-1
https://doi.org/10.1523/JNEUROSCI.0830-22.2023.f2-1


(Fig. 2) (Zeng et al., 2012; Hodge et al., 2019). Subcluster layer
assignment was verified with comparison to the Allen Brain
Institute’s ISH atlas (Extended Data Fig. 2-3) (https://human.
brain-map.org/ish/search). We further validated our subcluster
classification by demonstrating strong overall correlation with
excitatory neuronal clusters defined in other studies across vari-
ous cortical regions in both mouse and human (Extended Data
Fig. 2-5) (Habib et al., 2017; Lake et al., 2018; Tasic et al., 2018;
D. Wang et al., 2018).

We next integrated the neuronal clusters identified here with
the Allen Brain Institute’s Human Multiple Cortical Areas
SMART-seq dataset (Fig. 2E; Extended Data Fig. 2-4), which
includes data from middle temporal gyrus, ACC, primary vis-
ual cortex, primary motor cortex, primary somatosensory cor-
tex, and primary auditory cortex (https://portal.brain-map.

org/atlases-and-data/rnaseq) and defines neuronal populations
that are conserved across species with anatomically confirmed
layer assignments and inferred connectivity of intratelencephalic
(IT: all upper- and middle-layer subclasses), extratelencephalic
(ET: Ex25), corticothalamic (CT: Ex12), layer 6b (Ex13 and
Ex22), and near-projecting (NP: Ex17) cells (Hodge et al., 2019;
Bakken et al., 2021). Notably, L4 IT and L3-5 IT neuron subtypes
characteristic of primary visual, sensory, and motor cortices
were not found. Other exceedingly rare L5, L5/6, and L6
classes were also not found in our dataset. Using this classifi-
cation method, most HBCC subclusters mapped to several
Allen clusters with one cluster being favored (Fig. 2E;
Extended Data Fig. 2-4). Rarely, multiple HBCC subclusters
would map to the same Allen cluster. A clear one-to-one cor-
respondence for the lower-layer neuronal subpopulations

Figure 1. Molecularly defined broad cell types in the human DLPFC and sgACC from 8 male subjects (for donor details, see Extended Data Fig. 1-1). A, Workflow diagram of 10� Genomics
snRNA-seq library capture, sequencing, and alignment (for sample metrics, see Extended Data Fig. 1-2), and RNAscope validation. Correlations between technical replicates can be found in
Extended Data Figure 1-3. B, tSNE plot of broad cell clusters. C, Expression violin plots of canonical marker genes enriched in each broad cell type (see also Extended Data Figs. 1-4 and 1-5). D,
Proportion of nuclei count from each of 8 donors in each broad cell cluster. E, Normalized expression of the most representative canonical marker gene for each broad cell type visualized in
relation to the tSNE plot.
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was observed. Middle- and upper-layer subclusters were less
well-matched to corresponding clusters. Using this data inte-
gration, we labeled our clusters following common cell type
nomenclature guidelines (Miller et al., 2020). The labels
included layer specificity, inferred connectivity, and major
classifying markers, keeping the Allen nomenclature where

their classifying markers coincided with ours (Fig. 2E;
Extended Data Figs. 2-2 and 2-4).

The smallest subcluster, Ex25 (Exc L5 ET FEZF2 GABRQ),
integrated with multiple Allen L5 ET classes, but primarily with
Exc L5 FEZF2 MORN2, a rare cell type found primarily in the
ACC. Intriguingly, Ex25 displayed a gene expression signature

