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Model-free and model-based computations are argued to distinctly update action values that guide decision-making processes.
It is not known, however, if these model-free and model-based reinforcement learning mechanisms recruited in operationally
based instrumental tasks parallel those engaged by pavlovian-based behavioral procedures. Recently, computational work has
suggested that individual differences in the attribution of incentive salience to reward predictive cues, that is, sign- and goal-
tracking behaviors, are also governed by variations in model-free and model-based value representations that guide behavior.
Moreover, it is not appreciated if these systems that are characterized computationally using model-free and model-based
algorithms are conserved across tasks for individual animals. In the current study, we used a within-subject design to assess
sign-tracking and goal-tracking behaviors using a pavlovian conditioned approach task and then characterized behavior using
an instrumental multistage decision-making (MSDM) task in male rats. We hypothesized that both pavlovian and instrumen-
tal learning processes may be driven by common reinforcement-learning mechanisms. Our data confirm that sign-tracking
behavior was associated with greater reward-mediated, model-free reinforcement learning and that it was also linked to
model-free reinforcement learning in the MSDM task. Computational analyses revealed that pavlovian model-free updating
was correlated with model-free reinforcement learning in the MSDM task. These data provide key insights into the computa-
tional mechanisms mediating associative learning that could have important implications for normal and abnormal states.
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Significance Statement

Model-free and model-based computations that guide instrumental decision-making processes may also be recruited in pavlovian-
based behavioral procedures. Here, we used a within-subject design to test the hypothesis that both pavlovian and instrumental learn-
ing processes were driven by common reinforcement-learning mechanisms. Sign-tracking and goal-tracking behaviors were assessed
in rats using a pavlovian conditioned approach task, and then instrumental behavior was characterized using an MSDM task. We
report that sign-tracking behavior was associated with greater model-free, but not model-based, learning in the MSDM task. These
data suggest that pavlovian and instrumental behaviors may be driven by conserved reinforcement-learning mechanisms.

Introduction
Cues in the environment that predict rewards can acquire incen-
tive value through pavlovian mechanisms (Flagel et al., 2009) and
are necessary for the survival of an organism by facilitating predic-
tions about biologically relevant events that enable an organism to
engage in appropriate preparatory behaviors. Pavlovian incentive
learning, however, can imbue cues with strong incentive motiva-
tional properties that exert control over behavior, which can
lead to maladaptive and detrimental behaviors (Saunders
and Robinson, 2013). For example, cues that are associated
with drug use can enhance craving in addicts and because of
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their control over behavior may precipitate relapse to drug-
taking behaviors in abstinent individuals (Hammersley,
1992). Understanding the biobehavioral mechanisms under-
lying associative learning could, therefore, provide critical
insights into how stimuli gain incentive salience.

Pavlovian associations have largely been presumed to occur
through model-free, or stimulus–outcome, learning; cues that
are predictive of rewards incrementally accrue value through
a temporal-difference signal that is likely to be mediated by
mesolimbic dopamine (Huys et al., 2014; Nasser et al., 2017;
Saunders et al., 2018). Theoretical work has, however, proposed
that pavlovian associations may also involve learning that is
described in the computational field as model based (MB;
Dayan and Berridge, 2014; Lesaint et al., 2014), whereby
individuals learn internal models of the statistics of action–
outcome contingencies. This hypothesis has been supported
by data indicating that pavlovian associations not only rep-
resent accrued value but also the identity of pavlovian out-
comes (Robinson and Berridge, 2013) and by neuroimaging
studies that identify neural signatures of model-free and
model-based learning in humans during a pavlovian associ-
ation task (Wang et al., 2020).

Pavlovian autoshaping procedures have been used to quantify
the extent to which animals attribute incentive salience to cues
predictive of rewards (Flagel et al., 2009, 2011; Nasser et al.,
2015). When animals are presented with a cue associated with
food reward delivery, the majority of rats known as sign trackers
(STs) will approach and interact with the cue, whereas other rats
known as goal trackers (GTs) will approach the location of the
reward delivery (Hearst and Jenkins, 1974; Boakes, 1977). Rats
that display sign-tracking behaviors, therefore, attribute incentive
salience to the cue, whereas rats that display goal-tracking behav-
iors do not (Robinson and Flagel, 2009), or at least acquire less
incentive to the cue than the goal. Our computational work
(Lesaint et al., 2014; Cinotti et al., 2019) has suggested that these
conditioned responses may be linked to individual differences in
the extent to which rats use model-free and model-based
reinforcement-learning systems to guide their behavior. For
example, when using a hybrid reinforcement-learning model
to simulate pavlovian approach behaviors we were able to re-
capitulate sign-tracking behaviors by increasing the weight
of model-free updating and, notably, goal-tracking behaviors
by increasing the weight of model-based updating (Cinotti et
al., 2019). Variation in pavlovian approach behaviors in rodents
may, therefore, reflect individual differences in model-free and
model-based control over behavior (Dayan and Berridge, 2014;
Lesaint et al., 2014).

Use of the multistage decision-making (MSDM) task in
humans (Daw et al., 2011; Culbreth et al., 2016) and animals
(Miller et al., 2017; Groman et al., 2019a; Akam et al., 2021) has
provided empirical evidence that instrumental behavior is
influenced by both model-free and model-based reinforcement
learning computations. It is not known, however, if the relative
contribution of model-free and model-based mechanisms that
are recruited in an individual during pavlovian autoshaping
procedures are predictive of their relative contribution during
instrumental procedures, such as in the MSDM task (Sebold et
al., 2016). If true, this could suggest that the computational
mechanisms underlying learning are not unique to pavlovian or
instrumental mechanisms but may represent a common rein-
forcement-learning framework within the brain that could be
useful for restoring the learning mechanisms that are abnormal
in disease states (Doñamayor et al., 2021; Groman et al., 2021).

In the current study we sought to test the hypothesis that ST
rats would preferentially employ a model-free strategy in an instru-
mental task, whereas GT rats would preferentially employ a model-
based strategy. Pavlovian conditioned approach was assessed in
rats (Keefer et al., 2020) before model-free and model-based
reinforcement-learning was assessed in a rodent analog of the
MSDM task (Groman et al., 2019a). We report that sign-track-
ing behavior is correlated with individual differences in reward-
mediated model-free, but not model-based, learning in the
MSDM task. These data suggest that the model-free reinforce-
ment-learning systems recruited during pavlovian conditioning
parallel those recruited in instrumental learning.

Materials and Methods
Subjects
Twenty male Long-Evans rats were purchased from Charles River
Laboratories at;6weeks of age. Rats were pair housed in a climate-con-
trolled vivarium on a 12 h light/dark cycle (lights on at 7:00 A.M., lights
off at 7:00 P.M.). Rats had ad libitum access to water and underwent die-
tary restriction to 90% of their free-feeding body weight throughout the
experiment to maintain the same hunger state in both the pavlovian and
instrumental environments. Experimental procedures were approved by
the Institutional Animal Care and Use Committee at Yale University
and were in accordance with the National Institutes of Health institu-
tional guidelines and Public Health Service Policy on Humane Care and
Use of Laboratory Animals.

Pavlovian conditioned approach
Rats were first trained using a pavlovian conditioned approach task as
previously described (Keefer et al., 2020). During a single trial, a retracta-
ble lever, conditioned stimulus (CS), located to the left or right of a food
cup was inserted into the chamber for 10 s. As the lever retracted, a sin-
gle sucrose pellet (45mg; BioServ) was dispensed into the food cup. This
CS and unconditioned stimulus (US) pairing occurred on a variable-
interval 60 s schedule, and each CS-US pairing was present 25 times in
each session. Each rat underwent a single daily session on the pavlovian
conditioned approach task for 5 consecutive days. The primary depend-
ent measures collected were latency to approach the lever and food cup
as well as the number and probability of interactions rats made with the
lever and food cup within each session. These dependent measures were
used to generate a pavlovian score for each session a rat completed (see
below, Data analysis). This pavlovian score is typically referred to as the
Pavlovian Conditioned Approach (PCA) score; however, to avoid confu-
sion with the data reduction technique known as principal component
analysis (also commonly referred to as a PCA) we refer to this measure
as the PavCA score.

