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Gustatory cortical (GC) single-neuron taste responses reflect taste quality and palatability in successive epochs. Ensemble
analyses reveal epoch-to-epoch firing-rate changes in these responses to be sudden, coherent transitions. Such nonlinear dy-
namics suggest that GC is part of a recurrent network, producing these dynamics in concert with other structures.
Basolateral amygdala (BLA), which is reciprocally connected to GC and central to hedonic processing, is a strong candidate
partner for GC, in that BLA taste responses evolve on the same general clock as GC and because inhibition of activity in the
BLAfiGC pathway degrades the sharpness of GC transitions. These facts motivate, but do not test, our overarching hypothe-
sis that BLA and GC act as a single, comodulated network during taste processing. Here, we provide just this test of simulta-
neous (BLA and GC) extracellular taste responses in female rats, probing the multiregional dynamics of activity to directly
test whether BLA and GC responses contain coupled dynamics. We show that BLA and GC response magnitudes covary
across trials and within single responses, and that changes in BLA–GC local field potential phase coherence are epoch spe-
cific. Such classic coherence analyses, however, obscure the most salient facet of BLA–GC coupling: sudden transitions in and
out of the epoch known to be involved in driving gaping behavior happen near simultaneously in the two regions, despite
huge trial-to-trial variability in transition latencies. This novel form of inter-regional coupling, which we show is easily replicated
in model networks, suggests collective processing in a distributed neural network.
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Significance Statement

There has been little investigation into real-time communication between brain regions during taste processing, a fact reflect-
ing the dominant belief that taste circuitry is largely feedforward. Here, we perform an in-depth analysis of real-time interac-
tions between GC and BLA in response to passive taste deliveries, using both conventional coherence metrics and a novel
methodology that explicitly considers trial-to-trial variability and fast single-trial dynamics in evoked responses. Our results
demonstrate that BLA–GC coherence changes as the taste response unfolds, and that BLA and GC specifically couple for the
sudden transition into (and out of) the behaviorally relevant neural response epoch, suggesting (although not proving) that:
(1) recurrent interactions subserve the function of the dyad as (2) a putative attractor network.

Introduction
As a rat feeds, gustatory cortical (GC) single-neuron taste re-
sponses take the form of a sequence of distinct epochs separated

by sudden ensemble transitions. The epoch that starts at 0.5–1.5 s
(depending on the trial) contains firing that is staunchly palatabil-
ity related; the transition into that epoch, which is so sudden that it
is analytically indistinguishable from state switching (Sadacca et al.,
2016; see below for distinction of the terms epoch and state), both
predicts and drives taste-related oral behavior (Sadacca et al., 2012;
Li et al., 2016; Mukherjee et al., 2019). Theory suggests that such
dynamics are most easily generated by a distributed circuit in
which strong recurrent connectivity (Maass et al., 2007; Miller and
Katz, 2010, 2013; Edelman and Gally, 2013; Mante et al., 2013;
Kietzmann et al., 2019) couples separate regions into a single proc-
essing unit; such recurrence is abundant within the taste circuit
(Bielavska and Roldan, 1996; McDonald, 1998; Shi and Cassell,
1998).

Particularly notable in this regard is the reciprocally connected
GC–basolateral amygdala (BLA) dyad. Work investigating these
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brain regions separately (Katz et al., 2001; Fontanini et al., 2009;
Sadacca et al., 2012) has revealed striking similarities in the trial-
averaged dynamics of their taste responses. Furthermore, BLA–
GC connectivity has proven important for both taste learning (Lin
and Reilly, 2012; Lin et al., 2015; Lavi et al., 2018; Kayyal et al.,
2019) and taste processing (Lin et al., 2021). This latter study spe-
cifically demonstrated that the suddenness of the behaviorally
relevant GC ensemble transitions to the palatability epoch is
degraded by inhibition of BLA!GC axons. These results pro-
vide indirect evidence for a general hypothesis that BLA and GC
work together during taste processing but stop far short of test-
ing the existence of dynamic BLA-GC coupling; in fact, there has
been little work directly investigating communication between
any pair of taste-relevant brain regions (but see Di Lorenzo and
Monroe, 1997).

Work investigating pairs of regions involved in other proc-
esses—decision-making (Antzoulatos and Miller, 2016; Place et
al., 2016; Zielinski et al., 2019), sensory-motor transformation
(Arce-McShane et al., 2016), vision (Bastos et al., 2015; Zandvakili
and Kohn, 2015; Saravani et al., 2019; Lundqvist et al., 2020), and
motor planning (Yates et al., 2017; Ames and Churchland, 2019)—
has revealed inter-regional spiking and field potential coherence
but has done so using metrics for which temporal resolution, par-
ticularly at the single-trial level, is limited. Given the epochal nature
of taste processing, the suddenness of GC ensemble transitions into
palatability responsiveness, and the trial-specific latency of this
transition, testing GC–BLA coupling requires techniques that
permit evaluation of the moment-to-moment evolution of the
BLA–GC relationship. The fact that the suddenness of GC ensem-
ble transitions (Sadacca et al., 2016; Mukherjee et al., 2019)
depends on an intact BLA!GC pathway (Lin et al., 2021) moti-
vates our novel, central prediction, that this moment of transition
will be coupled across BLA–GC ensembles.

Here, we present an in-depth investigation of BLA–GC taste–
response coordination, beginning with canonical methods [corre-
lations of spiking in whole trials and phase coherence of local field
potentials (LFP) across trials] and progressing to the testing of our
novel hypothesis. The former allows us to show trial-specific and
time-varying coupling in BLA and GC taste responses—reduc-
tions in phase coherence (Stitt et al., 2017) that appear and vanish
in an epoch-specific manner. But because these analyses necessar-
ily obscure coupling in the trial-specific timing of sudden state-to-
state ensemble transitions, we move on to explicit modeling of
state transitions in ensemble time series data (Rabiner, 1989;
Sadacca et al., 2016); these analyses allow us to confirm our predic-
tion that BLA–GC coordination integrally involves sudden, brief
coupling of the specific transitions that predict and drive palat-
ability-related behavior. Finally, computational modeling dem-
onstrates that these results (coordinated state transitions with
variable statewise functional connectivity) are easily recapitu-
lated within a simple multiregion network. These results overall
lead us to suggest that BLA and GC form a functional unit for
purposes of taste processing.

Materials and Methods
Experimental design and statistical analyses
Subjects
Adult, female Long–Evans rats (n = 8, 300–350 g at time of electrode im-
plantation, Charles River Laboratories) served as subjects in our study.
(We have observed no sex differences in the basic cortical dynamics of
taste responses between male and female rats, and therefore use female
Long–Evans rats because they are, in our hands, calmer than males.) The
rats were housed in individual cages in a temperature- and humidity-

controlled environment under a 12 h light/dark cycle, given access to
food and water ad libitum before the start of experimentation, and
weighed daily following surgery to ensure that they never dropped below
80% of their presurgery weight. All experimental methods were in com-
pliance with National Institutes of Health guidelines and were approved
in advance by the Brandeis University Institutional Animal Care and
Use Committee.

Electrode and intraoral cannula construction
Custommicrowire bundle drives were made with either 16 or 32 electro-
des per recording site (design and construction details available at
https://katzlab.squarespace.com/technology). Intraoral cannulae, flexible
tubing with a flanged tip and washer to ensure stability, connected to a
plastic top complete with a locking mechanism, were built to allow the
delivery of tastants directly onto the tongue (Fontanini and Katz, 2006).

Acquisition of electrophysiological data
Electrophysiological signals from the microelectrodes were sampled at
30 kHz using 32-channel analog-to-digital converter chips (catalog
#RHD2132) from Intan Technologies, digitized online at the head stage
and sampled jointly, along with signals from actuators marking tastant
delivery, using an Intan RHD USB interface board (catalog #C3100),
which routed records to the hard drive of a PC for saving. The experi-
mental chamber was ensconced in a Faraday cage that shielded record-
ings from external electromagnetic influences.

Surgery
Rats were anaesthetized with an intraperitoneal injection of ketamine/
xylazine cocktail (100mg/kg and 5.2mg/kg, respectively) and mounted
in a stereotaxic instrument (David Kopf Instruments) with blunt (atrau-
matic) ear bars. A midline incision exposed the skull, and trephine holes
(;2 mm diameter) were drilled above BLA and GC. For six (of eight)
rats, microwire bundles were implanted at the dorsal surface of GC (coordi-
nates, AP 11.4 mm, ML �5.0 mm, DV �4.4 mm from dura) and BLA
(coordinates, AP �3.0 mm, ML �5.0 mm, DV �6.8 mm from dura). For
the remaining two rats, bundles were instead implanted bilaterally above
BLA. Once in place, electrode bundles were cemented to the skull. Once
electrode bundles were secured, an intraoral cannula (IOC) was threaded
through the masseter muscle (inside the zygomatic arch) to the space
between the lip and gums, and the top of the cannula was cemented to the
rest of the assembly with dental acrylic (Fontanini and Katz, 2006). The
body temperature of the rat was monitored and maintained at;37°C by a
heating pad throughout the duration of the surgery.

Habituation and passive taste administration
Following recovery from surgery, we habituated rats to the experimental
chamber for 2 d, to the IOC/electrode harness for the next 2 d, and to
passive water deliveries for the following 2 d before beginning data col-
lection. Starting with the second habituation day, we also placed rats on
a mild water restriction schedule of 20 ml of water (not including the;4
ml delivered during habituation sessions) per day. This water restriction
schedule was maintained until the end of the experiment. For the two
final habituation sessions, we attached the rats to the taste delivery appa-
ratus and infused 120 pulses of distilled water (;30 ll per pulse; 20 s
interpulse interval) into the oral cavity of the animal through the IOC
and drove electrode bundles deeper (by 250lm) into target structures.
By the end of this procedure, the tips of the electrodes lay within GC and
BLA. We then recorded taste responses during 3–4 d of taste delivery
sessions; between each session the microwire bundle was driven down
;60lm. During these sessions, sucrose (0.3 M), sodium chloride (0.1 M),
citric acid (0.1 M), and quinine (1 mM), dissolved in ultrapure water
(;30 ll per pulse; 20 s interpulse interval, 30 trials/tastant) were deliv-
ered to passive rats (i.e., no behavior was required to elicit delivery).
These concentrations were chosen to represent a range of hedonic values
and because they are known to evoke robust responses in both GC and
BLA (Fontanini et al., 2009; Sadacca et al., 2012).

Histology
In preparation for histology, rats were deeply anesthetized with an over-
dose of the ketamine/xylazine mixture. We perfused the rats through the
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heart with 0.9% saline followed by 10% formalin and harvested the brain.
The brain tissue was incubated in a fixing mixture of 30% sucrose and 10%
formalin for 7d before being sectioned into 50lm coronal slices on a slid-
ing microtome (Leica SM2010R, Leica Microsystems). Sections containing
the electrode implant sites around GC and BLA were imaged at 2�.