Figure 2. Subclusters of excitatory (Ex) and inhibitory (In) neurons (for subcluster details, see Extended Data Fig. 2-1). A, B, Nomenclature and tSNE plot of Ex and In subclusters, respec-
tively. Nomenclature format: Excitatory or versus inhibitory, projection type (if Ex), cortical layer, marker gene, unique differentially expressed marker gene; HBCC ID is written in parentheses
(see Extended Data Fig. 2-2). tSNE plot shows subclassification of Ex subclusters to upper, middle, or lower cortical layers and subclassification of In subclusters to LAMP5, SST, VIP, and PVALB
(see Extended Data Fig. 2-3). C, D, Expression violin plots for cortical layer marker genes for Ex subclusters and for ganglionic eminence marker genes for In subclusters, respectively (see
Extended Data Fig. 2-3). E, F, Nearest centroid classification of Allen Cell Types Database and HBCC Ex and In subclusters, respectively. Ex Allen clusters are divided into Allen projection sub-
classes. See Extended Data Figure 2-3 for tSNE analysis comparing HBCC and Allen Brain Atlas subclusters and RNAscope validation of select markers and Extended Data Figure 2-4 for compari-
sons of subclusters by brain region. See Extended Data Figure 2-5 for correlation of HBCC subclusters with additional human snRNA-seq datasets. See Extended Data Figure 2-6 for correlation
values of subclusters to each other and Extended Data Figure 2-7 for donor details of cases used for RNAscope studies.
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corresponding to a rare neuron type, the von Economo neuron
(VEN), with enriched expression of VEN markers, such as
ADRA1A, GABRQ, VAT1L, and ADAMTS2 (Extended Data Fig.
2-5). VENs are morphologically defined by a unique spindle
shape and are implicated in the pathogenesis of frontotemporal
lobar dementia and SCZ (Seeley et al., 2006; L. Yang et al., 2019).
The identification of this rare, well-characterized cell type rein-
forces the validity of our subcluster analysis and cell type
classifications.

Transcriptional diversity in inhibitory neurons
In parallel to our analysis of Ex subclusters, we subset the inhibi-
tory neuron nuclei from the larger dataset and performed reclus-
tering to obtain 22 transcriptionally distinct In subclusters (Fig.
2B,D). Except for In22 and In24, both of which consisted of at
least one nucleus from 7 subjects, each subcluster contained at
least one nucleus from all 8 subjects (Extended Data Fig. 2-2).

Differential gene expression was performed to identify spe-
cific markers for each subcluster (Extended Data Fig. 2-1). Our
first observation was that In subclusters segregated along devel-
opmental lineages derived from caudal and medial ganglionic
eminences (CGE and MGE) (Extended Data Fig. 2-3). CGE-
derived interneurons accounted for 54% of all interneurons
and expressed the transcription factors NFIB and PROX1.
MGE-derived subclusters expressed SOX6 and LHX6. Using
RNAscope, we confirmed coexpression of the MGE marker
LHX6 in SST-expressing cells across all cortical layers and in
PVALB-expressing cells in layers IV and above (Extended Data
Fig. 2-3). The CGE marker HTR2C was coexpressed with VIP
in all cortical layers (Extended Data Fig. 2-3). Intriguingly, the
LAMP5 subcluster In06 expressed both CGE and MGE tran-
scription factors (NFIB, LHX6, and SOX6).

We next observed that In subclusters mapped to the four
major classes of inhibitory neurons: SST, PVALB, VIP, and
LAMP5. In subclusters also matched robustly to corresponding
Allen Institute clusters (Bakken et al., 2021). Integration of our
data with the Allen Brain Institute’s Human Multiple Cortical
Areas SMART-seq dataset revealed distinct mapping of all In
subclusters to few related Allen clusters with no overlap between
In subclusters (Fig. 2F), emphasizing the robustness of our clus-
ter classification. Few Allen clusters were not identified among
our In subclusters: Inh L6 SST NPY, L1-2 PVALB TAC1, Inh L6
LAMP5 ANKRD20A11P, Inh L1 VIP SOX11, Inh L1 ADARB2
DISP2, and Inh L1-3 VIP CCDC184 classes, which are especially
rare subtypes, and L4-5 PVALB TRIM67, which is primarily
found in sensory and visual cortices. Similar to Ex subclusters,
the In subclusters were assigned labels following common cell
type nomenclature guidelines (Miller et al., 2020), which include
broad neuronal class, canonical marker gene, and cell type-spe-
cific marker genes.