Deterministic MSDM task
Following the pavlovian conditioning approach sessions, rats were
trained to make operant responses (e.g., nose pokes and lever responses)
to receive a liquid reward delivery (90ml of 10% sweetened condensed
milk) in a different environment than that used for the pavlovian condi-
tioning approach task. Once operant responding had been established,
rats were trained on a deterministic MSDM task using procedures previ-
ously described (Groman et al., 2019a). In the deterministic MSDM task,
choices in the first stage deterministically led to the second-stage state.
Second-stage choices were probabilistically rewarded. Rats initiated trials
by making a response into the illuminated food cup. Two levers located
on either side of the food cup were extended into the box and cue lights
above the levers illuminated (sa). A response made on one lever (saa1)
resulted in the illumination of two nose port apertures (e.g., ports 1 and
2, sB), whereas a response made on the other lever (saa2) would result in
the illumination of two other apertures (ports 3 and 4, sC). Entries into
either of the illuminated apertures were probabilistically reinforced using
an alternating block schedule.

Each rat was assigned to one specific lever-port configuration (con-
figuration 1, left lever!port 1, 2; right lever!port 3, 4; configuration
2, left lever!port 3, 4; right lever!port 1, 2), which was maintained
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through the study. Reinforcement probabilities assigned to each port,
however, were pseudorandomly designated at the beginning of each
session (0.90 vs 0.10 or 0.40 vs 0.15; see Fig. 4A). terminated when 300
trials had been completed or 90min had elapsed, whichever occurred
first. Trial-by-trial data were collected for individual rats, and the prob-
ability that rats would select the first-stage option leading to the highest
reinforced second-stage option [p(correct|stage1)] was calculated, as
well as the probability that rats would select the highest reinforced sec-
ond stage option [p(correct|stage2)].

Training on the deterministic MSDM task occurred for the following
primary reasons: (1) reduce spatial biases, which are common in rats; (2)
ensure rats understood the alternating probabilities of reinforcement at
the second-stage options; and (3) verify that rats understood the struc-
ture of the task and how first-stage choices led to different second-stage
options. If rats appreciated the reinforcement probabilities assigned to
the second-stage options and how choices in the first stage influence the
availability of second-stage options, then the probability that rats choose
the first-stage option leading to the second-stage option with the maxi-
mum reward probability [e.g., p(correct | stage 1)] should be significantly
greater than that predicted by chance. Rats were trained on the deter-
ministic MSDM until they met the criteria of a p(correct|stage1) being
significantly greater than chance in four of the five sessions after com-
pleting the 35th training session on the deterministic MSDM. If rats did
not meet the criterion after completing 43 sessions on the deterministic
MSDM (N = 3), training was terminated regardless of p(correct|stage1).

Probabilistic MSDM task
Choice behavior was then assessed in the probabilistic MSDM task.
Initiated trials resulted in the extension of two levers and illumination of
cue lights located above each lever. For most trials (70%), first-stage
choices led to the illumination of the same second-stage state that was
deterministically assigned to that first-stage choice in the determinis-
tic MSDM (referred to as a common transition). On a limited number
of trials (30%), first-stage choices led to the illumination of the sec-
ond-stage state most often associated with the other first-stage choice
(referred to as a rare transition). Second-stage choices were probabil-
istically reinforced using the same alternating block schedule as that
of the deterministic MSDM task. Rats completed 300 trials across five
daily sessions on the probabilistic MSDM task.

Trial-by-trial data (;1500 trials/rat) were collected to conduct logis-
tic regression analyses of decision-making (described below). One rat
was excluded from all analyses because of an extreme bias in the first-
stage choice (e.g., rat chose one lever on 97% of all trials, regardless of
previous trial events).

Data analysis
Pavlovian conditioned approach. To quantify the degree to which

individual rats display sign-tracking or goal-tracking behaviors, a PavCA
score was calculated for individual rats by averaging three standardized
measures, collected as previously described (Meyer et al., 2012). These
three measures were (1) a latency score, which was the average latency to
make a food cup response during the CS, minus the latency to lever press
during the CS, divided by the duration of the CS (10 s); (2) a probability
score, which was the probability that the rat would make a lever press,
minus the probability that the rat would make a food cup response
across the session; and (3) a preference score, which was the number of
lever contacts during the CS, minus the number of food cup contacts
during the CS, divided by the sum of these two measures. The PavCA
score ranged between �1.0 and 1.0, with values closer to 1.0 reflecting a
greater prevalence of ST behaviors and values closed to �1.0 reflecting a
greater prevalence of goal-tracking behaviors. Previous studies have cal-
culated the average PavCA score from the last two pavlovian sessions
rats complete to classify rats as either exhibiting high or low ST behav-
iors (Morrison et al., 2015; Rode et al., 2020) as goal-tracking behaviors
are less commonly observed within the population. We refer to this aver-
age measure as the summary PavCA score. We conducted a similar me-
dian split of the distribution of summary PavCA scores and classified
rats as either exhibiting high sign-tracking behaviors (high ST rats; N =
10) or low sign-tracking behaviors (low ST rats; N = 10). All group-level

analyses reported in the current study were conducted using this binary
classification.

Additionally, a trial-by-trial pavlovian score was calculated to serve
as the dependent measure used in the computational analyses described
below. Latency, probability, and preference scores were calculated on
each trial, and the average of these measures was used to categorize an
individual trial as approach to the lever or approach to the magazine.
Specifically, the latency score was the average latency to make a food cup
response, minus the latency to make a lever press during the CS, divided
by the duration of the CS on that trial. The probability score was the
probability that rats would make a lever press (11) versus a food
cup response (�1) on that trial. The preference score was the num-
ber of lever contacts during the CS, minus the number of food cup
contact during the CS, divided by the sum of these measures for that
trial. Although rats could vacillate between these responses within a
single trial (e.g., approach lever, check magazine, approach lever),
characterizing this within-trial variability is difficult and beyond the
scope of the current study. The PavCA score and the trial-by-trial
pavlovian score for each of the five pavlovian sessions was positively
correlated (all R2 values . 0.94; all p values , 0.001) suggesting that
these measures were capturing the same variability in pavlovian
approach behaviors.

Model-free and model-based learning in the pavlovian conditioned
approach task. We have previously reported that individual differences
in pavlovian approach behavior can be recapitulated using a combina-
tion of model-free and model-based reinforcement-learning algorithms
(Lesaint et al., 2014; Cinotti et al., 2019). We sought to use this hybrid
reinforcement-learning model to index the contribution of these rein-
forcement-learning systems to the pavlovian conditioned approach
behaviors measured in the current study. This model combines the out-
puts of these two reinforcement-learning systems to determine the likeli-
hood that rats will approach the lever or approach the magazine on each
trial. The structure of each trial of the task is represented by a Markovian
Decision Process (MDP) consisting of six different states (Fig. 1A)
defined by the experimental conditions, such as the presence of the lever
or of the food and the current position of the rat (e.g., close to the maga-
zine or the lever). The five different actions are explore the environment
(goE), approach the lever (goL), approach the magazine (goM), engage
the closest stimuli or eng,L./,M., and eat the reward, and state transi-
tions given a selected action are deterministic. For example, if a rat in
state 1 (s1) chooses the action goL, it will always lead to state 2 (s2)
whereas if a rat in state 1 (s1) chooses the action goM, it will lead to state
3 (s3). Action values for all possible actions in the current state are
generated by the decision-making model, which consists of both an
MB and a feature model-free (FMF) reinforcement-learning algo-
rithm (Fig. 1B). The MB and FMF value estimates are combined as a
sum into a weighted value determined by the parameter v . An v pa-
rameter closer to 1 indicates that action values are more influenced
by the MB computations, whereas an v parameter closer to zero indi-
cates that action values are more influenced by the FMF computations.
The weighted values are fed into a softmax function representing the
action selection mechanism.