Data and statistical analyses
The analysis of data and statistical tests were performed using custom-
written software in Python and MATLAB R2018a (MathWorks), as
described below.

Local field potential processing and analysis
Filtering/power and phase extractions
LFPs were extracted from broadband digitized signals using a second-
order bandpass Butterworth filter (1–300 Hz), to de-emphasize spiking
and emphasize frequencies typically of interest in such data. To avoid
contamination from noise/artifacts on noisy/broken channels, only
channels containing isolable single neurons (see below) were used for
analyses. Estimates of instantaneous power and phase in delta (1–4 Hz),
theta (4–7 Hz), mu (8–12 Hz), beta (12–30 Hz), and gamma (30–100
Hz) bands were extracting using the Short-time Fourier transform
implementation in Scipy software (Virtanen et al., 2020) with a 500ms
window and 99% window overlap.

LFP phase coherence
Phase coherence analysis was performed, as per Kramer and Eden
(2020), to provide a basic, dynamic, trial-averaged evaluation of BLA
and GC coupling as visible in LFPs. We selected for this analysis the elec-
trodes from which activity was most similar to the mean activity for the
region (smallest mean-squared error relative to the mean phase across
all channels for each region; this selection of channels was constant for
all trials in a single analyzed session, and the same set of channels was
used for all frequencies) to ensure reliable representation of each. The
difference in phase between the (GC and BLA) pair of electrodes for
each time point was calculated across all trials, and the mean of those
phase-difference vectors was calculated for each time point, the magni-
tude of which represents the coherence strength. Coherence values were
averaged across small canonically defined frequency bands, theta (4–7
Hz) and mu (8–12 Hz). Results in other bands were comparable (see
below, Results). The specific calculation was as follows:

CoherenceGC$BLAðf Þ ¼
����
1
N

XN
n¼1

e
�i

�
uGC
t ðf Þ�u BLA

t ðf Þ
�����;

where u GC
t ðf Þ and u BLA

t ðf Þ are the GC and BLA LFP phases for time t
and frequency f, and n is the counter for number of trials.

The error term for the evaluation of coherence magnitude was esti-
mated using bootstrapping by resampling trials with replacement from
individual recordings (500 such resamples were performed for each re-
cording). Changes in taste-induced coherence were determined relative
to baseline. The 750–250ms period before stimulus delivery was selected
as baseline, with time points closer to stimulus delivery ignored to avoid
temporal bleed of coherence between prestimulus and poststimulus peri-
ods because of the slow frequencies considered here. If the mean value of
the coherence during taste responses fell outside the 95% CI of the base-
line period (see above), the deviation was deemed significant. The frac-
tion of recordings with significant deviations were summed at each time
point and across all recordings, enabling an estimation of the aggregate
dynamics of these changes, and the resultant time series were smoothed
(to remove brief, spurious deflections) using a second-order Savitzky–
Golay filter with a 101ms kernel (Press and Teukolsky, 1990). To visual-
ize the dynamics of this phase coherence, changes in coherence from
baseline were calculated for 4–7, 7–12, 12–30, 30–70, and 70–100 Hz,
smoothed as above, and projected into three-dimensional space using
principal component analysis implemented in scikit-learn software
(Pedregosa et al., 2011).

A trial-shuffled control was used to test whether calculated phase co-
herence reflected a default similarity in BLA and GC LFP, that is, to test

whether there were similarities between the regions on single trials above
and beyond those visible in trial-averaged presentations. Essentially, the
same phase-coherence calculations as above were performed on data for
which trial order was shuffled between the pair of channels being com-
pared. Differences between datasets (inter-region, intra-region, and shuffle)
were then evaluated using the repeated measures ANOVA implemented in
the Pingouin package (Vallat, 2018), with Comparison type and Frequency
Band as factors, followed by pairwise Mann–Whitney U tests for post hoc
analysis.

Analysis of spiking activity
Single-unit isolation
Spikes from electrophysiological recordings were sorted and analyzed off-
line using in-house Python scripts (https://github.com/abuzarmahmood/
blech_clust). Putative single-neuron waveforms with .3:1 signal-to-noise
ratio were sorted using a semiautomated algorithm. Recorded voltage data
were filtered between 300 and 3000 Hz, grouped into potential clusters by
a Gaussian Mixture Models fit to multiple waveform features; clusters
were then labeled and/or refined manually (to increase conservatism) by
the experimenters (Mukherjee et al., 2017).

Single-unit-evoked response characterization
Evaluating single-neuron response taste specificity. To statistically

determine the degree to which the response of a single neuron contained
taste-specific information, firing rates were estimated by binning spikes
using rectangular rolling windows (length, 250ms; step, 25ms). A one-
way ANOVA (between tastes) was then run on each window to identify
whether the response of a single neuron to one taste was different from
its responses to any other tastes at that time point; as the ANOVA was
run separately for each time bin, and trials of different conditions (i.e.,
tastes) were separated by tens of seconds and randomized in order, the
assumption of data independence (to which the analysis is fairly robust)
was not inappropriately held. To lessen the likelihood of misidentifying
random noise from true responses, a time bin was deemed to have sig-
nificantly discriminative responses if it was part of three consecutive
time bins with a p value, 0.05.

Evaluating single-neuron response palatability relatedness. To statis-
tically determine the degree to which the response of a single neuron
reflected the hedonic value of the stimuli delivered, we smoothed firing
rates as described above and calculated the Pearson’s correlation coeffi-
cient between the evoked firing rates and the palatability ranks of the
tastants. Palatability ranks [sucrose (1) . NaCl (2) . citric acid (3) .
quinine (4)], directly reflected consumption of (earlier-run squads of)
rats in a Brief Access Task (see Sadacca et al., 2012). This ordering is ca-
nonical and has been replicated in many studies and with multiple meas-
ures of stimulus appreciation (Travers and Norgren, 1986; Clarke and
Ossenkopp, 1998; Fontanini and Katz, 2006). Again, we reduced the like-
lihood of spurious positives in the noisy time series of neural firing by
deeming neural responses to be significantly correlated with palatability
only if the calculated correlation reached a p value of , 0.05 for three
consecutive time bins.

BLA–GC spike count correlation
We extracted paired time series of spike counts across the 0–2000ms
poststimulus delivery for each trial. First-order differencing was per-
formed on these time series to mitigate effects of serial correlations, after
which the data were standardized using z-scoring. Correlations between
the spike trains, and corresponding p values, were calculated using the
Scipy implementation of Spearman’s r (Virtanen et al., 2020). To aggre-
gate comparisons within a single recording, the fraction of correlations
achieving significance across all combinations of inter-region neuron
pairs (for a single recording session) was calculated. As a control, this
same fraction of significant correlations was calculated for 4000 trial-
shuffled comparisons for each dataset to generate bounds on the fraction
of significant correlations expected by chance. If the value for the frac-
tion of significant correlations present in the actual data was beyond the
95% percentile for the corresponding shuffle distribution, the value was
deemed significant.
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Changepoint modeling of population activity
Model fitting for GC. GC ensemble taste responses have been repeat-

edly shown to involve sudden, coherent firing-rate transitions. Because these
transitions typically involve firing-rate changes in ;50% of the neurons in
simultaneously recorded ensembles (Jones et al., 2007), and because they
are sudden and stark (see below), they can be observed in single trials using
any of a number of methods (see Mukherjee et al., 2019) and can be
robustly inferred from ensembles as small as six neurons (Jones et al., 2007).
Here, a multi-changepoint model written in the probabilistic programming
language pymc3 (Salvatier et al., 2016) was used to determine the presence
and latency of changes in ensemble responses.

It is important to note the uncertainty inherent in measuring the la-
tency (and hence duration) of these transitions between hidden states
using point process data (spike trains). This uncertainty is a function of
the magnitude of firing-rate changes, the noisiness of the spike trains
themselves, and the number of simultaneously recorded neurons. Taking
these constraints into account, previous work (Sadacca et al., 2016) has
shown that the durations of transitions in recorded data are statistically
indistinguishable from those observed using simulated data for which the
underlying transition was by design instantaneous, that is, for which the
firing rates of simulated spike trains changed instantaneously at state tran-
sitions. (Note that the latency of these transitions was taken from analysis
of experimental data, and therefore the simulations generated spike trains
with peristimulus time histograms (PSTHs) identical to those in the real
data.) Such analyses allow us to confidently conclude that the transitions
detected in actual data (although they might appear longer because of
noisy inference) likely correspond to instantaneous changes in the under-
lying firing rates of the neurons.

A detailed explanation of the changepoint model structure and code
used to identify ensemble transition times can be found online at https://
github.com/abuzarmahmood/pytau/blob/development/pytau/examples/
Bayesian_Changepoint_Model.ipynb. Briefly, taste-evoked spike trains
(the 2000ms after stimulus delivery) were binned into 50ms bins. Poisson
likelihood was used to model the binned spike counts. The model is broken
down, similar to a hidden Markov model (HMM), into two sets of latent

variables, (1) the emission variables (i.e., firing rates)
and (2) the changepoint position variables (i.e., when
changepoints occur).

The response of a single-neuron to different tastes
will be more similar than the responses of different
neurons (even to the same taste). Equations for the
emission variables below hierarchically model firing
rates (emissions) to exploit this similarity such that the
mean activity of each neuron is modeled independently
(lnrn); emissions for each state and neuron (lstate) are
dependent on lnrn; and emissions for each taste, state,
and neuron (l Þ are dependent on lstate. This results in
values of l being drawn from a distribution of lstate

values, which in turn are drawn from distributions of
l nrn values. This organization better constrains the
space of emission values during different states for each
neuron (i.e., the model knows the emission for State 1
for Neuron 1 will be similar to State 2 for the same neu-
ron), allowing the model to fit more robustly. The
changepoint positions are defined assuming that the
distribution of hyperparameters (t a; t bÞ for a change-
point are shared across all trials for each given
changepoint (e.g., hyperparameters for first transi-
tion is shared for the first transition across all trials,
likewise the second transition, etc.) but different for
different changepoints. Finally, the latent emissions
and changepoints are combined to generate time series
of firing rates with sequential states (f(l ,t ) is a deter-
ministic function; https://github.com/abuzarmahmood/
pytau/blob/development/pytau/examples/Bayesian_
Changepoint_Model.ipynb shows exact implementa-
tion), which is used to evaluate the likelihood of the data
given the latent variables (obs). The dependencies
between the equations are visualized in Figure 1.