Numerical differences in neuronal subclusters between
DLPFC and sgACC
While there was no difference between the brain regions in the
overall counts of excitatory cells (Extended Data Fig. 2-1), sig-
nificant differences were found (p, 0.0001) at the subcluster
resolution (Fig. 3). Some Ex subclusters appeared almost exclu-
sively in the DLPFC; these included three supragranular sub-
clusters (Ex15 L2-3 LINC00507 PDGFD, Ex01 L2-4 RORB
CARTPT, and Ex02 L3-4 RORB PRSS12) and one middle-layer
subcluster (Ex03 L4-5 RORB ANXA1) (Fig. 3B,C). Conversely,
one supragranular subcluster (Ex20 L3 LINC00507 PTGER3)
and one middle-layer subcluster (Ex16 L4-5 RORB RSPO3)

exhibited enrichment in the sgACC (Fig. 3B,C). Notably, most
deep-layer excitatory subclusters, consisting of pyramidal pro-
jection neurons, were present in both brain regions with similar
frequencies.

Inhibitory neurons were more numerous in the sgACC
(p, 0.0001) than in the DLPFC (Fig. 3B,C); however, In subclus-
ters exhibited less regional variability than Ex subclusters. Only
In04 L5 PVALB HGF basket cells, In06 L1-6 LAMP5 CA13 and
In01 L1-6 VIP VIP subclusters were significantly enriched in the
sgACC. Overall, we found that heterogeneity of supragranular
Ex cells is the primary distinguishing feature of these cortical
regions.

Transcriptional differences between DLPFC and sgACC for
neuronal subpopulations
We next asked whether transcriptional diversity within sub-
clusters further contributed to differences between these corti-
cal areas by examining differential gene expression between
DLPFC- and sgACC-derived nuclei within each subcluster
(Fig. 3D). Very few DEGs were found for In subclusters with a
median of 14 DEGs of 1083 median total genes detected
(1.3%) (Fig. 3D). Ex subclusters had a median of 67 DEGs per
cluster of 1640 median total genes detected (4.1%). In particu-
lar, six Ex subclusters had extremely high interregional varia-
tion in gene expression Ex06 (20.0%), Ex25 (17.4%), Ex10
(16.4%), Ex08 (12.6%), Ex12 (9.6%), Ex13 (6.3%), and Ex02
(5.2%) (Fig. 3D). GO analyses on these subclusters were per-
formed to identify molecular processes that distinguish each
brain region (Extended Data Fig. 3-2). The predominant dif-
ferences included enrichment for synapse organization, cell-
cell adhesion, trans-synaptic signaling, and other GO terms
associated with functions of neurotransmission in the sgACC
versus DLPFC (Extended Data Fig. 3-2).

Ex25 (Exc L5 ET FEZF2 GABRQ) had the highest absolute
number of DEGs of the neuronal subclusters. This was the only
extratelencephalic projecting subcluster identified in our dataset.
Upon closer inspection, we found that GABRQ, a marker gene
for VENs (L. Yang et al., 2019; Hodge et al., 2020) was only
expressed in sgACC-derived nuclei of the Ex25 subcluster (Fig.
4A), whereas other markers for VENs (ADRA1A, VAT1L, and
ADAMTS2) were present in both brain regions. Despite the large
number of interregional DEGs, this subcluster could not be fur-
ther subdivided using our unbiased classification methods as
clustering using a higher resolution would have yielded clusters
without representation from all individuals. We therefore inves-
tigated whether this population of neurons simply had a lower
level of GABRQ expression in the DLPFC not detected by our
single-nucleus methodology or whether they were indeed dis-
tinct populations. Using RNAscope, we examined the coex-
pression of GABRQ and ADRA1A in the DLPFC and sgACC
and found that (1) GABRQ expression was indeed restricted to
the sgACC and was not present in ADRA1A-expressing neu-
rons in the DLPFC and (2) that these cells exhibited distinct
morphologies in the two brain regions. The ADRA1A/GABRQ
double-positive neurons in layer V of the sgACC exhibited
classic spindle-shaped morphology that typifies VENs,
whereas the ADRA1A-positive neurons in the DLPFC exhib-
ited the more generalized pyramidal morphology (Fig. 4B;
Extended Data Fig. 4-1).