The FMF system, compared with instrumental reinforcement-learn-
ing algorithms, assigns value representations to the features associated
with each action rather than to the states of the task, which allows a gen-
eralization of values among different states. For example, when the rat
goes toward the magazine in state 1 (s1) or engages the magazine in state
3 (s3), it does so motivated by the same feature value [V(M)] in these
two different states, which means V(M) is updated twice in the course of
a single trial. After each action, the value of the corresponding feature is
updated according to a standard temporal difference (TD) learning rule
by first computing a reward prediction error (d ) as follows:

d ¼ r � V f st; atð Þ� �
;

where r is equal to 1 or 0 if reward delivery occurs or not, respectively.
This reward prediction error is integrated in the current estimate of the
value of the chosen feature as follows:
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V f st; atð Þ� � V f st; atð Þ� �
1ad ;

with the learning rate (e.g., a) bounded between 0 and 1. In contrast to
our previous FMF algorithm, the discounting parameter g was not
included here. This was because our model comparisons (see below,
Results) indicated that this parameter was not explaining unique var-
iance in the approach behavior of this group of rats.

The TD learning rule was only applied to the selected feature (E,
environment; L, lever; M, magazine) in each state transition, except in
the case of food, which was equal to 1, the value of reward. Because the
rat is likely to visit the magazine during the intertrial interval (ITI), the
values of the magazine are revised between state 5 and state 0 according
to the following equation:

V Mð Þ  1� uITIð Þ � V Mð Þ;

where uITI determines the rate at which action values for the magazine
[V Mð Þ] decay during ITI.

The MB system relies on learned transition T and reward R functions
for updating action values. The transition value function aims to deter-
mine the probability of going from one state to the next given a certain
action. After transitioning from state st to st11 by performing action at ,
the transition T st; at; st11ð Þ is updated according to the following:

T st; at; st11ð Þ  1� að ÞT st; at; st11ð Þ1a;

with initial values of T set to 0 for all possible state and action combinations.
The T values for unvisited states are decreased according to the following:

T st; at; st11ð Þ  1� að ÞT st; at; st11ð Þ:

Because the environment is deterministic, T(s, a, s) should converge
perfectly toward values of 1 for all possible state transitions and remain

at a value of 0 for all impossible state transitions (e.g., s1! s4). Similarly,
the reward function R(s, a) is updated according to the following:

R st; atð Þ  1� að ÞR st; atð Þ1ar;

where r is set to 1 for (s5, eat) and 0 otherwise. Initially, R(s, a) is equal
to 0 for all state-action pairs. Across actions and experience in each
state, R(s, a) will converge to a value of 1 for (s5, eat) state-action pair
and remain at a value of 0 for all other state-action pairs. The action-
value functions for each possible action ai in the current state st are
then calculated according to the following:

Q st; aið Þ ¼ R st; aið Þ1 g

X

j

T st; ai; sjð Þmax
k

Q sj; akð Þ;

where g is the discounting parameter. Once the FMF and MB systems
have outputted the feature values and the advantages of the possible
actions, these are integrated through a weighted sum as follows:

P st; aið Þ ¼ vQ st; aið Þ1 1� vð ÞV f s; að Þ� �
;

with v bounded between 0 and 1. These integrated values are then
entered into a softmax function to compute the probability of selecting
each action as follows:

p at ¼ aið Þ ¼ eb P St ;aið ÞX
j
ebPðSt ;ajÞ

;

where b is the inverse temperature parameter quantifying choice
stochasticity.

This model contained five free parameters, the learning rate a, the
discounting factor g , the inverse temperature b, the ITI update factor

Figure 1. The FMF-MB decision-making model. A, The Markov decision process of a single trial from the pavlovian approach task. The following five possible actions lead deterministically from one state
to the next: goE, goL, goM, eng, and eat the reward. Each of these actions focuses on a specific feature indicated in angle brackets, E, L, M, and F. These are the features used by the FMF learning compo-
nent. The red path corresponds to sign-tracking behavior and the blue path to goal-tracking behavior. B, Schematic of the FMF-MB decision-making model adapted from Lesaint et al. (2014) and Cinotti
et al. (2019). The model combines an MB learning system, which learns the structure of the MDP and then calculates the relative advantage of each action in a given state, and an FMF system, which
attributes a value to different features of the environment that is generalized across states (e.g., the same value of the magazine is used in states 1 and 4). The advantage function and value function are
weighted byv , their relative importance determining the sign- versus goal-tracking tendency of the individual and then passed to the action selection mechanism modeled by a softmax function.
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uITI , and the integration factor v . Trial-by-trial behavior was classified
as either being a sign-tracking or goal-tracking behavior and fit with five
free parameters selected to maximize the likelihood of sequence of
behavior of each rat as follows:

L ¼
X

trials

ln P atja; b ; g ;v ; uð Þð Þ:

To avoid local maxima, starting values for each free parameter were
optimized using a grid search so that each parameter had three possible
initial values, and all 35 possible combinations were tested as the starting
point of the gradient descent procedure to maximize the likelihood L.
Each pavlovian session only contained 25 trials, which proved to be diffi-
cult for obtaining reliable parameter estimates from this reinforcement-
learning model. To improve the accuracy and reliability of parameter
estimates and model fit, trial-by-trial data for all five of the pavlovian ses-
sions were concatenated into a single dataset for individual rats and ana-
lyzed with the reinforcement-learning model. The parameter estimates
that yielded the largest log likelihood were retained and are reported in
Table 1.

Logistic regression of choice data in the MSDM tasks.We have previ-
ously shown that the choice behavior of rats in the MSDM task is guided
by previous trial events, such as previous trial outcome, choice, and, in
the probabilistic MSDM task, state transitions. Trial-by-trial choice data
in the deterministic and probabilistic MSDM was analyzed with a logis-
tic regression model using the glmfit function in MATLAB version
2017a (MathWorks). These logistic regression models predicted the like-
lihood that rats would select the same first-stage choice on the current
trial (trial t) that they had on the previous trial (trial t-1), namely the
probability of staying or p(stay). The model used to analyze choice
data in the deterministic MSDM contained the following predictors.

Intercept: 11 for all trials, which quantifies the tendency for rats
to repeat the same first stage option regardless of any
other trial events.

Correct: 11 for trials where the rat selects the first stage option
with a common transition leads to the highest reinforced
stage 2 option.
�1 for trials where the rat selects the first stage option
with a common transition leads to the lowest reinforced
stage 2 option.

Outcome: 11 if the previous trial resulted in a rewarded outcome.
�1 if the previous trial resulted in an unrewarded
outcome.

The model used to analyze choice data in the probabilistic MSDM
contained the same predictors as described above as well as two addi-
tional predictors.

Transition: 11 if the previous trial included a common transition.
�1 if the previous trial included a rare transition.

Transition-by-Outcome: 11 if the previous trial included a
common transition and was rewarded
or if it included a rare transition and
was unrewarded.
�1 if the previous trial included a rare
transition and was rewarded or included a
common transition and was unrewarded.

The correct predictor in the logistic regression prevents spurious
loading onto the transition-by-outcome interaction predictor (Akam et
al., 2015), which can occur when using blocked schedules of reinforce-
ment in the MSDM task. We included the correct predictor in all logistic
regression models to ensure consistency across analyses and MSDM
tasks. Critically, the regression coefficient applied to outcome quantifies
model-free behavior, and the regression coefficient applied to the transi-
tion-by-outcome interaction quantifies model-based behavior.

Logistic regression of rewarded and unrewarded outcomes.We found
that individual differences in the summary PavCA score was related to
variation in the outcome regression coefficient (see below, Results). To

determine whether this relationship was because of differences in the
influence of rewarded and/or unrewarded outcomes on choice behavior,
we analyzed choice data in the MSDM task using a different logistic
regression model that estimated the likelihood that rats would repeat the
same first-stage choice based on whether the previous trial was rewarded
or unrewarded. This logistic regression model, unlike the first, permitted
an independent analysis of how each trial outcome (rewarded or unre-
warded) influenced first-stage choices. The predictors included in this
model were as follows.