Emission variables are as follows:

lnrn ;Exponential ðmi; shape ¼ neuronsÞ 8mi ¼ Mean firing for neuroni

lstate ;Exponential ðlnrn; shape ¼ states� neuronsÞ

l ;Exponentialðlstate; shape ¼ tastes� states� neuronsÞ

Changepoint position variables are as follows:

t a; t b ;Half Normal ð3; shape ¼ states� 1Þ

t latent ;Beta
�
t a; t b; shape ¼ ðtastes� trialsÞ � states� 1

�

t ;Deterministic
�
t latent; shape ¼ ðtastes� trialsÞ � states� 1

�

Likelihood as follows:

obs; Poissonðf ðl ; tÞ; shape ¼ ðtastes� trialsÞ � neurons� timebinsÞ

Where f ðl ; tÞ 7! Firing rates ðshape
¼ ðtastes� trialsÞ � neurons� timebinsÞ:

A modularized pipeline was used to fit and analyze the models across
datasets (https://github.com/abuzarmahmood/pytau/tree/development/pytau).

Model fitting for BLA. The same changepoint analyses described
above were also brought to bear on BLA ensembles to test whether BLA
population dynamics can be validly described, like those observed in
GC, as transitioning suddenly and coherently. For these analyses, we

Figure 1. Dependencies between the random variables for constructing the changepoint model. Different colors
denote different parts of the model; blue, emission variables; red, changepoint position variables; green, likelihood.
Numbers on top left of each module in the rectangle correspond to the variable (equation) each module represents.
Numbers on bottom right of each module correspond to the shape of the variables (and match with the shapes
defined in the equations above). nrns, Neurons; st, states; t, tastes; tr, trials; time, time bins.
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used a separate cohort of two rats (nine recording sessions in total) in
which we performed bilateral BLA recordings to obtain larger neural
populations (results were qualitatively similar for those obtained from
BLA–GC dual-region recordings).

We compared goodness of fit for changepoint models fit to the
recorded (actual) data with that for models fit to two surrogate data-
sets in which the single-trial coordination of the neural population
was perturbed. To generate these surrogate datasets, we started with
the actual observed spike train data, and either (1) randomly shuf-
fled whole trials for single neurons (e.g., such that Trial 1 for one
neuron was paired with Trial 4 for another neuron), or (2) shuffled
individual spikes from one trial to the same time bin in another trial
for the same neuron. Both of these shuffling processes create data-
sets for which single-neuron PSTHs remain identical to the original
while disrupting any coherent changes in population activity pres-
ent on single trials (see Fig. 4A).

Model fitting was performed using automatic differentiation varia-
tional inference (ADVI, Kucukelbir et al., 2016) capabilities present in
the pymc3 package. The ADVI algorithm optimizes the Evidence Lower
BOund (ELBO) of the model. The ELBO is a lower limit on the marginal
likelihood of the model (Blei et al., 2017); it automatically penalizes
more complex models (which necessarily provide better apparent fits
because they have more free parameters), allowing for model compari-
sons similar to the various information criteria. The ELBO is an integral
part of the model fitting procedure, which makes it convenient and effi-
cient to use as a tool for performing model comparisons. Statistical sig-
nificance of differences between ELBO values for the actual data and
shuffle conditions were determined using the two-way repeated measures
ANOVA (from Pingouin) with Model States and Shuffle type as factors.

Determining number of states. As a time series can be fit with a
model containing an arbitrary number of states, we performed model
comparison to determine the most parsimonious number of states to
describe BLA taste ensemble activity (0–2000ms poststimulus delivery).
We fit models with 2–10 states to each BLA population and used the
ELBO for model comparison. For each dataset, we ranked the different
models using their respective ELBOs.

Comparing transition-aligned changes in recorded activity to those in
smooth surrogate data. To supplement the above comparisons (and
thereby further test and/or strengthen our conclusions), we compared
the magnitude of firing-rate changes across inferred changepoints in the
actual data to that in the two surrogate datasets described above. Given
that these magnitude changes should be maximal only when change-
points are correctly identified at the ensemble level, that is, when all neu-
rons in the ensemble change their rates simultaneously in the trial, we
would expect that changes in both single-neuron and population activity
would be greater across inferred changepoints for the actual data versus
the shuffled datasets. After inferring changepoints for models with four
states (this number of states was determined to provide the best fit to
our data; see Fig. 4), we computed the average firing rate in 500ms bins
on either side of each changepoint, calculating the magnitude of change
across the changepoint for both single neurons and of the whole neural
population (analyzed as changes in an instantaneous-activity vector
comprising all simultaneously recorded neurons in a session). To com-
pare both the average magnitude and pervasiveness of differences
between activity in the datasets (to enhance conservativeness by account-
ing for the few large outliers skewing average changes in magnitude), we
calculated (1) the number of neurons for which, on average, the actual
data had larger magnitude of change across the transitions; (2) the num-
ber of neural populations for which the actual data had a larger magni-
tude of change across the transition; (3) the fold change of magnitude in
firing for single neurons (shuffled data/actual data); and (4) the fold
change in magnitude of the population vector. The number of larger
neural transitions was calculated by assessing which group (actual data,
whole-trial shuffle, spike-trial shuffle) had the largest change in activity
across the transition, for every transition; this produces ratios for which
group the largest transition belonged to.

Testing for significance of the likelihood that transitions are larger in
the recorded data than in control simulations (points 1 and 2 above) was
conducted using a one-way ANOVA followed by Tukey’s post hoc test.

Hypothesis testing for differences in magnitude was performed using the
Wilcoxon signed-rank test with Bonferroni’s correction (points 3 and 4
above).
Coordination of BLA and GC transition times
To test our central hypothesis regarding the coupling of BLA and GC
transitions in single trials, we assessed synchronization of transition
times using simple correlative statistics.

Testing transition-time correlation as a coordination metric. To test
the utility of this approach, we first performed pilot analyses on GC
ensembles (which are known to transition suddenly) with higher counts
of simultaneously recorded neurons (n � 10 neurons/population). We di-
vided these ensembles into two populations randomly, repeating the splits
10 times/ensemble to avoid any issues related to selection of unrepresenta-
tive groups. Transition times were inferred independently for each half-
ensemble (using techniques described above), after which the values for
transition times in the two halves were correlated (Spearman’s r ). The sig-
nificance of these correlations was tested as described for the BLA–GC
inter-regional correlations below.

BLA–GC transition time synchronization. Coupling between BLA
and GC transition times was assessed as described above. Transition
times were inferred independently for simultaneously recorded GC and
BLA ensembles. Statistical significance of each correlation was deter-
mined at the single-transition level and also by aggregating across all ex-
perimental recordings.

At the single-transition level, the correlation coefficient of each transi-
tion was compared with the distribution of coefficients calculated by trial
shuffling the data (1000 shuffles per each correlation) and deemed
strongly correlated if it was more highly correlated than 90% of the trial-
shuffled datasets. To determine whether the correlations we see across all
recordings and transitions are collectively (i.e., at the aggregate level) sig-
nificant, we determined the fraction of strong correlations for all datasets
and compared this number to the fraction expected from random data.
The fraction of significant correlations for random data was generated
using trial-shuffled data similar to the single-transition correlation com-
parison; however, in this case, shuffled data were generated up to the
number of transitions present in the original data (creating a dataset of the
same size as the actual dataset but with shuffled data). The fraction of sig-
nificant correlations was counted for this shuffled dataset, and the process
repeated was �1000 times. This provided us with a distribution for the
fraction of significant correlations expected from random data, and the
fraction present in the actual data compared with this shuffle distribution.
The p values for transitions in the actual data were calculated using the
percentile relative to this shuffle distribution. Values from actual data
were deemed significantly different if they had p , 0.05 for one-tailed
comparisons with Bonferroni’s correction against the shuffled distribu-
tion. For completeness, this was followed up with a binomial test with a =
0.05 (with Bonferroni’s correction). The two tests gave identical results.

Investigating the relationship between changepoint uncertainty and
transition correlation strength. As alluded to above, uncertainty in esti-
mating the time point of transitions limits the calculated correlation
strength of transitions across populations (thus causing potential under-
estimation of BLA–GC transition coupling). This uncertainty is an inevi-
table result of inferring state changes from noisy firing rates. Because we
use a Bayesian model, we are able to quantify the uncertainty in a transi-
tion latency estimate in the form of the variance of the posterior distribu-
tion of the transition position (t ). To assess the degree to which this
uncertainty in changepoint position had an impact on the calculated
BLA–GC transition correlation strength, we used the trial-averaged var-
iance of transition posterior distributions, summed across regions, as a
proxy (h ) for the uncertainty contribution from each neural population
(BLA-GC, see below) as follows:

h jk ¼
X

i¼GC;BLA

varijk;

where var = average variance of t across trials, i = brain regions, j =
transitions, and k = recording session.

Once calculated, h was then linearly regressed against its respective
correlation coefficient to determine the strength of the relationship.
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Significance of this relationship was determined using two-tailed Wald’s
test with t distribution.

Network model simulation
We instantiated a simple network simulation to test whether groups of
neurons, which were by definition coupled, produce responses with the
properties observed in our BLA-GC recordings. Conceptually, the model
is a firing-rate model, containing four units, each representing an ensem-
ble of similarly responsive mixed excitatory and inhibitory cells, with the
mean rate of each group being the relevant variable. Units are connected
first as pairs, with each pair representing one unit from GC and one unit
from BLA. Within these cross-regional pairs, the connectivity is set up
like that of an oscillator with strong self-excitation within one unit and
cross-connections being excitation in one direction and feedback inhibi-
tion in the other. It happens that the pairs do not spontaneously oscillate,
but oscillatory-like activity is produced by the uncorrelated background
noise added to each unit. One of the pairs has stronger cross-connec-
tions and is closer to being an inherent oscillator than the other pair,
resulting in greater coherence in the activities of one pair than the other.
Finally, the connections from one pair to the other are inhibitory, such
that activity of one pair suppresses the others and vice versa. Noise
causes occasional spontaneous transitions between states, with each state
consisting of one cross-regional pair of active units. For a graphical rep-
resentation of the model structure, see Figure 10A.

Specifically, each model unit, i, has a firing rate, ri, which responds
linearly to its total input, Ii and varies according to the following:

t
dri
dt

¼ �ri 1 Ii � Ti; ri � 0;

where Ti is a threshold, indicating the minimum input needed for activ-
ity, or (if negative), its magnitude indicating the level of spontaneous ac-
tivity in the absence of input. Importantly, as rates cannot be negative,
we enforce ri � 0 when the above dynamical equation would indicate
otherwise. The input current to each unit is given by the weighted sum
of connected units plus an independent white noise term as follows:

IiðtÞ ¼
X

i

WjirjðtÞ1s IhðtÞ;

where s I is the SD of the noise, and hðtÞ is an uncorrelated white noise
termwith zeromean and unit SD, hhðtÞi ¼ 0 and hhðtÞhðt9Þi ¼ d ðt � t9Þ.

Values of the parameters are shown in Table 1. Simulations were
conducted in MATLAB (version R2018a) using the Euler–Mayamara
method for integration. Code is freely available online at https://github.
com/primon23/Two_State_Oscillators.

