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Alcohol-related morbidities and mortality are highly prevalent, increasing the burden to societies and health systems
with 3 million deaths globally each year in young adults directly attributable to alcohol. Cue-induced alcohol craving
has been formulated as a type of aberrant associative learning, modeled using temporal difference theory with an
expected reward value (ERV) linked to craving. Clinically, although harmful use of alcohol is associated with increased
time spent obtaining and using alcohol, it is also associated with self-neglect. The latter implies that the motivational
aspects of nonalcohol stimuli are blunted. Using an instrumental learning task with non-alcohol-related stimuli, here,
we tested hypotheses that the encoding of cue signals (ERV) predicting reward delivery would be blunted in binge alco-
hol drinkers in both sexes. We also predicted that for the binge drinking group alone, ratings of problematic alcohol
use would correlate with abnormal ERV signals consistent with between groups (i.e., binge drinkers vs controls) abnor-
malities. Our results support our hypotheses with the ERV (nonalcohol cue) signal blunted in binge drinkers and with
the magnitude of the abnormality correlating with ratings of problematic alcohol use. This implies that consistent with
hypotheses, the motivational aspects of non-alcohol-related stimuli are blunted in binge drinkers. A better understand-
ing of the mechanisms of harmful alcohol use will, in time, facilitate the development of more effective interventions,
which should aim to decrease the motivational value of alcohol and increase the motivational value of non-alcohol-
related stimuli.
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Significance Statement

Allostasis theory predicts specific abnormalities in brain function and subjective experiences that occur when people develop
drug problems including addiction. Cue-induced alcohol craving has been formulated as a type of aberrant associative learn-
ing, modeled using temporal difference theory with ERV linked to craving. Here, we used an instrumental learning task with
non-alcohol-associated stimuli to test hypotheses that the encoding of nonalcohol cue signals (ERV) and reward prediction
error signals showed blunting in binge alcohol drinkers. We conclude that fMRI can be used to noninvasively test allostasis
and associative learning theory predictions in binge drinkers.

Introduction
Binge alcohol drinking involves the consumption of large quan-
tities of alcohol in a short period and is a pattern of consump-
tion usually acquired in youths (World Health Organization,
2018). Individuals who regularly binge drink are exposed to im-
mediate and long-term societal and medical consequences and
are at substantially increased risk of developing alcohol depend-
ency (Courtney and Polich, 2009).

Progressive stages of harmful alcohol use, from occasional to
frequent binge drinking to alcohol dependency, can be character-
ized by the allostasis theory (Koob and Le Moal, 2001), that is,
progressive adaptation of the brain to repeated alcohol exposure,
with downregulation of the reward system and upregulation of the
stress-negative emotional system (Fig. 1). Problematic alcohol use
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begins with impulsive binge alcohol drink-
ing driven primarily by short-term pleasur-
able effects, which causes adaptation of the
brain over time and a shift from impulsive
hedonic alcohol use to compulsive (Koob and
Volkow, 2010; Tolomeo et al., 2018) avoidance
of hypohedonia with increased stress vulnerabil-
ity—hyperkatefia (Koob and Le Moal, 2001).
Associated abnormalities in neurotransmitters,
including dopamine, GABA, and glutamate, have
been reported in preclinical (Koob and Schulkin,
2018) and clinical (Tolomeo et al., 2021) studies.