Cellular enrichment of psychiatric disorder transcriptomic
and GWAS signals
Last, we examined the enrichment of bulk-tissue RNA-seq stud-
ies of psychiatric disorders, SCZ, BD, and ASD (Fromer et al.,
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Figure 3. Neuronal diversity between the DLPFC (salmon) and sgACC (cyan). A, tSNE plots showing excitatory (Ex) and inhibitory (In) neuronal subclusters colored by brain region. B,
Percentage of cells in each brain region for each subcluster. C, Proportion of cells for each brain region for each subcluster, shown as logit values of ranked numerosity. Ex20, Ex15, Ex01, Ex02,
Ex03, Ex16, In04, and In05 have nonoverlapping CIs. Wilcoxon rank sum test showed that Ex15, Ex01, and In04 have significant differences between DLPFC and sgACC after adjusted p values:
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2016; Gandal et al., 2018a; Jaffe et al., 2018), in our transcrip-
tomic profiles of neuronal subpopulations. To this end, we per-
formed hypergeometric tests on data from cell type-specific
enrichment of DEGs obtained from the largest postmortem
RNA-expression meta-analysis to date (Gandal et al., 2018b). In
parallel, we used LDSC on GWAS signals derived from large
case-control studies (Schizophrenia Working Group of the
Psychiatric Genomics Consortium, 2014; Wray et al., 2018;

Demontis et al., 2019; Grove et al., 2019; Stahl et al., 2019) to
examine the enrichment of heritable loci across neuronal sub-
clusters for the same three neuropsychiatric disorders and two
more: ADHD and MDD.

At the broad cell cluster level, glial cells exhibited the greatest
enrichment for transcriptional changes across psychiatric disor-
ders. Astrocytes were particularly enriched for DEGs upregulated
in SCZ and ASD. Microglia and endothelial cells were highly
enriched for DEGs downregulated in SCZ and BD. Neurons
were enriched for DEGs downregulated in ASD and upregulated
in BD but showed no enrichment in the other disorders (Fig. 5).

Additional DEG enrichment signals emerged when assessing
neurons at the resolution of subclusters. Several Ex subclusters,
primarily in the DLPFC, were associated with altered expression
in ASD. Gene expression dysregulation in BD was associated
with two In (In01 Inh L1-6 VIP VIP, In19 Inh L4-6 SST RCAN3)
and two Ex subclusters (Ex10 Exc IT L2-3 LINC00507 SEMA3C,

/

**p, 0.05. Ex20, Ex02, Ex03, Ex16, In01, and In06 also show meaningful differences
between DLPFC and sgACC with unadjusted p values: *p, 0.005. D, Number of differential
expressed genes for each brain region within each subcluster (FDR, 0.05, logFC. 0.1)
(Extended Data Fig. 3-1). See Extended Data Figure 3-2 for subcluster enriched GO terms and
Extended Data Figure 3-3 for the proportional contribution of individual donors to each
subcluster.

Figure 4. Putative VEN subcluster Ex25. A, Ex25 gene expression of VEN markers in the DLPFC and the sgACC. B, RNAscope histology images comparing VENs in human DLPFC and sgACC sec-
tions. ADRA1A and GABRQ transcripts were detected with chromogenic RNAscope probes, red and green, respectively. ADRA1A1/GABRQ1 neurons were found in layer V in both the sgACC and
DLPFC. Note the different morphology of the cell bodies in DLPFC and the apparent reduction in expression of GABRQ. For additional images, see Extended Data Figure 4-1. C, Enrichment anal-
ysis of genes with greater expression in the sgACC within Ex25 neuronal subpopulation, using GO (left), KEGG (middle), and DisGeNET database of gene-disease associations (right). Point size
represents the number of genes that are differentially expressed and within a particular enrichment category (e.g., a GO term).
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Ex03 Exc IT L4-5 RORB ANXA1). Eighteen In and Ex subclus-
ters were enriched for transcriptional changes in SCZ in either or
both the DLPFC and sgACC (Fig. 5).