Phase coherence for network model
The simulation described above was used to generate 20 trials of neural
activity. The activity of both units in each region was summed to pro-
duce a single time series that was treated as an analog for LFP. This LFP
was then bandpass filtered (10–40Hz) and subjected to a Hilbert trans-
form, and instantaneous phase was estimated using the analytical signal
from the transform. Because latencies of state transitions in the

simulated activity are random (unlike experimental data, where they are
roughly bounded in latency and occur in a sequential order, a fact likely
related to the omission of the biological processes of the model with lon-
ger time constants, like synaptic depression/facilitation or firing-rate ad-
aptation), we calculated phase coherence for the simulated data in each
state using windows of activity centered around the transition from the
more!less coherent state. Data across trials were aligned to state transi-
tions from the more!less coherent states and snippets with radius =
350 ms (minimum duration of states across all trials) of the LFP phase
were taken around the transition time. Intertrial phase coherence calcu-
lation was performed on these aligned snippets as described above.

Data Availability
We have structured our electrophysiology datasets in a hierarchical data
format (HDF5) and are hosting the files on a university-wide network
share managed by Library and Technology Services (LTS) at Brandeis
University. These HDF5 files contain our electrophysiology recordings,
sorted spikes, and single-neuron and population-level analyses (and
associated plots and results). These files are prohibitively large to be
hosted on a general-purpose file share platform; we request people who
are interested in our datasets to contact the corresponding author,
Donald Katz (dbkatz@brandeis.edu), who can put them in touch with
LTS to create a guest account at Brandeis to securely access our datasets
(hosted on the katz-lab share at files.brandeis.edu). Code to perform the
network model simulations can be found at https://github.com/
primon23/Two_State_Oscillators.

Results
To appropriately contextualize our novel central hypothesis and
analysis, we build the following accounting of the results in a
step-by-step manner. We start by replicating/confirming basic
results from our prior work (Figs. 2, 3) and move on to testing
basic questions concerning whether BLA responses show within-
trial firing-rate transitions that could conceivably be coupled
with those of GC (Figs 4, 5). From there, we move on to using
field-standard techniques to test whether GC and BLA responses
show simple trial-to-trial coherence (Fig. 6), and whether coher-
ence changes from one response epoch to the next (Figs. 7, 8).
Once epoch specificity of response coherence is established, we
move on to testing whether BLA–GC coupling during taste proc-
essing is specifically instantiated in the synchrony of transitions
into and out of the GC palatability-related epoch, and whether
the entirety of these phenomena is truly consistent with the func-
tion of tightly coupled networks (Figs. 9, 10).

Simultaneous single-neuron ensemble recordings from BLA
and GC
We isolated multiple single neurons simultaneously from both
GC and BLA in six rats. Electrode bundle tip placements are
shown in Figure 2; a coronal schematic of the regions (GC, Fig.
2Ai; BLA Fig. 2Bi), with the locations of all bundle tips marked,

Table 1. Model parameters for simulated network

Parameter Value Notes

Connectivity matrix, W

1:2 �0:5
�1:5 1:9

0:5 0
0 1:2

�1:1 �0:6
�1:5 �1:3

0 �0:8
�0:8 0

0
BB@

1
CCA First two rows are connection strengths from GC, second two rows are connection strengths from BLA

Threshold vector, T ð �15 �12 1 2 Þ First two values for GC units, second two for BLA units
Noise amplitude, s I 0:6 sec�0:5 0:6=

ffiffiffiffi
dt

p
when coded in simulation

Time constant, t 0:010 sec 10 ms is typical for many cells
Simulation time step, dt 0:0001 sec 100-fold smaller than the time constant for accuracy
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is displayed on the left half. The right half is a photomicrograph
showing an example placement.

The rest of Figure 2 presents representative recordings from
each region. Figure 2, Aii and Bii, shows overlain PSTHs of
example GC and BLA neuron responses to each taste. The colors
behind the PSTHs show the average periods of GC coding
epochs described previously (Katz et al., 2001; Fontanini et al.,
2009; Sadacca et al., 2012). Note that both GC and BLA responses
rearrange themselves (i.e., the ordering of which tastes induce
larger/smaller response magnitudes changes, y-axis) around the
times of epochal boundaries. The nature of the coding performed
by each neuron changes with these epochal rearrangements as
well (Katz et al., 2001; Sadacca et al., 2012, 2016; Moran and Katz,
2014; Li et al., 2016). In GC, the early epoch has little taste specific-
ity, but the middle epoch responses code at least a subset of
tastes distinctly, and in the late epoch, responses become gener-
ally organized by palatability. (Note, for instance, in Figure 2Aii
that the late response is ordered from most aversive to most
palatable; the strongest response is to quinine, followed in
order by citric acid, NaCl, and sucrose.) In BLA, meanwhile,
palatability-related responses appear in the middle epoch, and

(unlike the GC responses) primarily reflect strong responses to
tastes of only one (in this case, negative) valence; both of these
aspects of BLA taste responses replicate previous investiga-
tions (Fontanini et al., 2009).

These findings are statistically confirmed by analyses sum-
marized below the PSTHs in Figure 2. The middle row (Discrim
in the y-axis; Figure 2Aiii,Biii), which plots the significance (p ,
0.05) of a moving window of ANOVAs for tastes, reveals that the
responses displayed in Figure 2A–Bii become distinctly taste spe-
cific starting at ;250 ms after taste delivery (i.e., at the start of
the second epoch; the BLA neuron stops doing so at the end of
this epoch). At the bottom (Fig. 2Aiv,Biv), Pearson’s r between
the known palatability of each taste and the response of the neu-
ron to each taste (shaded region, p, 0.05) shows that the palata-
bility relatedness of the GC responses becomes significant a little
before 1000 ms after taste delivery [i.e., at the onset of the third
(late) epoch], and that the palatability relatedness of the BLA
responses is significant for the one-epoch entirety (middle epoch)
of the taste-specific response. Again, these results confirm findings
published in multiple previous studies (Katz et al., 2001;
Grossman et al., 2008; Fontanini et al., 2009; Sadacca et al.,

Figure 2. Histology and example PSTHs from recorded regions. A, B, GC (A), BLA (B). Schematics and sample histology (2� magnification) showing electrode bundle placements. Brain sli-
ces were registered to brain atlas schematics at 1.4 mm anterior to bregma for GC and 3.00 mm posterior to bregma for BLA. Dashed lines outline GC and BLA, with gray squares showing the
final locations of each electrode bundle. Gray circles in the photomicrographs outline electrolytic lesions (schematics were modified from Paxinos, 2007) (Ai,Bi). PSTHs for representative GC and
BLA single-neuron responses to each taste. Previously described response epochs (Katz et al., 2001) are denoted with different colored shading behind the PSTHs (Aii,Bii). Boolean time series
reflecting whether neural activity significantly differentiates tastants (0 = no, 1 = yes) at a particular time point, with shading emphasizing periods of significant differences among responses
(Aiii,Biii). Correlation of neural activity with taste palatability (see above, Materials and Methods) through time; shaded regions denote periods of significant correlation (Aiv,Biv).
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2012) and motivate our basic hypothesis that the systems-level
mechanisms of taste coding will intrinsically involve epoch-spe-
cific processes.

A good deal of previous research has demonstrated that taste-
response epochs translate into sequences of states (each lasting
hundreds of milliseconds) in single-trial-evoked GC ensemble
activity (Jones et al., 2007; Sadacca et al., 2016; Mukherjee et al.,
2019), with each pair of states separated by sudden (50–200 ms)
coherent firing-rate transitions (spontaneous GC activity also con-
tains such transitions; Mazzucato et al., 2015; La Camera et al.,
2019). We note here that we use the term “epoch” to describe peri-
ods of distinct activity seen in single-neuron PSTHs (Fig. 2),
whereas “state” is a term borrowed from the modeling literature
and is used here to describe simultaneous changes in the
recorded neural population activity while accounting for tem-
poral variation at the single-trial level. However, as state transi-
tions correspond to epoch transitions across trials (on average;
Fig. 9C,D, comparison of average state-transition times in our
data and previously shown epochal-transition times), it is
sometimes difficult to cleanly delineate single-trial from trial-
averaged analyses. In these cases, we use the term that seems
most appropriate.

These state transitions represent an integral part of neural ac-
tivity, in that they both predict the onset of (Sadacca et al., 2016)
and drive (Mukherjee et al., 2019) consumption-related behav-
ior; that is, rather than being trivial reflections of mouth move-
ments, the dynamics represent the processing of tastes that leads
to discriminative mouth movements (Katz et al., 2001; Jones et
al., 2007). The seeming ramping onset of the late epoch contain-
ing palatability-related firing (Figure 2) described above is an
artifact of averaging across the large trial-to-trial variability
(on the order of hundreds of milliseconds) in the latency of
this sudden transition (Jones et al., 2007; Sadacca et al., 2016).
Furthermore, because this phenomenon is not sparse, (;50%
of the neurons in an ensemble will change their firing rates
at any particular transition), it can be reliably observed in
subensembles as small as six simultaneously recorded neurons
(Jones et al., 2007).

Once again, the current data replicate these findings (Fig. 3),
showing that even a small ensemble of simultaneously recorded

GC neurons (here, 10; again, almost two times the number of
neurons needed to resolve this phenomenon; Jones et al., 2007)
can be observed to undergo sudden, coherent firing-rate changes
in the process of responding to tastes (Fig. 3A). The states and
state transitions identified by our changepoint algorithm are
overlain on the ensemble raster plot, and the six (of 10, 60%)
neurons that significantly increased or decreased their firing
rates at the time of the transition into the third (putative palata-
bility related) state are indicated with green or red lines, respec-
tively, under their spike trains. (Note the sudden increase in the
rate of spiking in neurons 4, 6, and 7, and the simultaneous
decrease in firing rate in neurons 1, 2, and 3.) The algorithm was
able to progress to near-perfect confidence in the transition
across an extremely short time interval in almost every trial (Fig.
3Bi), which is to say that these changes in neural activity are, on
average, very sudden on a single-trial basis (Fig. 3Bii); because
the latency of the transition could vary wildly from trial to trial
(Fig. 3Bi), however, the onset of the post-transition state appears
to be slow-ramping when averaged across trials synchronized to
stimulus delivery (Fig. 3Biii).

Once calculated from the ensemble data, the time of transi-
tions could then be used to directly illustrate the sharpness of the
firing-rate changes in even single-neuron data. Figure 3C shows
a representative GC neuron; note that the firing-rate change that
seems like a slow ramp in data synchronized to stimulus delivery
(Fig. 3C, top, unaligned rasters; bottom, associated peristimulus
time histograms) is in fact precipitous when the trial-to-trial vari-
ability of the latency of that change is accounted for (Fig. 3Cii,
aligned raster and associated peritransition time histogram). Keep
in mind that this change is not caused by the stimulus being
removed from the tongue; it occurs at least a full second before
swallowing and both precedes and reliably predicts (Sadacca et al.,
2016), as well as participates in, driving (Mukherjee et al., 2019) dis-
criminative oral behaviors.