Intercept: 11 for all trials. This quantifies the tendency for rats
to repeat the same first-stage option regardless of
any other trial events.

Rewarded: 11 if the previous trial was rewarded and the rat
chose the same lever (first-stage choice) that was
selected on the subsequent trial.
�1 if the previous trial was rewarded and the rat
chose a different lever (first-stage choice) than what
was selected on the subsequent trial.
0 if the previous trial was unrewarded.

Unrewarded: 11 if the previous trial was unrewarded and the rat
chose the same lever that was selected on the subse-
quent trial.
�1 if the previous trial was unrewarded and the rat
chose a different lever than what was selected on the
subsequent trial.
0 if the previous trial was rewarded.

Positive regression coefficients for the rewarded and unrewarded
predictors indicate that rats are more likely to persist with the same first-
stage choice, whereas negative regression coefficients indicate that rats
are more likely to shift their first-stage choice. The probability that rats
would repeat the same first-stage choice following rewarded and unre-
warded trials was also calculated to examine how this more traditional
measure of win-stay and lose-stay behaviors might differ between high
and low ST rats.

Statistical analyses
Values presented are mean 6 SEM, unless otherwise noted. Statistical
analyses were conducted in IBM SPSS (version 26), MATLAB (ver-
sion 2017a, MathWorks), and R (https://www.R-project.org) soft-
ware. Generalized linear models (GLMs; R glmfit package) were used
to analyze the relationship between the summary pavlovian score and
choice behavior of rats in the MSDM task. The dependent variable
was a binary array coding for whether the first-stage choice was the same
(11) or different (0) from the previous trial. Predictors in the model could
be correct, outcome, transition, transition-by-outcome interaction, and
summary PavCA score or the binary classification of low ST or high ST
rats. All higher-order (e.g., summary PavCA score times outcome times
transition) and lower order (e.g., summary PavCA score times outcome)
interactions were included in the model. Significant interactions were
tested using progressively lower-order analyses. Another GLM was used
to examine the relationship between the summary PavCA score and the
influence of rewarded and unrewarded outcomes on first-stage choices.
The dependent variable was a binary array coding for the first-stage choice
(11 for left lever and 0 for right lever). Predictors in the model were
reward, unrewarded, and summary pavlovian score. All interactions (e.g.,
summary PavCA score times rewarded) were included in the model and
significant interactions tested using lower-order analyses.

All other analyses were performed in SPSS. Repeated-measures data
were entered into a generalized estimating equation model using a

Table 1. Parameter estimates from the full hybrid model

Percentile a g b uITI v

25th 0.88 1 36.05 0.33 0.90
Median 0.26 0.90 5.11 0.12 0.72
75th 0.17 0.56 4.16 0.04 0.20

Values presented are those from the 25th, median, and 75th percentiles.
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probability distribution based on the known properties of these data.
Specifically, event data (e.g., number of trials in which rats chose the
highest reinforced first-stage option) were analyzed using a binary
logistic distribution. Relationships between dependent variables (e.g.,
v and model-free learning) were tested using Spearman’s rank correla-
tion coefficient.

Results
Pavlovian conditioned approach
Pavlovian incentive learning was assessed in rats in a pavlovian
conditioned approach task for 5 d (Fig. 2A,B). The summary
PavCA score was calculated and a median split conducted to
classify rats as exhibiting either high (N = 10) or low (N = 9)
sign-tracking behaviors (Fig. 2C). As expected, the PavCA score
increased across the sessions in the high ST group (Wald x 2 =
91.33; p , 0.001) but not in the low ST group (Wald x 2 = 0.23;
p = 0.63; Fig. 2D). We then examined how lever- and food-cup-
directed behaviors changed across the five pavlovian condition-
ing sessions in both high and low ST rats (Fig. 2E–G). Post hoc
analysis of the group (high vs low ST) � session interaction
(Wald x 2 = 30.37; p , 0.001) indicated that the latency score,
the probability score, and the preference score increased across
the pavlovian sessions in the high ST group (Wald x 2 = 68.28;
p , 0.001) but not in the low ST group (all Wald x 2 values ,
0.99; p. 0.32). These session-dependent changes in the high ST

rats are similar to observations that we, and others, have reported
using pavlovian conditioned approach tasks (Flagel et al., 2011;
Saunders and Robinson, 2011; Keefer et al., 2020).

Computational analysis of pavlovian approach behavior
Each pavlovian session consisted of only 25 trials, which limited
our ability to obtain reliable and accurate reinforcement-learning
parameter estimates for each session and each rat. To overcome
this, we concatenated the trial-by-trial data from all five pavlov-
ian sessions into a single 125-trial dataset for individual rats
and fitted these data with the hybrid model described above,
and estimates of the five parameters (e.g., a; b ; g ; uITI;v ) are
presented in Table 1. We also compared the fits of this hybrid
model to other variants of this model in which the v parameter,
which quantifies the degree to which behavior in the pavlovian
approach task is guided by MB and/or FMF learning, was fixed
at a value of 1 (e.g., no FMF contribution to the action values)
or at a value of 0 (e.g., no MB contribution to the action values).
The model in which the v was fixed at a value of 0 had the low-
est Bayesian information criterion (BIC), indicating the FMF-
only model best explained the behavior of most rats. This was
consistent with the distribution of the pavlovian scores we
observed (Fig. 2C), indicating that most rats in the current
study exhibited high ST behaviors. The BIC for rats that had
the strongest goal-tracking behavior, however, was lowest when

Figure 2. Pavlovian approach task. A, Schematic of the experimental design. Rats (N = 20) underwent five sessions on the pavlovian approach task before being trained in the deterministic
MSDM task (35–43 d) and tested in the probabilistic MSDM tasks (5–7 d). B, The PavCA score for individual rats across the five pavlovian sessions. C, Distribution of the summary PavCA score
obtained from pavlovian sessions 4 and 5. Rats were divided into two groups based on a median split (red line) of the summary PavCA score; low ST rats (N = 9) and high ST rats (N = 10). D,
The PavCA score for low ST and high ST rats across the five pavlovian sessions. E, The latency score increased in high ST rats across the pavlovian sessions but did not change in the low ST
rats. F, The probability score increased in the high ST rats across the pavlovian sessions but did not change in the low ST rats. G, Preference score increased in the high ST rats across the pavlov-
ian sessions but did not change in the low ST rats. Values presented are mean6 SEM.
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the v was fixed at a value of 1, indicating that the full hybrid
model is only required for some individuals. These results sug-
gest that although the FMF-only model (e.g., v = 0) is sufficient
in explaining the behavior of most rats in the current study, this
is likely an artifact of the large proportion of ST, and few GT,
rats in the current cohort and would not be the case with larger
samples sizes consisting of more GT rats. Because the current
study sought to characterize behavioral variation at an individ-
ual level, we believe that the hybrid model in which the v is a
free parameter and can vary for each individual rat is better
suited to achieve this goal.

We found that some of the parameter estimates were on
extreme ends of the distribution and/or boundary, likely because
we were trying to optimize five parameters with a limited num-
ber of trials (;125 trials/rat). To improve model fit, we fixed
four of the parameters (a; b ; g ; uITI) to the median value esti-
mate obtained from the hybrid model and optimized only the v
parameter for each individual rat, as we have previously done
(Lesaint et al., 2014). The BIC of this reduced model was lower
than the FMF-only model (Table 2), and the v parameter esti-
mate distribution was found to be less extreme than those
observed with the hybrid model (Fig. 3A). Moreover, the v pa-
rameter estimate from the full model was correlated with the v
parameter obtained from the restricted model (Spearman’s r =
0.87; p , 0.001; Fig. 3B), suggesting that the restricted model
with only a single free parameter (e.g., v parameter) was able to
capture the individual differences observed with the full hybrid
model. Our subsequent analyses involving the v parameter were
those estimates obtained using the restricted model.