Allostasis theory emphasizes progressive
blunting of brain reward responses. In con-
trast however, PET studies of drug cue expo-
sure in alcohol and other drug dependencies
have consistently reported increased dopa-
mine release compared with healthy con-
trols (Volkow et al., 2006; Wong et al., 2006;
Cox et al., 2017), yet blunted dopamine
release at the time of drug delivery com-
pared with healthy controls (Volkow et al.,
1997; Martinez et al., 2005, 2007). Increased
dopamine release at the time of cue expo-
sure has been linked to subjective craving or
wanting the drug (Sell et al., 2000; Volkow
et al., 2006; Saunders et al., 2013). As dis-
cussed later, experimental evidence from
studies testing allostasis theory predictions
and evidence from PET imaging studies on
drug cue exposure may both be accommo-
dated by associative learning theory (Fig. 1).
This theory highlights the importance of (1)
discriminating studies using alcohol deliv-
ery and alcohol-related cues (Claus et al.,
2011) from studies using nonpharmacologi-
cal natural rewards and non-alcohol-associ-
ated cues (Tolomeo et al., 2021) and (2) the
importance of discriminating brain activity
at the time of cue exposure from the time of
reward delivery (Fig. 1).

Instrumental reward learning, a type of
associative learning (Fig. 1), has been inten-
sively studied over decades in healthy animals
and humans with regard to both behavioral de-
cision-making (Ferster and Skinner, 1957) and
brain activity (Pessiglione et al., 2006). Invasive
depth electrode recordings in awake behaving
nonhuman primates revealed a pattern of dopa-
mine activity in the ventral tegmental area dur-
ing instrumental learning conforming to the
predictions of temporal difference (TD) theory
(Schultz et al., 1997). Later work reported the
same signals measured noninvasively in healthy
humans using model-based fMRI (Pessiglione et
al., 2006). Similar learning models have been
proposed for addiction (McClure et al., 2003;
Zhang et al., 2009; Berridge, 2012).

Previously we reported a study on binge alcohol drinking that
used an instrumental reward learning task with non-alcohol-related
stimuli and fMRI to test allostasis theory–derived hypotheses
(Tolomeo et al., 2021). Here, we instead used a TD model-based
fMRI approach to analyze the same data, testing hypotheses that (1)

cue signals for nonalcohol rewards [expected reward value (ERV)
signals; Fig. 1] and reward prediction error (RPE) signals (Fig. 1)
for delivery of non-alcohol-associated rewards are blunted in binge
drinkers compared with controls and (3) abnormalities in these sig-
nals correlate with ratings of problematic alcohol use for the binge
drinking group alone. Based on our previous work (Gradin et al.,
2011) we predicted that abnormal ERV and RPE signals would be

Figure 1. Allostasis theory and associative learning theory. A, Single first-episode alcohol exposure with positive
(1) mood (a process) during drinking followed by a postintoxication hangover comprising negative (�) mood (b pro-
cess) With repeated episodes of binge drinking (intoxication), the a process diminishes, and the depth and duration of
the b process increases with low mood and anxiety. B, Frequent repeated alcohol use in which the b process does not
have time to fully return to homeostasis results in mood drifting downward and hyperkatifeia, defined as a negative-
valenced longer-duration mood state with stress vulnerability (alcohol dependency). Figure adapted from multiple
sources (Koob and Le Moal, 2001; Koob, 2003; Koob and Schulkin, 2018; Tolomeo et al., 2021). Associative learning
occurs as a series of trials comprising cue exposure (CS) followed by the delivery (or not) of a reward (US). C, Before
learning the CS-US association, dopamine firing occurs at the time of reward delivery and not at time of the cue. D, As
the CS-US association is learned, dopamine firing diminishes at the time of reward delivery and appears at the time of
the cue predicting reward delivery. E, When the association is learned, dopamine activity maximally occurs at the time
of the cue and minimally at the time of reward delivery. Instrumental learning is a type of associative learning that
involves an active choice between different cues with reward delivery contingent on the choice. According to
the TD model of associative learning (Pessiglione et al., 2006), the dopamine signal at the time of the cue is the
ERV, and the dopamine signal at the time of reward delivery is the RPE with the latter defined as RPE = r –
ERV. Our previous work used r for fMRI analyses, and we reported blunting of this signal consistent with allosta-
sis theory (Tolomeo et al., 2021). From TD theory this implies the RPE and consequently ERV signals should also
be blunted, which we tested in the present study. Alcohol and drugs are a pharmacological type of reward, and
consumption of these may cause pharmacologically enhanced r resulting in abnormally increased ERVs for alco-
hol/drug cues (Redish, 2004), enhancing their salience (McClure et al., 2003). CRF, Corticotrophin releasing fac-
tor; DA, dopamine; NPY, neuropeptide Y.
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present in the amygdala-hippocampal complex and nucleus accum-
bens, respectively. GABA and glutamate can be measured noninva-
sively in humans using magnetic resonance spectroscopy and are
implicated in reward value encoding (Jocham et al., 2012). We
therefore predicted iii) that binge drinking would be associated
with downregulation of GABA and/or upregulation of gluta-
mate and correlate with ERV and RPE signal abnormalities in
binge drinkers.