BLA activity contains trial-specific, sudden ensemble firing-
rate transitions
Having reconfirmed that GC epochal dynamics reflect sequences
of single-trial states and are en route to assessing the coordina-
tion between BLA and GC neural responses and testing our

Figure 3. GC-evoked population activity contains sudden state transitions. A, A single trial of GC taste-evoked activity in 10 simultaneously recorded single neurons. Inferred states (here identified using
an ensemble changepoint algorithm) are indicated in overlain shading. For the transition leading into the period of palatability-related activity (i.e., from State 2!State 3), spike trains that increased in
firing rate are underlined in green, and spike trains that decreased in firing rate are underlined in red. Bi–iii, Identified time courses for the State 2!3 transition in 30 trials for a single ensemble (i).
Aligning the middle (i.e., 0.5 probability) of the transitions shows that they typically occur suddenly (ii). When averaged across data synchronized to stimulus onset, however, the transition appears smooth
and slow (similar to neural activity in trial-averaged PSTHs, iii). Ci,ii, The raster plot (above) and PSTH (below) for a single representative GC neuron that shows a sudden decrease in its firing rate occur-
ring at variable latencies across trial. The time of the transition, inferred by the changepoint algorithm on activity of the entire simultaneously recorded ensemble is shown with a red circles (Ci,Cii). By
aligning activity to calculated transition times (producing a peritransition time histogram), the sharp decrease in neural activity across the transition can be better appreciated (ii).
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hypothesis that BLA state transitions are coupled to those in GC,
it is necessary that we determine whether these sort of nonlinear-
ities in firing rate, which have been extensively described in GC
(Fig. 3; Jones et al., 2007; Sadacca et al., 2016), also truly charac-
terize BLA taste responses. That is, we must first test whether
evoked BLA activity, which involves epochal dynamics that are
similarly timed to those in GC (Fig. 2, single-neuron examples of
the similarity between BLA and GC dynamics; Fontanini et al.,
2009), are well described as sudden ensemble state transitions in

single trials. Only if the population dynamics of BLA taste-
evoked responses also consist of sudden transitions between a
small number of ensemble states (a hypothesis that has not yet
been tested) is our most novel hypothesis tenable.

To this end, we evaluated the spiking activity of BLA ensem-
bles using the same changepoint model designed to detect coher-
ent ensemble transitions in GC data. To ensure robust sampling
of BLA population activity, this set of analyses was performed
on data from a separate group of animals with bilateral BLA

Figure 4. BLA population responses can validly be characterized as progressing through a sequence of state transitions. A, Visualization of how the actual data were transformed by the dif-
ferent shuffling procedures. Raster plots are overlayed with colors identifying states for the neural population; two trials (one in each column) are shown. Actual Data: state transitions are
hypothesized to occur coherently across all neurons for the same trial. Whole-trial shuffle: state transitions are mismatched between neurons on the same trial. Spike-trial shuffle: sharp, trial-
variable state transitions have been destroyed by changing in which trial each particular spike occurred, largely leaving smooth changes in the neural activity, which are consistent across trials.
A.U., Arbitrary units. B, ELBO values for 2–10 state models fit to the actual data and surrogate datasets. Note that the ELBO (unlike model likelihoods) penalizes more complicated models,
allowing us to visualize peak fit rather than seeking an actual elbow in monotonically increasing functions. Inset, Ranks for models with 2–10 states. Models with four states consistently show
the highest ranks across the dataset. Solid black line shows median rank per state. C, Comparison of average, normalized changes in single-neuron and population vector firing rates in the vi-
cinity (from 500 ms before to 500 ms after) of transitions. Firing-rate changes across transitions are consistently diminished by shuffling, a decrement that is particularly noticeable at the popu-
lation level. Edges of boxes show first and third quartiles, and the horizontal line through the boxes shows the median. The dashed red line denotes the (normalized) firing-rate changes in the
actual data; *p, 0.05, ***p, 0.001 for mean value is different from 1.0. D, Comparison between actual data and shuffled surrogate datasets for which dataset contained the higher number
of larger transitions. Unperturbed BLA datasets consistently had more transitions with largest changes in firing rate (mean6 SEM; **p, 0.01).

Table 2. Statistical tests for results in Fig. 4B

One-way Repeated Measures ANOVA (between States = 3,4,5, n = 9 BLA populations)

F(2,16) = 7.138, p = 0.007

Wilcoxon Signed-Rank Tests with Holm’s Correction, n = 9 BLA populations for each test

Comparison Statistics

States = 3 vs. 4 W-Statistic = 2.0, p = 0.0469
States = 4 vs. 5 W-Statistic = 1.0, p = 0.0469
States = 3 vs. 5 W-Statistic = 18.0, p = 1.00

Table 3. Statistical tests for results in Fig. 4C, Wilcoxon Signed-Rank tests

Level of comparison Comparison Statistics

Single Neuron
(n = 152 single neurons)

Actual Data vs. Whole-Trial
Shuffle

Statistic = 1989.5,
p = 5.65 � 10�14

Actual Data vs. Spike-Trial
Shuffle

Statistic = 2321.0,
p = 3.76 � 10�12

Population
(n = 9 BLA populations)

Actual Data vs. Whole-Trial
Shuffle

Statistic = 2.0, p = 0.015

Actual Data vs. Spike-Trial
Shuffle

Statistic = 2.0, p = 0.015
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electrode implants (two animals, nine recording sessions; how-
ever, all results reported in this analysis were qualitatively similar
to those obtained using unilateral BLA populations taken from
BLA–GC dual region recordings; see below). First, we fit a bat-
tery of models containing 2–10 states to the evoked responses
from the BLA ensembles and compared the goodness of fit of the
probabilistic models (quantified using the ELBO; see above,
Materials and Methods) with that of identical analyses per-
formed on control datasets made by shuffling either whole trials
or single spikes between trials for the same neuron (both manip-
ulations preserve the across-trial dynamics and have equivalent
PSTHs to the actual data; Fig. 4A). Performing this set of analy-
ses allowed us to test whether the real data were better fit by the
sudden transition model than one would expect by chance. We
predicted that the unmanipulated data would achieve a higher
goodness of fit to the sudden state change model.

This analysis revealed that models with four states had the
highest ELBO, that is, that four-state models best describe BLA
population activity for the 2000ms of poststimulus activity we
have used in this study (Fig. 4B, Table 2 for statistics used to test
these effects). Note that only three of these states typically
appeared in the first 1500 ms; that is, in the period leading up to

and including the GC palatability-related state, and that while we
are interested in the transition out of that palatability-related
state, we are not yet prepared to interpret the state following
(which is postdecision). This number of states accords well with
results from HMM modeling of GC activity (Jones et al., 2006;
Sadacca et al., 2016), supporting our suggestion that GC and BLA
taste-response dynamics are similar in kind (and demonstrating
that these results hold across very different analysis techniques).
Furthermore, this fit was significantly higher (as was the relative
advantage of the four-state model) than that achieved by even the
trial-shuffled surrogate dataset (F(2,20) = 26.9, p = 2.13� 10�6; two-
way repeated measures ANOVA for Shuffle type and number of
States, n = 9 recordings across two animals), control data which left
spike trains of each trial intact (Fig. 2), eliminating only the
between-neuron coherence of single-trial dynamics.

We further evaluated the BLA ensemble data by comparing
the magnitude of firing-rate changes across state transitions
identified by this optimal four-state changepoint model (Sadacca
et al., 2016, a similar analysis of GC responses), compared with
those observed in surrogate datasets. We predicted that both the
average magnitude of transition-aligned changes in firing rates
and the quantity of transitions showing larger changes in firing

Table 4. Statistical tests for results in Fig. 4D

One-way ANOVA between Shuffle Type

Level of comparison Statistics

Single Neuron (n = 152 single neurons) F(2,316) = 117.2, p = 8.41 � 10�39

Population (n = 9 BLA populations) F(2,16) = 8.206, p = 0.0035

Post-Hoc comparisons, Pairwise Tukey-HSD

Level of comparison Comparison Statistics

Single Neuron, n = 152 single neurons Actual Data vs. Whole-Trial Shuffle Difference = 0.232, SE = 0.016, p = 0.001
Actual Data vs. Spike-Trial Shuffle Difference = 0.252, SE = 0.017, p = 0.001

Population, n = 9 BLA populations Actual Data vs. Whole-Trial Shuffle Difference = 0.315, SE = 0.073, p = 0.001
Actual Data vs. Spike-Trial Shuffle Difference = 0.236, SE = 0.075, p = 0.0058

Figure 5. BLA-evoked population activity contains sudden state transitions. A, A single trial of BLA taste-evoked activity in eight simultaneously recorded single neurons. Inferred states
(here identified using an ensemble changepoint algorithm) are indicated in overlain shading. For the transition leading into the period of palatability-related activity (i.e., from State 2 to 3),
spike trains that increased in firing rate are underlined in green, and spike trains that decreased in firing rate are underlined in red. Bi–iii, Identified time courses for the State 2!3 transition
in 30 trials for a single ensemble (i). Aligning the middle (i.e., 0.5 probability) of the transitions shows that they typically occur suddenly (ii). When averaged across data synchronized to stimu-
lus onset, however, the transition appears smooth and slow (similar to neural activity in trial-averaged PSTHs, iii). Ci–ii, The raster plot (top) and PSTH (bottom) for a single representative BLA
neuron that shows a sudden increase in its firing rate occurring at variable latencies across trial. The time of the transition, inferred by the changepoint algorithm on activity of the entire simul-
taneously recorded ensemble is shown with a red circles (Ci,Cii). By aligning activity to calculated transition times (producing a peritransition time histogram), the sharp increase in neural
activity across the transition can be better appreciated (ii).
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would be higher for the actual data than for the surrogate data-
sets in which we disrupted the coherence of single-trial changes
in population activity. Our results confirmed these predictions;
compared with the surrogate datasets, neurons and ensembles in
the actual, unmanipulated BLA data showed consistently larger
changes in firing rate across transitions (Fig. 4C, Table 3, an
accounting of the extensive statistical analyses used in these
tests). Furthermore, the percentage of BLA single neurons and
ensembles for which changes in firing rate across transitions
were largest in the actual data were more than twice that for ei-
ther shuffled dataset (Fig. 4D; Table 4).

These findings suggest that BLA ensemble taste responses are
well described as consisting of sudden, coherent firing-rate tran-
sitions in single trials. Figure 5A shows a representative ensemble
taste response from eight simultaneously recorded BLA neurons
that clearly involves rapid state transitions, one of which occurs
at around the average time of GC transitions into palatability
coding (Fig. 2). At this transition, five of eight neurons under-
went either an increase or decrease of firing rate simultaneously
(for another, neuron 3, the increase was almost but not quite
significant). As in GC (Fig. 3; Jones et al., 2007; Sadacca et al.,
2016), these transitions were variable in latency across trials
(Fig. 5Bi), such that although the average transition time was
brief (Fig. 5Bii), averaging across trials synchronized to stimulus
delivery made that transition time appear artifactually slow
(Fig. 5Biii).