To ensure that the v parameter estimate was not being
skewed by the dynamics of learning that occurs across the five
pavlovian sessions, we also estimated the v parameter using the
trial-by-trial data collected in the last two pavlovian sessions
(e.g., 50 trials in total). We then compared this estimate that the
v parameter obtained from trial-by-trial data collected in all the
pavlovian sessions (e.g., 125 trials). The v parameter estimates
from these analyses were positively correlated with one and other
(Spearman’s r = 0.41; p = 0.08), suggesting that inclusion of ear-
lier sessions when learning was occurring did not bias our esti-
mate of the v parameter. Subsequent analyses reported below
were done using the v parameter that was estimated from trial-
by-trial data from all five pavlovian sessions.

Our previous simulation experiments using this rein-
forcement-learning model have found that as the v parameter
approaches zero, and the decision-making algorithm favors a
FMF system, the prevalence of sign-tracking behaviors increases.
We hypothesized, therefore, that the v parameter would be neg-
atively correlated with the summary pavlovian scores across rats.
Indeed, the v parameter that was estimated from the trial-
by-trial data collected across the five pavlovian sessions rats
completed was negatively correlated with the summary PavCA
score (Spearman’s r = 0.89; p , 0.001; Fig. 3C). These results,
collectively, indicate that the restricted hybrid reinforcement-
learning model can capture meaningful variation in pavlovian
approach behavior.

Reward-guided behavior in the deterministic MSDM task is
related to ST behaviors
Choice behavior on the deterministic MSDM task was then
examined (Fig. 4A,B). The probability that rats selected the
first-stage choice associated with the most frequently reinforced
second-stage option increased across the 35 training sessions
(b = 0.012, p , 0.001) and was significantly greater than that

predicted by chance in the last five sessions that rats completed
(binomial test, p , 0.001; Fig. 4C). Rats were more likely to
repeat a first-stage choice that was subsequently rewarded than
a first-stage choice that was subsequently unrewarded (Wald
x 2 = 113.57, p , 0.001; Fig. 4D) indicating that second-stage
outcomes were able to influence subsequent first-stage choices.
These data, collectively, indicate that rats understood the struc-
ture of the deterministic MSDM task and, critically, that their
first-stage choices influenced the subsequent availability of sec-
ond-stage options.

To quantify the influence of previous trial events (e.g., correct,
outcome) on first-stage choices, choice data from rats was ana-
lyzed with a logistic regression model (Fig. 4E, Table 3). The
intercept was significantly greater than zero (z = 14.92, p ,
0.001), indicating that rats, similar to humans, were more likely
to repeat a first-stage choice regardless of previous trial events.
Nevertheless, the effect of outcome was also significantly differ-
ent from zero (z = 46.56, p , 0.001), indicating that rats were
using previous trial outcomes (reward and absence of reward) to
guide their first-stage choices.

We then examined whether individual differences in pavlov-
ian approach behavior predicted choice behavior of the same rat
in the deterministic MSDM task. The summary pavlovian score
was included as a covariate in the logistic regression model and
the two-way interaction between outcome and the pavlovian
score examined. The summary pavlovian score� outcome inter-
action was a significant predictor in the model (z = 7.51, p ,
0.001; Table 3), and post hoc analyses indicated that the regres-
sion coefficient for outcome was significantly greater in high ST
rats compared with the low ST rats (z = 9.58, p, 0.001; Fig. 4F).
These data demonstrate that high ST rats were more likely to use
previous trial outcomes to guide their choice behavior compared
with low ST rats.

The outcome regression coefficient quantifies the degree to
which both rewarded and unrewarded outcomes guide subse-
quent choice behavior. Differences in the outcome regression
coefficient that we observed between high and low ST rats might,
therefore, reflect variation in how rats use rewarded or unre-
warded outcomes to guide their behavior. To independently
assess the impact of rewarded and unrewarded trials on first-
stage choices, we conducted a second logistic regression analysis
of choice data in the deterministic MSDM task which examined
the likelihood that rats would repeat the same first-stage choice
following a rewarded or unrewarded outcome. The rewarded
regression coefficient was positive (b = 1.98 6 0.03, z = 71.59,
p , 0.001), indicating that rats repeated first-stage choices that
resulted in reward. The unrewarded regression coefficient was
also positive (b = 0.336 0.02, z = 17.78, p , 0.001) but smaller
than that for rewarded regression coefficient (Wald x 2 = 106,
p , 0.001), indicating that rats were more likely to repeat re-
warded first-stage choices than unrewarded first-stage choices.

We then examined whether the summary pavlovian score
interacted with the rewarded or unrewarded regression coeffi-
cients to predict first-stage choices in the deterministic MSDM

Table 2. Goodness-of-fit measures for the full hybrid model and other variants

Parameter type Hybrid model
FMF only
(v ¼ 0)

MB only
(v ¼ 1)

Reduced
model

Free parameters a; b; g ;v ; uITI a; b; uITI a; b; g ; uITI v
Fixed parameters NA v v a; b; g ; uITI
BIC 2019 1891 2147 1792

NA, Non applicable.
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Figure 3. The hybrid reinforcement model for assessing model-based and model-free mechanisms of pavlovian learning. A, The v parameter estimate in the full (left) and restricted (right)
hybrid model. B, The relationship between the v parameter in the full hybrid model and the v parameter from the restricted hybrid model. C, The relationship between the v parameter
from the restricted hybrid model, estimated from trial-by-trial data for all five pavlovian sessions, and the summary PavCA score, measured in the last two pavlovian sessions.

Figure 4. Decision-making in the deterministic MSDM task. A, Top, Rats were trained on the MSDM task in which state transitions were deterministic. Bottom, Stage 2 choices were rein-
forced according to an alternating block schedule of reinforcement. B, Schematic of single-trial events. Rats initiated trials by entering an illuminated magazine. Two levers (stage 1) located on
either side of the magazine were extended into the operant box, and a single-lever response led to the illumination of two port apertures (stage 2) located on the panel opposite the levers.
Entries into the illuminate apertures resulted in probabilistic delivery of reward. C, Probability of selecting the stage 1 option associated with the highest reinforced stage 2 options [p(correct|
stage1)] during the first 35 d of training. The probability that choices were at chance level is represented by the dashed line. D, The probability that individual rats would choose the same
first-stage option following a rewarded or unrewarded second-stage choice. E, Regression coefficients for the explanatory variables (e.g., correct, outcome) in the logistic regression model pre-
dicting the likelihood that rats would make the same first-stage choice on the current trial as they had on the previous trial in the deterministic MSDM task. Positive regression coefficients indi-
cate a greater likelihood that the rat will repeat the same first-stage choice. F, The outcome regression coefficient was higher in high ST rats compared with low ST rats, indicating that
second-stage outcomes were guiding first-stage choices to a greater degree in high ST rats. G, The likelihood that rats would repeat the same first-stage choice following a rewarded outcome
was greater in high ST rats compared with low ST rats as evidenced by differences in the rewarded regression coefficient. H, The likelihood that rats would repeat the same first-stage choice
following an unrewarded outcome did not differ between high and low ST rats. ***p, 0.001. Values presented are mean6 SEM.
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(Table 4). The interaction between the summary pavlovian score
times rewarded regression coefficient was significant (z = 8.93,
p , 0.001,b = 0.51) and post hoc analyses between the low and
high ST groups indicated that the rewarded regression coefficient
was greater in high ST rats compared with low ST rats (z = 12.89,
p = 0.001; Fig. 4G). The summary pavlovian score times unre-
warded interaction, however, was not significant (z = 0.27, p =
0.79, b = 0.01; Fig. 4H). To confirm these differences in out-
come-specific behaviors, we compared the probability that rats
would repeat a first-stage choice following a rewarded (e.g.,
win-stay) or unrewarded (e.g., lose-stay) outcome between high
and low ST rats. The probability of repeating a first-stage choice
following a rewarded outcome was greater in high ST rats com-
pared with low ST rats (Wald x 2 = 5.77, p = 0.02). No differen-
ces were observed for the probability of repeating a first-stage
choice following an unrewarded outcome (Wald x 2 = 1.50, p =
0.22). High ST rats, therefore, used rewarded outcomes to guide
their first-stage choices to a greater degree than low ST rats,
suggesting that these former individual differences in pavlovian
incentive learning are associated with variation in reward-
guided instrumental behavior.