Materials and Methods
Participants
The East of Scotland Research Ethics Service (14/ES/0061) approved our
study, and each participant provided written informed consent. We
chose to study binge alcohol drinkers because of brain structure abnor-
malities associated with alcohol dependency (Squeglia et al., 2014) com-
plicating the interpretation of results, and we considered binge drinking
on a continuum with dependency (Fig. 1).

A sample size calculation was conducted before the start of the study
using G*Power software (version 3.1.9.7). Considering an alfa level of
0.05, a total sample size of 57 was large enough to detect effect sizes
(Cohen’s d = 0.5) for a two-tailed t test including two groups (binge and
controls). Fifty-seven subjects were recruited for a binge drinking group
of 20 males and 18 females, all of whom described binge drinking every
weekend. Half of this group were scanned before the weekend on a
Friday, the others after the weekend on a Monday, with alternate assign-
ments as recruitment progressed. This meant half the weekend binge
drinkers were scanned on a Friday (with the longest time from last
drinking) and half were scanned on a Monday (with the shortest time
from last drinking) to test for increased fMRI and spectroscopic abnor-
malities in Monday binge drinkers. A group of 19 healthy controls (13
males, 6 females) were also scanned. Controls were assessed for past
binge drinking or dependence and for any current or past psychiatric ill-
ness and neurologic disease. None of the subjects satisfied criteria for
alcohol or other drug dependence and none were taking medications.
All volunteers had normal or corrected-to-normal vision, and none had
a history of neurologic problems. Data from one control subject was
excluded because of movement during scanning. Data from the remain-
ing 56 participants were therefore used in all subsequent analyses.

Behavioral paradigm
A task optimized for fMRI use with clinical groups was used (Gradin et
al., 2014; Johnston et al., 2015; Tolomeo et al., 2021; Fig. 2). Each type of
trial was associated with one of two pairs of fractal images (shaped as
circles, squares, or triangles). The order of the associations with different
picture pairs was randomized. At the beginning of each trial, a fractal
pair was presented, and the participant had to select the left or right frac-
tal picture by pressing the button. Once a fractal picture had been cho-
sen, it appeared circled in red, and later the outcome was displayed. The
paradigm has two relevant outcomes, reward delivery (a win message)
and lack of reward delivery (a nothing message). Volunteers were told
the aim of the task was to maximize winning by trial and error, and
based on their performance (the accumulated points), they would
receive a gift voucher. The probability of win/nothing fractal pairs had a
fixed high reward probability (70%) and a fixed low reward probability
(30%). Each session had 60 trials with each session lasting 13min in total
and three sessions per subject.

Rating scales
The Alcohol Use Disorders Identification Test (AUDIT; Bohn et al.,
1995) was used to help identify binge drinkers, diagnosed according to
the definition of the National Institute on Alcohol Abuse and
Alcoholism, which is consumption of alcohol to a blood alcohol level of
0.08 � g/dl, which typically occurs after four drinks for women and five
drinks for men when consumed in 2 h. The Severity of Alcohol
Dependence Questionnaire (SADQ) was also used to assess dependence
symptoms (Stockwell et al., 1983). Although no subjects were alcohol de-
pendent, the scale can be interpreted as providing a continuous measure

of harmful alcohol use severity, similar to the AUDIT. IQ was estimated
using the National Adult Reading Test (Nelson andWillison, 1991).