Finally, we again fed back the results of this ensemble analysis
to directly illustrate the sharpness of single-neuron firing changes
across transitions. Figure 5C shows, for one representative BLA
neuron, that firing-rate changes that seem like slow ramps in
data synchronized to stimulus delivery (Figure 5Ci, unaligned
raster and associated peristimulus time histogram) are in fact
precipitous when the trial-to-trial variability of the latency of
that change is accounted for (Fig. 5Cii, aligned raster and associ-
ated peritransition time histogram). Although we have no cur-
rent explanation for the apparent slight delay in the firing rate
change of this particular BLA neuron (we suspect that the answer
lies in compromises made by the algorithm in settling on a best
guess of transition time), it is clear that BLA ensembles, like GC
ensembles, respond to tastes with sequences of states separated
by sudden state transitions.

BLA and GC responses show strong trial-to-trial coherence
The above data motivate our hypothesis that taste processing
involves BLA–GC coupling of the brief transitions into the state,
which in GC, predicts and controls consumption behavior. But
given that the vast majority of published studies assessing multi-
region coordination have done so not in terms of momentary
coupling—they have instead focused on multisecond responses
with quantification performed via evaluation of the magnitude of
correlation between spike counts in simultaneously recorded
pairs of neurons (Averbeck et al., 2006a,b) or, alternatively, via
evaluation of similarity in LFPs simultaneously recorded from
the regions under investigation (Place et al., 2016)—we first
assessed whether GC taste processing is coherent with that of
BLA according to these standard metrics. To maximize our abil-
ity to compare our results to those of these earlier studies, we
began our investigation of BLA–GC taste-response coupling by
looking at these broader measures and then moved on (in the
following sections) to testing the epochal specificity of this coher-
ence, a result that would more directly motivate our ultimate test
of the hypothesized synchronous BLA–GC transitions into the
behaviorally relevant state.

We first considered the trial-wise strength of coordination
between BLA and GC by investigating trial-to-trial spike-count
correlations (using the 02–2000ms poststimulus time period,
which is the period of the most prominent taste-evoked
response) for every simultaneously recorded BLA–GC pair of
neurons, thereby testing the broad hypothesis that BLA and GC
responses rise and fall in a correlated (or anticorrelated) manner
from trial to trial. The two example GC–BLA neuron pairs shown
in Figure 6A in fact demonstrate strong coherence on this time
scale. The trial-to-trial firing rates of the pair on the left are (signif-
icantly) anticorrelated, a fact that can be particularly well appreci-
ated in the scatter plot of BLA and GC firing rates (each dot

Figure 6. BLA and GC show strong spike-count correlations on a trial-matched basis. A,
Top row, Representative time series of (standardized) spike counts for two BLA–GC neuron
pairs. Shown for each are consecutive sets of seven trials (of 30) showing negatively corre-
lated (left) and positively correlated (right) activity. Bottom row, Same data as top row (but
including all 30 trials) plotted as a scatter plot showing all the trials/pair; the negative (left)
and positive (right) correlations in the scatter plot are easily seen. B, A comparison of
the fraction of significant correlations across all comparisons (neuron pairs � tastes) for
trial-matched and trial-shuffled data (i.e., GC Trial 1 compared with BLA Trial 4, etc.).
Trial-matched spike-count correlations (filled circles) are significantly higher in all but
3/18 sessions compared with the trial-shuffled comparisons (vertical lines); error bars show
the 5–95th percentile interval of fraction of significant correlations per session expected by
chance; red circles (n = 15) show sessions for which the fraction was higher than expected
by chance, and black circles (n = 3) show sessions for which the value was within the chance
interval. The interval marked by the horizontal dotted lines shows the mean6 SEM fraction
of significant intraregion correlations (i.e., all BLA–BLA and GC–GC neuron pairs), included
for reference.
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reflects one trial) below the trial-to-trial chart of responses; the pair
to the right is similarly (albeit in this case positively) correlated.

Across the entire sample, BLA–GC neuron pairs (averaged
across all pairs in a single session) almost always showed higher
spike-count correlations than did trial-shuffled data (Fig. 6; 15/
18 comparisons had values significantly higher than those ex-
pected by chance, n = 18 sessions from 6 animals), confirming
that the taste responses of simultaneously recorded BLA and GC
single neurons are coupled in magnitude. Of course, either posi-
tive or negative correlations indicate connectivity at the single-
neuron level as a neuron pair can have either an effective excita-
tory or inhibitory connection between them. Both connection
types characterize projections connecting BLA and GC, and either
can create coordinated dynamics between both regions (Haley
et al., 2016; Fu et al., 2020).

The time courses of BLA and GC taste responses are coupled
The above analysis reveals a broad coordination in BLA–GC
neural activity; that is, trial-to-trial differences in firing rates in
BLA neurons, measured in stimulus-evoked responses separated by
.20 s, predict trial-to-trial differences in firing rates in simultane-
ously recorded GC neurons. But this result falls short of revealing
whether this amygdala-cortical coupling has anything specific to do
with taste processing. It is possible that taste responses are simply

riding on generally coupled excitability existing at long time scales,
not unlike that detected in studies of resting-state network dynamics
(Raichle, 2015; Seitzman et al., 2019). Given our proposal that a cen-
tral feature of BLA–GC coherence is the specific coupling of state-
to-state transitions, it is important to first test whether this interre-
gional coherence is epoch specific.

We therefore moved next to examining coherence in the time
courses of taste-evoked responses, using analyses of LFPs that
have often been used for such purposes (Antzoulatos and Miller,
2016; Place et al., 2016; Saravani et al., 2019). Even casual scru-
tiny reveals what appear to be striking similarities in the (trial
averaged) spectral power/amplitude of BLA and GC field poten-
tials (Fig. 7A). Although the dominant frequencies differ between
regions, in both regions the frequency spectra change repeatedly
across the 1–1.5 s following stimulus delivery in a manner that is
well aligned with the approximate average timing of epochal
transitions of ensemble firing described previously (Fig. 2; Katz
et al., 2001; Fontanini et al., 2009; Sadacca et al., 2012).

These observations were statistically evaluated using quantifi-
cation of the intertrial phase coherence (Stitt et al., 2017; Engel et
al., 2020; Kramer and Eden, 2020; Zareian et al., 2020) between
BLA and GC taste responses. Briefly, phase information for BLA
and GC LFPs (across the 4–30Hz band) was extracted using the
Short-time Fourier transform, after which phase differences

Figure 7. BLA- and GC-evoked LFP responses are similar on a trial-matched but not trial-shuffled basis. A, Trial-averaged spectra of GC and BLA taste responses. Solid black lines mark taste
delivery, and dashed red lines mark the average times of epoch onsets, which are well aligned with changes in the spectra in both regions. Power in each plot is z-scored by frequency for the
time periods shown. B, Calculation of BLA–GC phase difference for a single trial. Top, Filtered LFP (4–7 Hz) for each region; middle, extracted phase (H); bottom, phase difference (DH). C.
Phase difference histograms (length of blue bars = frequency of occurrence) used to quantify similarity between GC and BLA LFP using average intertrial phase coherence. Small phase differen-
ces (indicated by strong peaks in the polar histogram close to 0) indicate strong coherence. This is quantified using the magnitude of mean phase difference vector (black arrows). Data show
the distribution of phase differences for t = 0 ms poststimulus delivery for actual and trial-shuffled data. D, Mean phase coherence for 0–2000 ms poststimulus delivery across frequency bands.
The value of the trial-matched comparison is significantly higher than the trial-shuffled comparison, suggesting there are similarities in the activity of both regions that are not present in trial-
averaged data.
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between the two regions were calculated (Fig. 7B). These
measurements were aggregated across all trials for each time
bin separately, and the variance was evaluated across poststi-
mulus time bins (Fig. 7C); the tighter the resulting phase-dif-
ference distribution, the stronger the coupling. The results of
this analysis revealed that although interareal coherence (blue
bars) was inevitably smaller than intra-areal coherence (tan
bars), it was significantly larger than the (control) coherence
between mismatched trials (Fig. 7D). (It is worth noting that
this measurement likely underestimates the true cross-coher-
ence, because any epoch-to-epoch differences will add to the
variance and reduce the across-trial average. This result held
for all the frequency bands that we assessed (theta, 4–7 Hz; mu, 8–
12 Hz; beta, 13–25 Hz; F(2,34) = 654.5, p = 7.21� 10�28 for com-
parison type using repeated measures ANOVA; for all pairwise
comparisons, p = 1.61� 10�7, all p values are at the lower bound
for numerical error; pairwise Mann–Whitney U tests, n = 18
recordings across six animals). Qualitatively similar results were

observed for simple cross-correlations between LFP power spectra
for BLA and GC (data not shown). The trial-averaged time
courses of GC and BLA activity, as measured in evoked LFP activ-
ity, are coupled above and beyond overall magnitudes in a manner
that looks, at first blush, to be related to epochal processing (Katz
et al., 2001; Fontanini et al., 2009; Sadacca et al., 2012).

BLA and GC cross-coherence is epoch specific
Given the above, the fact that the different GC epochs have been
shown to reflect distinct coding processes, and the likelihood that
BLA is more integrally involved in the coding of palatability than
taste identity (Piette et al., 2012; Lin et al., 2021), we hypothesized
that, beyond the overall time courses being coupled, the cross-co-
herence between GC and BLA (evaluated in LFP time courses)
would itself be epoch specific.

Our test of this hypothesis is summarized in Figure 8, which
reveals that phase coherence between BLA and GC is in fact modu-
lated in an epoch-specific (and, as it turns out, frequency-specific)

Figure 8. BLA–GC LFP phase coherence shows epoch-locked dynamics. A, Representative examples of phase coherence in the 4-7 Hz (u , left) and 7–12 Hz (m, right) bands. Red lines denote the
95% confidence intervals determined by baseline coherence (�750 to �250ms relative to stimulus delivery), and the yellow shading marks time points at which mean coherence changed signifi-
cantly from that baseline. B, Time points and directionality of changes in phase coherence relative to baseline for all sessions. Although changes in the 4–7 Hz band show both increases and decreases
(Note that the most prominent changes from baseline, which are found in the earliest aspects of the responses, mostly consist of reductions of coherence.), changes in the 7–12 Hz band consist
entirely of decreases in coherence. C, The fraction of recordings in which phase coherence deviated from baseline. Bands correspond to those of the plots above them. Note that the time points of
changes in coherence relative to baseline match strongly with timings of the canonical taste epochs (noted with overlain shading). D, PCA projection of changes in phase coherence (as in C) for 4–
100 Hz. Black circles indicate corners in the trajectory, the timings of which roughly correspond to each epoch (black ticks marks in color bar). Colors indicate durations of epochs (as in C).
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manner by stimulus delivery. Changes in the theta (4–7 Hz) band
were centered largely on the initial (i.e., taste nonspecific) epoch of
the responses. In most (11/18) sessions, theta activity changed sig-
nificantly from baseline; overwhelmingly (in 9/11 cases), these early
response changes involved a decrease in phase coherence. In the
mu band (7–11 Hz), meanwhile, changes were centered on the later
(palatability specific; Katz et al., 2001; Sadacca et al., 2012) response
epoch, These changes, which were even more ubiquitous than theta
changes, in every case involved a decrease in coherence (Fig. 8A,B,
right; n = 18 recordings across six animals). A reduction in coher-
ence following stimulus delivery was predictable given previous
results showing that strong levels of inter-region coherence tend to
be associated with states of low cognitive engagement such as seda-
tion, epilepsy, and cognitive impairment (Supp et al., 2011;
Martinet et al., 2017; Arbab et al., 2018), as well as the fact that
BLA and GC encode tastes nonidentically; hence, their specific
neural responses are likely to differ (see below, Discussion). Note,

however, that phase coherence always stays higher than random
levels (BLA and GC are never functionally disconnected) and that
state-specific reductions in coherence can be recapitulated in sim-
ple, tightly interconnected model networks (see below).