Probabilistic MSDM task and relationship to pavlovian
approach behavior
To determine whether the relationship between the summary
pavlovian score and reward-guided behavior in the above
deterministic version of the MSDM task was associated specif-
ically with model-free or model-based reinforcement learning,
the choice behavior of rats was assessed in the probabilistic
version of the MSDM task (Fig. 5A). According to model-free
theories of reinforcement learning, the probability of repeat-
ing a first-stage choice should be influenced only by the previ-
ous trial outcome, regardless of whether the state transition
was common or rare (Fig. 5B, left). In contrast, model-based
theories of reinforcement learning posit that the outcome at
the second stage should affect the choice of the first-stage
option differently based on the state transition that was expe-
rienced (Fig. 5B, right). Evidence in humans and in our previ-
ous rodent studies, however, indicates that individuals use a
mixture of model-free and model-based strategies in the prob-
abilistic MSDM task. Indeed, the probability that rats in the
current study would repeat the same first-stage choice accord-
ing to outcomes received (rewarded or unrewarded) and the

state transitions experienced (common or rare) during the im-
mediately preceding trial indicated that rats were using both
model-free and model-based learning to guide their choice
behavior (Fig. 5C).

To quantify the influence of model-free and model-based
strategies, choice data were analyzed with a logistic regression
model (Daw et al., 2011; Akam et al., 2015, 2021; Groman et al.,
2019a, b). The main effect of outcome, which provides an index
of model-free learning, was significantly greater than zero (z =
22.65, p , 0.001; Fig. 5D, orange bar), indicating that rats were
using second-stage outcomes to guide their first-stage choices.
The interaction between the previous trial outcome and state
transition, which provides an index of model-based learning, was
also significantly greater than zero (z = 15.38, p, 0.001; Fig. 5D,
purple bar). The combination of a significant main effect for out-
come and a significant transition-by-outcome interaction sug-
gests that rats were using both model-free and model-based
strategies to guide their choice behavior in the probabilistic
MSDM task.

We then examined whether the summary pavlovian score
interacted with model-free and/or model-based learning to pre-
dict the probability of repeating the same first-stage choice in the
probabilistic MSDM task (Table 5). The interaction between the
summary pavlovian score and trial outcome significantly pre-
dicted choice behavior (z = 3.16, p = 0.002), but the interaction
between the summary pavlovian score and the outcome-by-tran-
sition predictor did not (z = 1.60, p = 0.11). Post hoc comparisons
between low and high ST rats indicated that the outcome regres-
sion coefficient—a measure of model-free learning—was signifi-
cantly greater in high ST rats compared with low ST rats (z =
2.67, p = 0.008, b = 0.09; Fig. 5E), which was a similar effect
observed in the deterministic task (Fig. 4F). The outcome-
by-transition regression coefficient—a measure of model-
based learning—did not differ between the low and high ST
rats (Fig. 5F). These differences in the outcome regression
coefficient (e.g., model-free learning) and lack of differences
in the outcome-by-transition coefficient (e.g., model-based
learning), collectively, indicate that high ST rats rely to a
great degree on model-free learning in the MSDM task com-
pared with low ST rats.

The greater model-free learning we observed in high ST rats
may be, in part, because high ST rats acquired greater incentive
value for the lever used in the pavlovian conditioning task that
then biased responding in the MSDM task. We hypothesized
that if this were true, then model-free behavior for the lever used
in the pavlovian task might be higher than model-free behavior
for the lever that was not used in the pavlovian task. To test this
hypothesis, the probability that rats would repeat the same first-
stage choice based on the second-stage outcomes (rewarded vs
unrewarded) and state transition (common vs rare) was calcu-
lated for each lever. The difference between the probability of
repeating a rewarded first-stage choice and an unrewarded first-
stage choice was calculated to obtain an index of model-free
learning for each lever. We compared the lever-specific index
based on whether the lever in the MSDM task was in the same
location as the lever used in the pavlovian task (referred to as
“same”) or was in a different location as the lever used in the
pavlovian task (referred to as “different”). We found that the
model-free index did not differ between the levers (same lever,
0.21 6 0.05; different lever, 0.28 6 0.06; Wald x 2 = 0.77, p =
0.38). Notably, the model-free index did not differ between the
levers in the high ST rats (same lever, 0.26 6 0.05; different le-
ver, 0.27 6 0.07; Wald x 2 = 0.02; p = 0.90), suggesting that

Table 3. Logistic regression for the deterministic MSDM task

Independent variable Beta Z value p value

Intercept 1.12 14.16 ,0.001
Correct 0.17 11.89 ,0.001
Outcome 0.73 46.48 ,0.001
Summary PavCA score 0.31 1.90 0.06
Outcome � summary PavCA score 0.27 8.54 ,0.001

Table 4. Simple logistic regression for the deterministic MSDM task

Independent variable Beta Z value p value

Intercept �0.02 �0.26 0.795
Correct �0.05 �3.88 ,0.001
Rewarded trial 1.91 75.13 ,0.001
Unrewarded trial 0.33 18.78 ,0.001
Summary PavCA score �0.06 �0.30 0.76
Rewarded � summary PavCA score 0.54 10.47 ,0.001
Unrewarded � summary PavCA score 0.001 0.03 0.98

466 • J. Neurosci., January 18, 2023 • 43(3):458–471 Moin Afshar et al. · Conserved Learning in Pavlovian and Instrumental



prior experience with one of the levers in the pavlovian condi-
tioning task did not bias high ST rats to use a model-free strat-
egy in the MSDM task.

To determine whether the summary pavlovian score was
associated with rewarded or unrewarded outcomes, choice
behavior in the probabilistic MSDM task was analyzed with
an alternative logistic regression model (Table 6). Similar to

what we had observed in the deterministic MSDM task, the
interaction between the summary pavlovian score and rewarded
predictor was significant (z = 4.31, p, 0.001, b = 0.23), high ST
rats were more likely to repeat a first-stage choice that led to a
rewarded second-stage choice compared with low ST rats (Fig.
5G). We also observed a significant interaction between the
summary pavlovian score and the unrewarded predictor (z =
�2.69, p = 0.007, b = –0.09), but the unrewarded regression
coefficient was not statistically different between low and high

Figure 5. Decision-making in the probabilistic MSDM task. A, Choice behavior was assessed in the probabilistic MSDM task, which was similar in structure to the reduced MSDM, but the
transition between stage 1 and stage 2 was probabilistic. B, Hypothetical data for a pure model-free agent (left) and a pure model-free agent (right). The probability of repeating the same
first-stage option based on the previous trial outcome (rewarded vs unrewarded) and the state transition (common vs rare). C, The probability that rats would repeat the same first-stage option
based on the previous trial outcome (rewarded vs unrewarded) and the state transition (common vs rare). D, Regression coefficients for explanatory variables (e.g., correct, outcome, transition,
and transition-by-outcome) in the logistic regression model predicting the likelihood that rats will choose the same first-stage choice as they had on the previous trial. The outcome regression
coefficient (orange bar) represents the strength of model-free learning, whereas the transition-by-outcome regression coefficient (purple bar) represents the strength of model-based learning.
E, The outcome regression coefficient, a measure of model-free learning, was greater in high ST rats compared with low ST rats. F, The transition-by-outcome regression coefficient did not dif-
fer between low ST and high ST rats. G, The rewarded regression coefficient was greater in high ST rats compared with low ST rats. H, The unrewarded regression coefficient did not differ
between low and high ST rats. **p, 0.01, *** p, 0.001. Values presented are mean6 SEM.