GWAS signals at the broad cell class level were generally
enriched in neurons and OPCs, especially for BD and MDD,
with no significant enrichment in astrocytes, oligodendrocytes,
microglia, or endothelial cells across disorders. For SCZ, a nomi-
nal association for GWAS signals with broad neuronal classes
was found; however, this did not survive FDR correction.
Additional GWAS signal enrichment for specific neurons was
found at the subcluster classification level, especially for SCZ,

where enrichment of SCZ genetic signals was identified in four
Ex subclusters (Ex15 Exc IT L2-3 LINC00507 PDGFD, Ex7 Exc
IT L6 THEMIS TMEM233, Ex14 Exc IT L6 THEMIS THEMIS,
and Ex20 Exc IT L3 LINC00507 PTGER3). Intriguingly, two of
these Ex subclusters also featured transcriptional alteration in
SCZ: Ex20 in the sgACC and Ex14 in the DLPFC. While no
GWAS signals mapped to Ex25 Exc ET L5 FEZF2 GABRQ, this
subcluster was enriched for DEGs upregulated in SCZ only in
the sgACC. Only one In neuronal subcluster (In07 Inh L2-4 SST
AHR) exhibited GWAS enrichment in BD, and no neuronal
enrichment was found for ADHD and MDD (Fig. 5).

Figure 5. Cellular enrichment of psychiatric disorders. Blue heatmaps represent transcriptomic cell type-specific enrichment of upregulated and downregulated DEGs for different psychiatric
disorders (SCZ, BD, ASD). Red heatmaps represent genetic cell type-specific enrichment of GWAS loci for different psychiatric disorders (SCZ, BD, ASD, ADHD, MDD). Rows represent HBCC cell
types. Each cell type is divided by brain region. Scales represent –log(FDR p value) of enrichment. Values that are statistically significant are shown and starred. Upregulated and downregulated
DEGs were obtained from Gandal et al. (2018b). GWAS signals were obtained from the following studies: Schizophrenia Working Group of the Psychiatric Genomics Consortium (2014); Wray et
al. (2018); Demontis et al. (2019); Grove et al. (2019); and Stahl et al. (2019).
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Discussion
Neuronal diversity in the DLPFC and sgACC
In this study, we sought to characterize the cellular composi-
tion of the DLPFC and sgACC, two brain regions implicated
in various psychiatric disorders (Drevets et al., 2008;
Guillozet-Bongaarts et al., 2014). Through snRNA-seq of
these brain regions from 8 individuals with no history of
mental illness, we were able to profile 63,901 nuclei, ulti-
mately identifying 42 transcriptionally distinct neuronal
populations using an unbiased, data-driven approach. The
transcriptional identities of these subclusters proved to be
quite robust. Most clusters corresponded tightly to those
defined by the Allen Institute Multiple Cortical Areas
SMART-seq dataset, which were achieved with layer-specific
dissections and much deeper sequencing.

GABAergic interneurons have been classically defined by
their derivation from either the MGE or CGE, their expres-
sion of the canonical markers SST, PVALB, VIP, or LAMP5,
and morphology. While the molecular definition of these
cells remains unclear, a few populations could be clearly
defined: In21 Inh L3-6 PVALB COL15A1 are presumably
Chandelier cells because of expression of TRPS1 and PTHLH
and integration with Allen Inh L1-3 PVALB MFI2 (Fig. 2F)
(Marin and Muller, 2014); and In02 (Inh L1-4 LAMP5 KIT)
are likely Rosehip neurons, with the molecular profile
GAD11/CCK1/CNR1–/SST–/CALB2–/PVALB– (Boldog et al.,
2018). We also identified a rare LAMP5 subtype (In06 Inh
L1-6 LAMP5 CA13) with characteristics of both MGE and
CGE derivation (Extended Data Fig. 2-2H). A similar popu-
lation was identified in mouse (Tasic et al., 2018) and human
(Luo et al., 2022), and a recent study using integrative cross-
species alignment and ISH in mouse and marmoset hypothe-
sizes that these LAMP51/LHX61 cells may be MGE-derived
(Krienen et al., 2020). The remaining populations of SST,
VIP, PVALB, and LAMP5 cells do not map unequivocally to
specific morphologic or neurophysiological types, although
recent works attempt to bridge this gap (Gouwens et al.,
2019; Scala et al., 2021). An approach combining immuno-
histochemical markers, morphology, and RNA probes could
help map molecular definitions to morphologic/functional
GABAergic classes.