To aggregate these results across the entire dataset, we calcu-
lated the fraction of recordings in which coherence diverged sig-
nificantly from baseline at each time point across the evoked
response (Fig. 8C). These results confirmed the representative-
ness of the examples above, showing that 4–7 Hz coherence
tends to be modulated early in the response and that 7–12 Hz co-
herence modulation comes on later in the response. Although we
have no specific explanation for why theta coherence highlights an
earlier epoch and mu a different epoch, what is clear is that BLA–
GC coupling is modulated by epoch, as predicted.

To further illustrate the epoch specificity of BLA–GC func-
tional connectivity, we subjected deviations of coherence from
baseline across a broad range of frequency ranges (4–7, 7–12,

Figure 9. BLA- and GC-population-evoked responses involve coordinated state transitions. A, Three representative trials highlighting the covariance of Transition 2 between BLA and GC.
Transition 2 is highlighted with thick yellow lines. B, The inferred times of GC state transitions plotted against those inferred for the simultaneously recorded BLA population for each trial of a
representative transition; the scatter plot is overlain with contours of a 2D Gaussian around the data cloud. Top, actual data; bottom, trial-shuffled data; r = Spearman’s correlation coefficient.
C, The fraction of datasets showing significant correlations for each transition (*p , 0.05). Blue bars represent the value in the actual data, and black lines indicate mean6 SD for fraction
expected from random data. Only the fraction for Transitions 2 and 3 reached statistical significance. Colored boxes show average latency for each transition (poststimulus delivery). Inset, The
variance (uncertainty) of transition latency distribution is significantly related to the correlation strength between BLA and GC transitions. Scatter plot shows correlation strength versus normal-
ized variance of inferred transition posterior distribution. D, The timings of the inferred transitions match well with the canonical epoch-onset times. Transitions 2 and 3 bookend the palatability
epoch in GC (figure adapted from Fontanini et al., 2009).
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12–30, 30–70, and 70–100 Hz) to dimensionality reduction. In
all bands we observed decrements in coherence, albeit with dis-
tinct temporal profiles (data for higher bands not shown). When
we projected these time series of coherence deviation onto three
principal components (Fig. 8D), the epoch-specific nature of
BLA–GC coupling came into focus. The timing of sudden turn-
ing points in the trajectory, which are highlighted in Figure 8D
using black circles, roughly correspond to the center points of the
canonical epochs. Collectively, these data strongly recapitulate the
epoch-wise nature of taste processing that has been recognized in
GC and BLA spiking data, demonstrating that BLA–GC functional
connectivity is not static and that BLA activity is explicitly tied to
previously described GC dynamics (Lin et al., 2021).

BLA and GC ensembles undergo coupled state transitions
The structured dynamics of BLA–GC phase coherence suggests
not only that BLA and GC population activity is coordinated but
that this coordination is modulated according to the unfolding
taste response. It further suggests that the trial-to-trial variability
in amygdala-cortical dynamics might be coupled, providing indi-
rect evidence for our riskiest hypothesis, which is that the sud-
den, behaviorally relevant transitions between ensemble firing-
rate states (transitions that are a reliable facet of GC ensemble
taste activity and that occur at different latencies in different tri-
als) might be a distributed network phenomenon, coupled across
GC–BLA ensembles. Such nonlinear coupling would suggest that
BLA and GC behave as a distributed, yet single (putatively attrac-
tor), network, processing tastes in a unified manner in real time.

The analyses described in the above sections fall short of truly
testing this hypothesis. In fact, they are strictly limited in their
interpretability in this regard, specifically because population
spiking changes in GC are quite sudden, and the latencies of
these transitions vary by hundreds of milliseconds from trial to
trial (Jones et al., 2006; Sadacca et al., 2016). These two properties
of ensemble transitions ensure that any ability to evaluate their cou-
pling will be essentially lost in across-trial averaging and obscured
in moving-window analyses. Only through direct, single-trial analy-
ses of the transitions themselves can we hope to evaluate BLA–GC
coupling of such phenomena.

Given the novelty of this direct examination of inter-regional
correlation of transition times, we first performed pilot analyses
in which we divided datasets of simultaneously recorded GC
neurons into halves, separately applied changepoint inference to
each half-population, and correlated the latency of each transition
between the two fits. We observed statistically significant correla-
tions for .80% of our datasets and for each transition (n = 11
recordings; data not shown), confirming that our correlation mea-
sure is a robust metric for determining transition coupling between
ensembles. Note that even these correlations were not significant
for all datasets and did not reach r = 1.0 for reasons discussed
below; see above, Materials andMethods.

We then brought this analysis to bear on simultaneously
recorded BLA and GC ensembles, independently estimating tran-
sition times in each and then testing whether the latency of the
first GC transition was correlated with the latency of the first BLA
transition, and so on. The results of this test, which are summar-
ized in Figure 9, demonstrate that certain transition times in BLA
and GC ensembles are indeed robustly coordinated. Figure 9A
presents one representative set of spike trains, showing inferred
changepoints for a pair of simultaneously recorded BLA and GC
ensembles and clearly revealing the close apposition of these tran-
sitions. Figure 9B (top) shows a scatter plot of independently cal-
culated latencies of the second transition (the behaviorally relevant

transition into palatability-related firing in GC; Sadacca et al.,
2016; Mukherjee et al., 2019) from each of the trials for a represen-
tative session. Figure 9B (bottom) shows the scatter plot that
would be expected by chance (produced after randomly shuffling
a set of changepoint latencies between trials for the same dataset).
The significant covariance between the GC and BLA changepoints
on the top is lost with trial shuffling, proving that this transition
alignment between the two regions is a within-trial phenomenon.

We statistically evaluated the strength of this BLA–GC transi-
tion coupling across the entire dataset by calculating the fraction
of transitions that exceeded the 90th percentile of correlation
strength relative to their respective trial-shuffled correlations
(strongly correlated transitions) and statistically comparing this
number to the fraction of strong correlations expected by chance
for a similar-size dataset. This analysis revealed that the fraction
of strongly correlated BLA and GC transition times in our data
was significantly higher than those expected by chance but only
for the transitions into and out of the GC palatability-related
state (Fig. 9C; percentiles = 99.56 and 99.64, p = 4.05� 10�3 and
3.65� 10�3 for transitions 2 and 3, respectively; Bonferroni-cor-
rected a = 0.05/3 = 16.67� 10�3; shuffle test with Bonferroni’s
correction, n = 18 recordings across six animals; see above,
Materials and Methods).

Note that this evidence of significant coupling—the fact that
the cloud of dots in Figure 9B (top) is elongated—is observed de-
spite the relatively small ensembles of BLA neurons isolable in
awake rats. It is quite likely that a good deal of the noise visible
here reflects unavoidable noise in the estimation of transition
time (see above, Materials and Methods). To test this suspicion,
we calculated the relationship between the amount of uncertainty
in the estimation of transition time of the model (i.e., the summed
average variance of inferred transition distributions) and the
strength of correlation between GC–BLA transitions. As sus-
pected, we found a significantly negative relationship between the
two variables (Fig. 9C, inset; slope = �2.3, r2 = 0.352, p = 0.021,
one-tailed Wald test for regression slope), a result consistent with
the suggestion that uncertainty in the inference blurs the correla-
tion between transitions. The strength of coordination between
BLA and GC transitions is, thus, likely even stronger than that
estimated here.

Note, however, that only transitions in and out of the state that
have been previously shown to be related to the reaching of con-
sumption decisions (Sadacca et al., 2016), namely, transitions that
signaled the onset and offset of the palatability state in GC (Fig.
9D), were coupled across the BLA–GC network. Transitions from
the GC Detection state into GC Identity state were not. This result
dovetails nicely both with classic thinking about the specific role
of BLA in emotional processing (Yamamoto, 2008; Baxter and
Croxson, 2012) and with recent work from the lab that shows that
optogenetic perturbation of the BLA!GC projection primarily
affects GC processing during the palatability epoch in GC (Lin et
al., 2021). Whereas BLA activity during the late epoch (Fig. 9D)
has hitherto not been explored, the strong BLA–GC coupling dur-
ing that time period recommends further investigation into proc-
essing performed by BLA during that time period. Together, these
results suggest that the role of BLA–GC communication likely
changes between epochs and even may only be important during
the GC palatability epoch.

Modeling coupled state transitions with state-specific coherence
Together, the above results fill in a picture of BLA and GC as proc-
essing tastes as a single distributed unit, with significant (above
chance) cross-coherence punctuated by coupled state transitions
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across which the coherence drops in certain frequency ranges (a
change indicative of intense processing). From a dynamical sys-
tems perspective, this phenomenology makes sense. Instantaneous
coherence will often be state specific within a system in which state
transitions are synchronized across brain regions; for just one
example, brain regions collectively transition between different
states of sleep; (Stitt et al., 2017). We would argue, in fact, that it is
common for distributed networks of interconnected neurons to
perform coupled transitions between states, some of which dem-
onstrate decreases in LFP phase coherence.

We tested this contention by constructing a simple network
model. Briefly, the network was composed of firing-rate units
that can be taken to roughly represent interconnected subpopu-
lations of BLA and GC neurons (Fig. 10A; right, connection
strengths between subpopulations). When challenged with a
moderate amount of input delivered to both regions (simulating
either noise or taste stimulation, which initially arrives at BLA
and GC via distinct paths; Gal-Ben-Ari and Rosenblum, 2012),
the network enters a mode in which it switches between a more
coherent state characterized by strong oscillations and a less
coherent state where clear oscillations are disrupted (a switch
that necessarily changes functional connectivity). Figure 10B
presents the summed firing rates of simulated BLA and GC
units across three trials in which the network can be seen to col-
lectively transition between the states, one of which is clearly
endowed with higher cross-coherence (State 1) than the other
(State 2).