Data analysis
Analyses were conducted using JASP 0.14 software (https://jasp-stats.
org/). ANOVA was used to test for group differences with respect to
total number of rewards and losses. Effect sizes were calculated using the
methods of Cohen’s d and r statistics (Cohen, 1988).

Neuroimaging data acquisition and preprocessing
Functional whole-brain images were acquired from each participant
using a 3T Siemens Tim Trio scanner. Thirty-seven slices were obtained
per volume, with an echoplanar imaging sequence comprising a repeti-
tion time (TR) 2.5ms, echo time (TE) 30ms, flip angle 90°, field of view
22.4 cm, matrix 64 � 64, with a voxel size of 3.5 � 3.5 � 3.5 mm. First,
images were visually inspected for artifacts and preprocessed using
Statistical Parametric Mapping (SPM; https://www.fil.ion.ucl.ac.uk/spm/).
Second, images were realigned and coregistered to the SPM Montreal
Neurologic Institute echoplanar template. Finally, the average realigned
coregistered image for each subject was used to spatially normalize each
realigned coregistered volume and smoothed with an 8 mm full-width
half-maximum kernel.

Neuroimaging analyses. For a random-effects analysis, data from
each subject were analyzed separately (first-level analyses) before sum-
mary statistical beta images were tested at the group level (second-level
analyses). For first-level analysis, an event-related model-based analysis
was implemented with onset regressors at two time points, at the deci-
sion time (when the two fractals are presented) and at the outcome
delivery time (when the subject saw “you win” or “nothing”). The
expected-reward value and the prediction error signals, generated
by the optimally fitted SARSA model at the decision and outcome
times, respectively, were used to parametrically modulate truncated
delta function onset regressors corresponding to the relevant time
points, then convolved with the SPM hemodynamic response function,
without time or dispersion derivatives. The contrast for analyses
extracted only the (RPE and value signal) modulated delta function
and not the unmodulated delta functions, which were included in the
first-level design matrix to remove the mere effect of these events and
not the modulated values that were of interest. As usual we also included
realignment parameters as covariates of no interest to covary out any re-
sidual head movement not removed by realignment during preprocessing.

Figure 2. Behavioral paradigm and MR spectroscopy. A, The reward–gain instrumental
learning task. B–D, Anterior mid-cingulate cortex region (B) selected for (C) GABA and (D)
GLX measurement. GABA = Gamma-Amino-Butyric Acid; GLX = Glutamate-glutamine.
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For second-level random-effects analyses, summary statistical images
from the first-level analyses for each subject were separately entered into
second-level analyses to test for within-group activations/deactivations
(one group t test) and between-group differences (binge drinkers vs
controls; two group t test). Correlations with binge alcohol use severity
(AUDIT and SADQ scales) and mood, anhedonia, and anxiety symp-
toms [Beck Depression Inventory-II (BDI); State-Trait Anxiety
Inventory (STAI)] were also calculated for the binge drinking group
alone to test whether symptom severity correlations were consistent
with between-group differences. The reason for the correlation analyses
was that between-groups differences may be influenced by unrecognized
factors, so we sought convergent evidence using binge-drinking-related
continuous measures. In addition, correlations with spectroscopy meas-
ures (see below) were calculated to test whether variation in these ratios
was associated with fMRI activations/deactivations.

Significance was defined as p , 0.01 at a whole-brain, familywise-
error-corrected level, comprising a simultaneous requirement for a
voxel threshold (p, 0.05) and a minimum cluster extent (120 voxels)
identified using a commonly used Monte-Carlo method. All figures
were thresholded at this significance level.

Binge drinkers and controls differed in average age (Table 1).
Therefore, we tested whether the between-group differences in ERV
and RPE remained significant after controlling for this difference.
We repeated the images analyses with age as a covariate. Between-
group differences (binge drinkers vs controls) in the brain regions
(see below, Results) remained significant with the same significant
threshold. Participants’ ages did not significantly explain the differ-
ence for either ERV or RPE.