Unlike interneurons, Ex subclusters exhibited considerable
diversity across cortical regions. Diversity in cell numbers was
greatest in supragranular layers (Fig. 3C), while diversity in
expression was distributed across different layers (Fig. 3D). The
correspondence of our Ex subclusters with those from the Allen
Institute was less precise for superficial layer classes than deeper-
layer Ex subclasses. Three distinct cell types identified in our
study (Ex10, Ex15, and Ex01) mapped to Exc L2-3 LINC00507
RPL9P17 in the Allen dataset, and Ex20 and Ex18 both mapped
to Exc L3 LINC00507 PSRC1. This may reflect evolutionary
expansion of supragranular layers in human (DeFelipe, 2011),
resulting in regional specialization of cells within these superfi-
cial layers. Indeed, several superficial and middle-layer Ex sub-
classes tend to be enriched in one or few regions, whereas
deeper-layer subclasses appear to be present across brain regions
(Extended Data Fig. 3-1B,C). Interestingly, the Allen cell classes
derived primarily from the ACC (Exc L3-5 RORB HSBP3, Exc
L3-5 RORB CD24, Exc L3-5 LINC00507 SLN, and Exc L3-5
LINC00507 PSRC1) were found enriched in the sgACC, which is
a contiguous brain region. Supragranular layers consist mostly of
corticocortical projection neurons (Krienen et al., 2016), which
are postulated to be more varied in higher-order cortical regions

to support specialized local information processing. Deeper-layer
projection neurons responsible for communicating with other
cortical and extracortical regions exhibited less regional variation
in cell proportions.

These differences in cell types are also reflected in the
cytoarchitectonics of the two regions, the major difference
being the relative absence of granular layer 4 in the sgACC
(Rajkowska and Goldman-Rakic, 1995; Palomero-Gallagher
et al., 2008) . Overall, layer 4 RORB-expressing Ex neurons
were 2.6-fold overrepresented in DLPFC versus sgACC. Specifically,
three abundant L4-enriched Ex subclasses (Ex01 IT L2-4 RORB
CARTPT, Ex02 IT L3-4 RORB PRSS12, Ex03 IT L4-5 RORB
ANXA1 in Fig. 3C) were significantly overrepresented in
DLPFC. Only the rarer Ex16 IT L4-5 RORB RSPO3 was overre-
presented in sgACC (Fig. 3B; Extended Data Fig. 2-1).

We also identified a rare, well-defined cell population, the
VEN (Ex25 Exc ET L5 FEFZ2 GABRQ). VENs are extratelence-
phalic projecting excitatory neurons with morphologically char-
acteristic spindle-shaped cell bodies primarily found in the
fronto-insular, anterior cingulate, and medial fronto-polar corti-
ces (González-Acosta et al., 2018; Banovac et al., 2021). In our
dataset, Ex25 had the greatest number of intercortical DEGs
and indeed expressed canonical VEN markers, such as
ADRA1A and ADAMTS2. However, Ex25 in the DLPFC did
not express GABRQ. Moreover, we noted that, in the DLPFC,
these ADRA1A-positive cells exhibited pyramidal morphology
as opposed to having a spindled or forked morphology. Hodge
et al. (2020) similarly found that this population also mapped
to both pyramidal and forked cell morphologies, and others
have suggested the existence of VENs in the DLPFC (BA9)
(Fajardo et al., 2008; González-Acosta et al., 2018). The fact that
these populations of neurons consistently cocluster across stud-
ies and datasets suggests that L5 ET cells play similar functional
roles across the two brain regions. Like Ex25, other intratelen-
cephalic projecting cell types (Ex10 in L2-3 or Ex06 in L3-5)
also exhibit marked intercortical differential gene expression.
The sgACC has reciprocal connections with medial and or-
bital frontal cortical areas, entorhinal cortex and amygdala
(Calderazzo et al., 2021; McHale et al., 2022), whereas the
DLPFC connects to lateral frontal, parietal, insular, and supe-
rior temporal regions (Yeterian et al., 2012); it is possible that
the large number of intercortical DEGs present in these long-
range projection neurons reflect the underlying differences in
connectivity.