Table 5. Logistic regression for the probabilistic MSDM task

Independent variable Beta Z value p value

Intercept 0.87 15.20 ,0.001
Correct 0.09 6.60 ,0.001
Outcome 0.37 19.77 ,0.001
Transition 0.16 8.77 ,0.001
Outcome times transition 0.26 13.80 ,0.001
Summary pavlovian score 0.09 0.80 0.42
Outcome � summary PavCA score 0.13 3.49 ,0.001
Transition � summary PavCA score 0.07 1.88 0.06
Outcome � transition times summary PavCA score 0.05 1.41 0.16

Table 6. Simple logistic regression for the probabilistic MSDM task

Independent variable Beta Z value p value

Intercept 0.05 0.36 0.72
Correct �0.03 �2.46 0.01
Rewarded trial 1.45 56.55 ,0.001
Unrewarded trial 0.36 20.35 ,0.001
Summary pavlovian score 0.11 0.44 0.66
Rewarded trial � summary PavCA score 0.22 4.40 ,0.001
Unrewarded trial � summary PavCA score �0.09 �2.42 0.02

Moin Afshar et al. · Conserved Learning in Pavlovian and Instrumental J. Neurosci., January 18, 2023 • 43(3):458–471 • 467



ST rats (Fig. 5H). Moreover, the proba-
bility that rats would repeat a first-stage
choice following a rewarded, but not unre-
warded, outcome was greater in high ST
rats compared with low ST rats (rewarded,
Wald x 2 = 4.39, p = 0.04; unrewarded,
Wald x 2 = 0.30, p = 0.58). These results,
collectively, indicate that individual differ-
ences in pavlovian approach behavior are
associated with variation in reward-medi-
ated, model-free learning.

Pavlovian ST behavior is associated with
reward-based, model-free updating
We found that pavlovian conditioned
approach behaviors were associated with
reward-mediated, model-free learning in
both the deterministic and probabilistic
MSDM tasks. This suggests that the
model-free computations that guide pav-
lovian approach behaviors (e.g., FMF
learning) may be related to the model-
free computations that influence operant
choice behavior in the MSDM task. To
test this directly, we compared the
regression coefficients obtained from the
MSDM task in rats that either had a
small v (e.g., more model-free updating
in the pavlovian conditioned approach
task) or large v (e.g., more model-based
updating in the pavlovian conditioned
approach task) parameter estimate (Fig.
6). We hypothesized that if the pavlovian
FMF mechanisms were related to the
operant-based model-free learning, then
the outcome regression coefficient from
the MSDM task would differ in rats with
a smaller v parameter estimate (e.g.,
greater FMF updating) compared with rats with a large v pa-
rameter estimate (e.g., greater MB updating). As predicted, the out-
come regression coefficient (e.g., model-free learning) was larger in
rats with a smaller v parameter compared with rats with a large v
parameter (Wald x 2 = 6.22, p = 0.01; Fig. 6A). These differences
were specific to model-free learning, as the outcome-by-transition
regression coefficient—a measure of model-based learning—did
not differ as a function of the v parameter (Wald x 2 = 1.21, p =
0.27; Fig. 6B). Furthermore, when we compared the rewarded and
unrewarded regression coefficients between rats with either a
high or low v parameter, only the rewarded regression coefficient
differed between the groups (rewarded, Wald x 2 = 6.51, p = 0.01;
Fig. 6C; unrewarded, Wald x 2 = 1.42, p = 0.23; Fig. 6D). These
data suggest that the model-free reinforcement-learning systems
recruited during pavlovian conditioning parallel those recruited in
the instrumental MSDM task.

Discussion
The current study provides new evidence that the model-free
mechanisms that are used during the pavlovian conditioned
approach task are related to the model-free mechanisms that
guide instrumental decision-making behaviors. We report that
a greater prevalence of sign-tracking behaviors in the pavlovian
approach task is associated with greater model-free, but not

model-based, learning in the MSDM task. Differences in
model-free updating observed in high and low ST rats were
associated specifically with reward-guided behaviors; rats with
higher sign-tracking behaviors were more likely to repeat a
rewarded choice than rats with lower sign-tracking behaviors.
No differences in choice behavior following an unrewarded
outcome were observed between low and high ST rats. Our
data, collectively, provide direct evidence indicating that
individual differences in sign-tracking behaviors are associated
with reward-based, model-free computations. These results
suggest that the model-free mechanisms mediating pavlovian
approach behaviors might be controlled by the same model-
free computations that guide instrumental behaviors and use
conserved learning systems that are known to be altered in psy-
chiatric disorders.

Individual differences in model-free computations are
conserved across instrumental and pavlovian tasks
Rats with higher sign-tracking behaviors in the pavlovian
approach task were found to have greater model-free rein-
forcement learning in both the deterministic and probabilis-
tic MSDM tasks. These data suggest that the mechanisms
that assign and update incentive value to cues predictive of
rewards might be the same as those that update representa-
tions following rewarded actions. We propose, therefore,
that pavlovian and instrumental behaviors are controlled by

Figure 6. Model-free learning in the MSDM is related to model-free learning in the pavlovian approach task. Trial-by-trial
data in the pavlovian approach task was quantified with the hybrid reinforcement learning model and the degree to which
rats MB and/or FMF learning to guide their behavior quantified with the v parameter. A median split of the v parameter
distribution was conducted, and rats classified as having a low v parameter estimate (e.g., greater FMF updating and sign-
tracking behaviors) or a high v parameter estimate (e.g., greater MB updating and goal-tracking behaviors). A, The outcome
regression coefficient, a measure of model-free learning in the probabilistic MSDM task, was greater in rats with a low v pa-
rameter estimate compared with rats with a high v parameter estimate. B, The transition-by-outcome regression coeffi-
cient, a measure of model-based learning in the probabilistic MSDM task, did not differ between the low and high v
parameter rats. C, The rewarded regression coefficient from the MSDM task was greater in rats with a low v parameter
compared with rats with a high v parameter. D, The unrewarded regression coefficient from the MSDM task in rats with a
low v parameter did not differ from rats with a high v parameter. *p, 0.05. Values presented are mean6 SEM.
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overlapping model-free, reinforcement-learning mechanisms.
Alternatively, the related model-free measures that we quanti-
fied in the pavlovian and MSDM tasks may be driven by unique
model-free mechanisms that rely on the same behavioral out-
put. There is evidence that the neural mechanisms governing
pavlovian and instrumental learning differ from each other
(Bouton et al., 2021), but how these neural systems are involved
in model-free computations that govern both pavlovian and
instrumental learning is not fully understood. Future studies
comparing how reward-mediated, model-free computations
are encoded within these discrete circuits across pavlovian and
instrumental environments could provide mechanistic insights
into the behavioral correlations observed here.

The logistic regression analyses of choice behavior in the
MSDM task indicated that rats with higher sign-tracking behav-
iors were more likely to repeat rewarded actions compared with
rats with lower sign-tracking behaviors. This suggests that the
degree of action value updating following rewards was greater in
rats with higher sign-tracking behaviors and may explain why
rats with greater sign-tracking behaviors are more resistant to
outcome devaluation and slower to extinguish reward-predictive
cues compared to GT, or lower ST, rats (Morrison et al., 2015;
Nasser et al., 2015; Ahrens et al., 2016; Smedley and Smith, 2018;
Fitzpatrick et al., 2019; Amaya et al., 2020; Keefer et al., 2020).
For example, cached representations of cues predictive of
rewards may be exaggerated in individuals with greater sign-
tracking behaviors and, consequently, lead to slower adjustments
in behavior when the value of the outcome changes. This is not
a general impairment in extinction learning as rates of extinc-
tion of operant responses are similar between ST and GT rats
(Ahrens et al., 2016; Fitzpatrick et al., 2019). Rather, previous
work has proposed that strong attribution of incentive salience
to reward-predictive cues may bias attention and lead to inflexi-
ble patterns of responding (Nasser et al., 2015; Ahrens et al.,
2016; Keefer et al., 2020). Indeed, this may explain why sign-
tracking behaviors in rats are associated with suboptimal choice
behavior in a gambling task (Swintosky et al., 2021).