Region of interest (ROI) analyses used the principal eigenvariate as
the summary measure of brain response in a 10-mm-diameter sphere.

Mescher-Garwood Point Resolved Spectroscopy (MRS; Mullins et
al., 2014) was used to acquire GABA and glutamate-glutamine (GLX)
signals, and Gannet software (https://www.gabamrs.com/) was used for
analyses. This sequence used TR 1.5 s, TE 68ms, and ROI 2 � 2.5 �
4 cm3 compromising 256 signals for each spectrum. The total spectros-
copy acquisition time was 13min, and the Siemens implementation
used chemical shift selective water suppression. The MRS ROI was
located in the anterior mid-cingulate cortex, which was chosen as it has
been reported to exhibit abnormal functional activity with binge alco-
hol use and intoxication (Goldstein and Volkow, 2011) and has mini-
mal artifactual signal dropout, unlike more anatomically inferior areas
such as the nucleus accumbens.

Computational modeling of behavior and dopamine function
As with our previous model-based fMRI studies (Gradin et al., 2011,
2014) and studies by independent groups (Pessiglione et al., 2006), we
selected the rate (a) and explore/exploit parameter (b ) to maximize the
log-likelihood of each subject’s actual choices according to the model. As
with these studies, a single set of parameters was fitted across all groups
and subjects as it has been noted (Niv et al., 2006) that multisubject
fMRI results are more robust if a single set of parameters is used to

generate regressors for all subjects. We used a = 0.45 and b = 3.5 for
image analyses as these values were found to be optimal. Briefly, each
subject was assumed to be at state st and selected one of the two fractal
stimuli. The task presentation program responded by placing the subject
in a new state st11 and delivering outcome rt11. Subjects aimed to maxi-
mize the total number of rewards over time. Here, Qp ðst; aÞ is the
reward if action a is chosen at st and policy p is followed. The state-
action-reward-state-action (SARSA) algorithm improves estimates Q̂ of
the Qp values changing p toward greediness. With SARSA the predic-
tion error depends on the Q̂ of the chosen action, and at each time step
the SARSA algorithm computes a reward prediction error (RPE) as
follows:

d t1 1ð Þ ¼ rt11 1 rQ̂ st11; a
9

� �
� Q̂ðst; aÞ;

where action a is chosen at st , and a9 is the action chosen at st11. The
prediction error was used to update the estimates of the Q values on
each trial as follows:

DQ̂ st; að Þ ¼ ad ðt1 1Þ;

where a is the learning rate. Three time points were used in the model,
fractal picture presentation time, fractal choice time, and outcome time;
and for image analyses two of these time points were used, outcome
time d signal and decision time Q̂ value signal of the chosen option. The
model calculates the probability of choosing either of the two fractals x
or y on each trial using the softmax rule as follows:

p st; að Þ ¼ eb Q̂ðst ;xÞ

eb Q̂ðst ;xÞ 1 eb Q̂ðst ;yÞ
;

where b is the explore/exploit parameter, and a and b were estimated
using a random-effects expectation-maximization method (http://www.
quentinhuys.com/tcpw/code/emfit/). For reward-gain trials, the RPE
was calculated for the outcome time and the ERV for the decision time
with these signals reflecting positive reinforcement.