Enrichment of psychiatric genetic signals and transcriptional
changes in specific neuronal populations
One key advantage of cell-type classification is the ability to in-
terrogate the contribution of individual cell populations to the
development and expression of psychiatric disorders. To this
end, we examined the cell-specific enrichment for both heritabil-
ity signals and alterations of gene expression. Our findings sug-
gest: (1) that the genetic determinants of psychiatric disorders
act primarily on neurons; (2) that the gene expression changes
detected in bulk-RNA-seq studies are dominated by the response
of glial cells to the changes in neurons or factors arising after ill-
ness onset; and (3) that gene expression changes in neuronal sub-
populations are masked in bulk-RNA-seq studies.

Neurons exhibited enrichment for GWAS signals for BD
and MDD at the broad class level; however, enrichment of
specific neuronal subclusters was not evident for these disor-
ders. However, neuronal subclassification revealed surpris-
ingly strong enrichment for SCZ GWAS signals in four Ex
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subclusters: Ex15 IT L2-3 LINC00507 PDGFD and Ex14 IT L6
THEMIS THEMIS in the DLPFC; Ex20 IT L3 LINC00507
PTGER3 in the sgACC; and Ex7 IT L6 THEMIS THEM233 in
both brain regions. No cell type-specific enrichment was
observed for GWAS variants associated with ASD, possibly
reflecting (1) the smaller size of ASD GWAS studies (Grove et
al., 2019) or (2) that rare de novo variants might contribute
disproportionately to the genetics of ASD (Iossifov et al., 2014;
Sestan and State, 2018; T. Wang et al., 2020). Others have found
enrichment of GWAS signal for SCZ and BD in several excita-
tory and inhibitory subclasses (Skene et al., 2018; Tran et al.,
2021) and for ASD in one inhibitory subtype, OPCs, oligoden-
drocytes, and astrocytes (Tran et al., 2021). Skene et al. (2018)
associated GWAS signals for both SCZ and BD to many of the
same inhibitory and excitatory cell types. Our study includes a
larger number of nuclei (63,901 vs ;14,000) and finer resolu-
tion clustering for Ex and In subtypes, enabling resolution of
differences in the neuronal association of SCZ and BD GWAS
signals. Additional key differences include our use of human
single nuclei versus mouse single cell data; our focus on two
prefrontal cortical brain regions versus the inclusion of stria-
tum, somatosensory, and hippocampus, and differences in the
multiple comparison correction procedures used. Regarding
Tran et al. (2021), differing results may be explained by: (1) our
use of LDSC versus MAGMA to determine relevant GWAS sig-
nals; (2) the resolution of the cell types resolved; and (3) the
threshold for cell type gene specificity selected for analysis.
Nevertheless, the convergent finding is that the heritable factors
contributing to the development of a psychiatric disorder act
primarily through neurons.

Differential gene expression paints a different picture. DEGs
for SCZ, BD, and ASD were enriched primarily in glia, microglia,
and endothelial cells with less significant enrichment scattered
throughout several In and Ex subclusters. For BD, DEGs derived
from studies of the DLPFC (Gandal et al., 2018b) were minimally
enriched in neuronal subclusters. However, DEGs identified in a
separate study of sgACC (Akula et al., 2021) were not enriched
in any cell type, most likely because this study contained only 39
cases with BD (data not shown). Analysis of a more recent RNA-
seq study of 138 cases with BD in the sgACC (Zandi et al., 2022)
confirmed the findings based on transcriptomics in the DLPFC
of BD (Gandal et al., 2018b) (data not shown). With respect to
ASD, DEG enrichment primarily localized to upper- and mid-
dle-layer Ex subclusters in the DLPFC, corroborating findings by
others that upper-layer excitatory neurons (Velmeshev et al.,
2019) and the PFC is most affected in ASD (Courchesne et al.,
2011; Parikshak et al., 2016; Brumback et al., 2018; Schwede et
al., 2018). Two PVALB In subclusters, In04 and In05, were
enriched for genes downregulated in ASD. This result aligns
with the finding of decreased numbers of PVALB1 interneurons
in the PFC of ASD brains (Hashemi et al., 2017).