Figure 10C provides a specific analysis of these appearances,
revealing that coherence indeed decreases following the tran-
sition into the less oscillatory state (State 2). In neither state,
however, does this cross-coherence decline to baseline levels;
the populations never fully disconnect (Fig; 10C,D; two-way
ANOVA with State and Dataset, Actual vs Shuffle, as factors;
State, F(1) = 184, p = 0.001; Dataset, F(3) = 184, p = 0.001;

State * Dataset, F(3) = 233, p = 0.001; Tukey’s HSD post hoc
tests, Actual State 1 vs State 2, t = 42.7, p = 0.001; Shuffle State
1 vs State 2, t = 1.74, p = 0.302). And although this network is
admittedly simple (a fact that no doubt explains the simple,
randomly timed back-and-forth between two states), it is not
the only way that such a model can be constructed. Other ver-
sions can allow each region to intrinsically oscillate at differ-
ent resonant frequencies, for instance, where such frequencies
would inevitably be expressed to differing degrees in different
states. The important point is that this variant of the model would,
like many such variants (and the real networks recorded for this
study), progress through state transitions in a unified manner and
that phase coherence would be lower following certain transitions.
Although our investigation of the model is limited to recapitulat-
ing the state-specific changes in coherence we see in our data,
this recapitulation further highlights the aptness of such attrac-
tor models for explaining activity in GC and BLA and therefore
being good candidates for theoretical investigation to generate
predictions about the system to be tested in future experimental
work (see below, Discussion).

Ultimately, these simulations demonstrate that a multiregion
network can undergo collective, coupled state transitions while
having variable functional connectivity during each state. We
suggest that the amygdala-cortical system is just such a network.

Discussion
Much of the research that has explored how brain regions work
together (Markov et al., 2014; Grabska-Barwi�nska et al., 2017;
Yates et al., 2017; Glaser et al., 2018) makes two broad assump-
tions, (1) neural responses are identical (save for noise) across
repeated stimulus presentations, and (2) neural dynamics evolve
on slow time scales (hundreds of milliseconds, or even seconds).
These assumptions fail in many cases (Gat et al., 1997; Sugase et
al., 1999; Jones et al., 2007; Latimer et al., 2015), including the

Figure 10. Coordinated state transitions and state-specific coherence in a coupled network model. A, Network of four interconnected subpopulations that represent parts of GC and BLA. B,
Example trials showing activity of the network. Activity from both units in each region is summed as an analog of LFP. Highlighted regions marks time periods the system spends in the
less coherent state (State 2). Note that both states have finite durations. C, Intertrial phase coherence calculated on time windows 350 ms before and after transition from State 1!State 2
(more!less coherent state; mean6 SD). D, Average coherence during each state (mean6 SD; St.1, State 1; St.2, State 2; ***= p, 0.001, n.s. = not significant).
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present study. In such cases, examination of coupling requires
methodologies that can parse sharper changes in neural activity
and account for trial-to-trial variability.

In the context of taste processing, GC and BLA form strong can-
didates for coupling. Both are involved in driving taste-related
behavior; perturbations of either results in similar behavioral
changes (Lovaglio et al., 2010; Lin et al., 2011, 2018), perturbation of
BLA changes GC response dynamics (Piette et al., 2012), and BLA–
GC connectivity is important for taste learning (Lin and Reilly,
2012). Furthermore, taste-evoked activity of single neurons in the
two structures (Fontanini et al., 2009; Sadacca et al., 2012) under-
goes changes (and encoded information) at the same time points.

These facts motivate the current study but stop short of
actually testing the hypothesis that BLA and GC transition syn-
chronously. Hitherto, the most direct test of BLA–GC coupling
has involved acute optogenetic perturbations of BLA!GC axo-
nal projections (Lin et al., 2021). This perturbation decreased GC
ensemble coherence during the transition to palatability coding
and reduced palatability relatedness of single-neuron firing fol-
lowing this transition. Brief, bilateral optogenetic perturbation of
GC neurons themselves, meanwhile, delivered before or during
this transition to palatability coding (Mukherjee et al., 2019),
delayed the gaping response of rats to bitter quinine until after the
perturbation was removed. Hence, although this GC perturbation
hindered planning and execution of the taste motor response, it is
likely that the remainder of the circuit maintained output-relevant
information, enabling a rebound from the perturbation.

Results of the above studies—the fact that some palatability-
related information in GC survives silencing of BLA!GC axons,
and the fact that gaping quickly recovers after GC perturbation—
in conjunction with the results from the current study, suggest
that although BLA and GC are strongly coordinated, they are only
parts of an even larger network. This conclusion is further bol-
stered by work showing that (1) other brain regions show response
dynamics similar to BLA and GC (parabrachial nucleus of the
pons, Li et al., 2013; lateral hypothalamus, Baez-Santiago et al.,
2016), and (2) although palatability responses in GC show a gradi-
ent of hedonic values, those in BLA are largely binary (good vs
bad; Fontanini et al., 2009; Sadacca et al., 2012). Clearly, there are
additional regions (perhaps the lateral hypothalamus) that process
palatability information in parallel to BLA to produce the more
nuanced coding seen in GC.

In this context, our results are also consistent with those show-
ing that distributed nodes in tightly coupled systems can produce
nonidentical coding during stimulus processing and encode redun-
dant information to varying degrees (Siegel et al., 2015; Brincat et
al., 2018; Lara et al., 2018; Saravani et al., 2019). This is not truly
surprising; complex systems tend to couple on multiple time scales,
just as one unit of such a system might increase its spiking while
another is silent, and vice versa (Fig. 6A), firing of one unit might
reflect palatability at one time point, and then the other does so
afterward. The fact that palatability relatedness moves from BLA to
GCmight simply reflect a single cycle of an oscillation.

The advance offered in this study has to do with the subtlety
of the predicted coupling, which rendered previously used meth-
odologies for investigating that coupling insufficient. Specifically,
we predicted that (trial specific) moments of ensemble state tran-
sitions in GC and BLA would be synchronized. This hypothesis
could not be tested using analyses that fail to account for dynamics
of functional connectivity, collapse data over large time scales
(e.g., whole trials), or assume that all trials are dynamically identi-
cal. In the current context, such analyses provide misleading infor-
mation. Both the spike-count correlation and the LFP-phase

coherence analyses show BLA and GC to be significantly coordi-
nated but fail to give us any information about temporal dynamics;
meanwhile, changes in BLA–GC intertrial phase coherence (which
is de rigueur for characterizing inter-regional coupling; Zielinski et
al., 2019; Engel et al., 2020; Kramer and Eden, 2020; Zareian et al.,
2020) reveal only state-specific reductions in coupling (Fig. 8).

Such state-specific changes in coherence have been seen in
transitions between sleep states (Stitt et al., 2017) and between
attentive and inattentive states (Siegel et al., 2008). Although the
states in evoked activity described in this article are more fleeting
than the much longer brain states studied by Stitt et al. (2017) and
Siegel et al. (2008), in each case changes in phase coherence mark
changes in brain states. Specifically, reductions in coherence such
as we observe here have been shown to be associated with intense
processing (Supp et al., 2011), whereas increases in coherence are
associated with cognitive impairments (Martinet et al., 2017; Arbab
et al., 2018). Such low correlations in activity are entirely compati-
ble with strong coupling (Schneidman et al., 2006). Particularly
given the fact that BLA–GC phase coherence always stays well
above chance levels, it is safe to say that this observation of
decreased coherence does not mean that GC and BLA are becoming
decoupled at any time point.

Again, had we stopped our analysis at phase coherence, we
would have reached the wrong conclusion about amygdala–corti-
cal coupling during taste processing. Only the novel transition
coordination analysis (which accounts for both dynamics over the
course of the trial and variability across the trials) allowed us to
directly test the risky hypothesis that taste processing is character-
ized by sudden ensemble state transitions shared across BLA and
GC. Our successful test of this hypothesis strongly corroborates
the results of causal studies showing that wholesale inhibition of
BLA (Piette et al., 2012) and precise perturbation of the BLA!GC
axonal projection (Lin et al., 2021) specifically perturb processing
during—and the transition to—the palatability-related (late) epoch
of GC taste coding. This further underscores the limitations of
more canonical communication measures with regard to the theo-
ries that they are able to test and provides further evidence for the
dynamic nature of the BLA–GC interaction.

Together, these results suggest that taste responses observed
in BLA and GC are poorly described by feedforward/hierarchical
(Parras et al., 2017; Glaser et al., 2018; Heidari-Gorji et al., 2021)
models and better described as working in a joint fashion. Our
finding of coordinated state transitions is appealingly (if specula-
tively) explained in terms of collective attractor states (Miller and
Katz, 2010, 2013; Litwin-Kumar and Doiron, 2012; La Camera et
al., 2019; Recanatesi et al., 2022). Such models require strong,
bidirectional connectivity that is observed throughout the taste
circuit (Bielavska and Roldan, 1996; McDonald, 1998; Shi and
Cassell, 1998) and predict/recapitulate the sharp state transitions
that have been reported in GC (Jones et al., 2007; Sadacca et al.,
2016), BLA (this study), and other brain regions (Seidemann et
al., 1996; Gat et al., 1997; Sugase et al., 1999; Latimer et al., 2015).
Another attractive aspect of such a theory is the fact that noise,
rather than being a nuisance variable, serves as the force driving
state transitions, allowing robust performance in noisy condi-
tions (Miller and Katz, 2013) and explaining the large variability
observed in evoked neural and behavioral responses on a trial-
by-trial basis (Kisley and Gerstein, 1999; Carandini, 2004; Jones
et al., 2007; Sadacca et al., 2016; Kotekal and MacLean, 2020;
Peixoto et al., 2021). Given the ubiquity of noise in biological sys-
tems (Shadlen and Newsome, 1994, 1998; Miller and Katz,
2010), it seems likely that valid mechanisms of function will be
those that have this property.
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Of course, causal confirmation of this theory waits on evi-
dence that the two structures influence one another recurrently,
that is, studies investigating the role of the GC!BLA (reverse)
projection in taste processing. Although the GC!BLA projec-
tion has been shown to be important for taste-related learning,
(Lavi et al., 2018; Kayyal et al., 2019), its role in generating pas-
sive taste responses is yet to be elucidated. If recurrent circuitry
plays a role in taste processing, perturbation of the GC!BLA
projection should change not only activity in BLA but also the
source activity in GC, reflecting the fact that the circuit processes
information in a loop fashion. Such an outcome would further
drive home the value of moving away from feedforward biases in
the study of taste processing.

Ultimately, a nuanced understanding of inter-region commu-
nication and of how this communication is important for gener-
ating behavioral output will require that we appreciate the sorts
of nonlinearities and variability examined here, that we do not
smooth out potentially important sudden ensemble changes in
real-time ensemble activity. The current study furthers our trial-
specific understanding of neural activity and will hopefully drive
further questions regarding the role of reciprocal connectivity
and metastable dynamics in sensory processing.
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