We did not, however, observe a relationship between pavlov-
ian approach behaviors and model-based updating in the
MSDM task. This was surprising given our previous theoretical
work and the experimental work of others (Lesaint et al., 2014;
Cinotti et al., 2019). The lack of association between the pavlov-
ian summary score and model-based learning in the MSDM task
is likely because we only observed a limited number of GT rats in
the current sample. Specifically, only three rats in the current
cohort of 20 would have been classified as GT rats (Fig. 2). This
was not because the distribution of pavlovian approach behaviors
in the current study was abnormal; previous studies using larger
sample sizes than the current study (e.g., N = 560 vsN = 20) have
observed similarly skewed distributions (Fitzpatrick et al., 2013)
in food-restricted rats (Fraser and Janak, 2017). It is possible that
our food restriction procedure biased rats toward a more model-
free strategy in both pavlovian and instrumental environments.
Future studies that use large sample sizes and manipulate hunger
states to obtain behavioral measures that span the distribution of
pavlovian approach behaviors may, therefore, find a relationship
between goal-directed behaviors and model-based learning.

Prior experience with a particular lever in the pavlovian con-
ditioning task did not appear to bias the behavior of rats in the
MSDM task. It is possible, however, that the use of levers in both
the pavlovian and operant environments had a more general
influence on behavior in the MSDM task, and this influence was
greater in high ST rats that attributed greater incentive salience

to the lever. Although the testing environments and outcomes
(e.g., sucrose pellet vs sweetened condensed milk solution) used
for the pavlovian and MSDM tasks were different from one
another, randomizing the order in which animals proceeded
through each of the tasks would have reduced any potential
order effects that may be confounding our results. We did con-
sider implementing a crossover design to reduce any potential
order effects but believed that extensive training in the MSDM
task first, compared with the limited exposure in the pavlovian
conditioning task, was more likely to have an impact on behav-
ior in the pavlovian task. A more optimal design would have
used different manipulandum in the pavlovian and instrumen-
tal tasks. Nevertheless, this is a limitation of the current study
design, which we will address in future experiments.

The current study was only conducted in male rats, which
limits our understanding of how these pavlovian and instru-
mental reward-based, model-free systems interact in females.
Previous studies have not reported robust differences in the
prevalence of sign-tracking and/or goal-tracking behaviors
between male and female rats (Pitchers et al., 2015) or model-
free and model-based learning in male and female humans
(Gillan et al., 2015). We would not anticipate observing differ-
ent results in female rats from those reported here in male rats.
Nevertheless, it is possible that the model-free mechanisms
mediating pavlovian approach behaviors in females are not the
same model-free computations that guide instrumental behav-
ior. This might explain the divergent learning strategies that
have been observed between male and female mice (Chen et al.,
2020).

Neurobiological mechanisms
Although the neurobiological mechanisms underlying pavlovian
and instrumental learning are not fully understood, dopamine
neurotransmission is likely to be a point of convergence between
sign-tracking behaviors and reward-guided, model-free updat-
ing. Midbrain dopamine neurons are known to encode reward-
prediction errors (RPEs), which is a fundamental computation in
model-free learning (Hollerman and Schultz, 1998). The results
of studies using voltammetry to quantifying changes in dopa-
mine concentration in the nucleus accumbens, a main output
of midbrain dopamine neurons, have proposed that phasic do-
pamine signals in ST rats is how incentive salience is trans-
ferred from the outcome to cue(s) predictive of reward (e.g.,
lever extension; Flagel et al., 2011). These dopaminergic RPEs
were not observed in goal-tracking rats, suggesting that varia-
tion in attribution of incentive salience may reflect underlying
differences in dopaminergic RPEs (Derman et al., 2018; Lee et
al., 2018). Indeed, antagonism of dopamine signaling in the nu-
cleus accumbens attenuates the expression of sign-tracking
behaviors (Saunders and Robinson, 2012).

Dopamine, however, has also been implicated in model-based
reinforcement learning. Individual differences in [18F]DOPA accu-
mulation and dopamine tone in the nucleus accumbens of humans
and rats, respectively, are associated with variation in model-based
learning in the MSDM task (Deserno et al., 2015; Groman et al.,
2019a). Dopamine may play a role in both reinforcement-learning
systems. Indeed, previous studies have reported that both model-
free and model-based calculations are encoded in the activity of
midbrain dopamine neurons (Sadacca et al., 2017; Sharpe et al.,
2017; Keiflin et al., 2019), but the influence of these dopaminer-
gic neurons over behavior, and likely learning systems, is
mediated by functionally heterogeneous circuits (Keiflin
and Janak, 2015; Saunders et al., 2018). For example,
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mesocortical dopaminergic projections may encode model-
based computations, whereas mesostriatal/mesopallidal do-
paminergic projections may encode model-free computa-
tions (Chang et al., 2015). Studies that integrate circuit-based
imaging approaches with biosensor technology (e.g., dLight) to
measure circuit-specific dopamine transients in behaving ani-
mals could help resolve these critical questions regarding the
functional role of dopamine circuits in these learning mecha-
nisms (Kuhn et al., 2018).

Implications for addiction
Differences in the degree to which individuals attribute incentive
salience to cues predictive of reward have been hypothesized to
confer vulnerability to addiction. Indeed, there is evidence
that ST rats will work hard to obtain cocaine (Saunders and
Robinson, 2011), show greater cue-induced reinstatement
(Saunders and Robinson, 2010; Saunders et al., 2013; Everett
et al., 2020), are resistant to punished drug use (Saunders et
al., 2013; Pohorõalá et al., 2021), have a greater propensity for
psychomotor sensitization (Flagel et al., 2008), and also dis-
play a higher preference for cocaine over food (Tunstall and
Kearns, 2015) compared with GT rats. Drug self-administra-
tion in short access sessions, however, does not differ between
ST and GT rats (Saunders and Robinson, 2011; Pohorõalá et
al., 2021). These data suggest that drug reinforcement may be
similar between ST and GT rats but that ST rats may be more
susceptible or prone to developing compulsive-like behaviors
following initiation of drug use.

Only a few studies have used the MSDM task to examine the
role of model-free and model-based learning in addiction sus-
ceptibility. In a previous study we reported that individual differ-
ences in model-free learning in the MSDM task were predictive
of methamphetamine self-administration in long-access sessions
(Groman et al., 2019b). This relationship, however, was negative;
rats with lower model-free learning in the MSDM task took
more methamphetamine than rats with higher model-free learn-
ing. Although additional addiction-relevant behaviors were not
assessed in this previous study (e.g., progressive ratio, extinction,
or reinstatement), the negative relationship between model-free
learning and methamphetamine self-administration is surprising
given the positive relationship between model-free learning and
sign-tracking behaviors we observed here. These data might sug-
gest a dynamic role of model-free learning in the different stages
of addiction susceptibility (Kawa et al., 2016). For example,
greater model-free learning before drug use may protect against
drug intake but render individuals more vulnerable to the detri-
mental effects of the drug when ingested. Indeed, ST rats are less
sensitive to the acute locomotor effects of cocaine but have a
greater propensity for psychomotor sensitization (Flagel et al.,
2008). Future studies that assess pavlovian conditioned approach
behaviors and instrumental reinforcement-learning mechanisms
in the same individual before evaluating drug-taking and drug-
seeking behaviors may provide a greater understanding of the
biobehavioral mechanisms underlying addiction susceptibility.

Summary
The present article provides direct evidence linking incentive
salience processes with reward-guided, instrumental behaviors in
adult male rats. Our data suggest that pavlovian approach behav-
iors and choice behavior of rats in a multistage decision-making
task are driven by conserved model-free reinforcement-learn-
ing mechanisms that are known to be altered in individuals
with mental illness, such as addiction (Groman et al., 2022).

Future studies integrating systems-level approaches with the
sophisticated behavioral and computational approaches used
here will provide new insights into the biobehavioral mecha-
nisms that are altered in individuals with mental illness.
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