For SCZ, astrocytes exhibited the strongest enrichment for
genes with increased expression in disease and a few Ex sub-
clusters exhibited enrichment for genes with either increased
expression in superficial layer subclusters (Ex20 IT L3 LINC00507
PTGER3, Ex18 IT L3 LINC00507 PSRC1, and Ex06 IT L3� 5
RORB IZUMO3) or reduced expression in middle- or lower-layer
subclusters (Ex08 IT L4� 5 RORB RPRM, Ex09 IT L4� 5 RORB
TDO2, Ex14 IT L6 THEMIS THEMIS, and Ex22 L6b FEZF2
CTGF). Recent snRNA-seq studies of SCZ also found enrich-
ment of DEGs in similar excitatory cell classes (Ruzicka et al.,
2020; Reiner et al., 2021; Batiuk et al., 2022). We noted that Ex25
L5-ET L5 FEZF2 GABRQ (VENs) in the sgACC, but not DLPFC,

exhibited modest enrichment for genes upregulated in SCZ and
ASD, in line with other studies that suggest VENs may be selec-
tively vulnerable in SCZ, ASD, and frontotemporal lobar demen-
tia (Uppal et al., 2014; Krause et al., 2017; Y. Yang et al., 2017;
Hodge et al., 2020). Regarding inhibitory cells, VIP In subclusters
were enriched for genes with increased expression in SCZ; and
while some enrichment was found for SST and LAMP5 In sub-
clusters, no enrichment was noted for any PVALB In subclusters.
This finding stands in contrast to findings of presynaptic and
postsynaptic abnormalities in PVALB cells (for review, see Lewis
et al., 2012), possibly because some within-subcluster alterations
may go undetected in homogenate RNA-seq studies, which are
more likely to capture global changes across multiple cell classes
or changes from a dominant cell population.

Only for SCZ did two cell types demonstrate enrichment for
both GWASs and differential expression signals: Ex20 IT L3
LINC00507 PTGER3 and Ex14 IT L6 THEMIS THEMIS. This
finding is tantalizing as it suggests a possible connection between
heritable features and transcriptional phenotypes within these
cell types. Given that more cell types did not exhibit convergent
signals suggests that these excitatory neuronal cell types may ex-
hibit the strongest dysregulation in SCZ and may be the primary
driving defect underlying the disorder. In this hypothetical
framework, the transcriptional changes identified in glia and In
subtypes are a compensatory/regulatory response to Ex cell dys-
function. Still, it is possible that (1) some transcriptional changes
in other individual neuronal subclusters are obscured in homog-
enate RNA-seq studies; and that (2) GWAS signals that act dur-
ing development may not be expressed in the appropriate cell
type in adulthood and remain undetected.

Our study was limited by: (1) small sample size of only male
individuals; (2) technical differences between the 10� Genomics
and SMART-seq platforms resulting in reduced detection of
low-expressed genes; and (3) nuclei isolation biased toward col-
lection of neuronal nuclei over glial nuclei, making detection of
rare cell types difficult. We were unable to identify the Allen
Brain SST CHODL cluster (Inh L6 SST NPY), which is a rare
SST interneuron with long-range projections. Additionally, our
requirement that each subcluster be present in all or almost all
the subjects, while conservative, also increases the likelihood of
missing rare cell types. While it is possible that clusters might
represent distinct transcriptional states of a similar cell subtype
(Kharchenko, 2021), the correspondence of the cell types identi-
fied here to those from the Allen Institute supports the validity of
our clustering methods.

In conclusion, we analyzed snRNA-sequencing data from the
DLPFC and sgACC, identified 42 robust neuronal subclasses, elu-
cidated cellular and molecular differences between the regions,
and mapped genetic risk and expression changes associated with
psychiatric disorders onto specific cell types. These findings reveal
new insights into the functional differences between the sgACC
and DLPFC and identify hypothetical mechanisms by which these
functions might be altered in SCZ, MDD, BP, and ASD.
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