Results
Behavioral analyses
Well-matched behavior between groups is important to ensure
comparable engagement with the task and to facilitate interpreta-
tion of neuroimaging results. There were no significant differen-
ces between binge drinkers and healthy control groups for total
number of rewards gained (p = 0.2, d = �0.3) or total number of
losses inadvertently accumulated (p = 0.7, d = 0.5). There was no
significant difference in the number of wins between healthy con-
trols and binge drinkers scanned on Friday and Monday, number
of rewards (p = 0.1, d = 0.6) and number of losses (p = 0.9, d =

Table 1. Characteristics of participants

Rating scale and MRS Controls Binge drinkers p Values Friday Monday p Values

Age 33.7 6 7.3 22.6 6 3.5 p , 0.001 23 6 3.3 22.15 6 3.7 NS
Units of alcohol consumed 1.5 6 5.7 22.6 6 8.1 p , 0.001 22.3 6 7.4 22.9 6 9.0, NS
Cigarette Smoking 17/19 34/38 ns 17/19 17/19 NS
SADQ 0.4 6 1.6 8.4 6 5.3 p , 0.001 8.4 6 5.0 8.3 6 5.9 NS
AUDIT 0.5 6 1.7 13.4 6 4.2 p , 0.001 13.2 6 3.6 13.7 6 4.9 NS
BDI 2.2 6 4.4 4.9 6 0.7 p = 0.04 3.9 6 3.3 5.8 6 5.6 p = 0.03
STAI-S 26.6 6 8.1 28.4 6 7.9 NS 27.3 6 7.7 24.4 6 8.1 NS
STAI-T 30.7 6 12.0 34.4 6 8.8 p = 0.03 33.2 6 9.4 35.5 6 8.2 NS
GABA/Cr – – – 0.10 6 0.2 0.08 6 0.03 p = 0.08a

GLX/Cr – – – 0.06 6 0.02 0.07 6 0.01 p = 0.04a

GABA/GLX – – – 1.75 6 0.85 1.27 6 0.35 p = 0.05a

AUDIT = Alcohol Use Disorders Identification Test; BDI = Beck Depression Inventory II; Cr = Creatine; GABA = Gamma-amino-butyric acid; GLX = glutamate-glutamine; NS = Non significant; SADQ = Severity of Alcohol
Dependence Questionnaire; STAI-S = State-Trait Anxiety Inventory - State; STAI-T = State-Trait Anxiety Inventory - Trait, NS = non significant.
aFigure 3.
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�0.2). These differences remained nonsignificant with age as a
covariate. The goodness of fit of the behavioral model is
defined by the log-likelihood value. The mean log-likelihood
fit values were not significantly different (p = 0.5, d = 0.02)
using a two tailed t test.

MRS Spectroscopy
The GLX/creatine (GLX/Cr) and GABA/GLX ratios differed
(p = 0.04, d = �0.8 and p = 0.05, d = 0.7, respectively) between
binge alcohol drinking groups, with the binge drinkers scanned
on Monday having higher and lower ratios respectively (Table 1,
Fig. 3). A positive correlation was found between the GLX)/Cr
ratio and the number of high value reward choices (p = 0.02, r =
0.2). No significant differences between groups were found for
GABA/Cr, but a possible trend (p = 0.08) was present.

Expected reward value
As predicted the ERV was encoded in the bilateral amygdala-hip-
pocampal complex (�30, �4, �22) t = 4.12, (18, �6, �26) t =
3.04 and prefrontal region (22, 36, �10) as shown in Figure 4
and Table 2. A two-group t test showed ERV encoding was
significantly blunted in binge drinkers compared with healthy
controls (�36, �12, �24) t = 3.08, d = 0.9; (24, �6, �26) t =
2.35, d = 0.8. Additionally, ERV hippocampal encoding for
binge drinkers was greater (20, �32, 0) t = 3.00 on Friday
(with subjects having the longest gap from drinking) com-
pared with Monday (with subjects having the shortest gap
from previous drinking).

For all binge drinkers there was a negative correlation
between ERV amygdala-hippocampal signal strength and
(1) AUDIT alcohol scores (�24, 4, �22) t = 3.34, (30, �6,
�22) t = 3.29); (2) State-Trait Anxiety Inventory-State
(STAI-S) scores (�28, �14, �22) t = 3.2, (28, �22, �22) t =
3.5; and (3) the GLX/Cr ratio (�36, 4, �34) t = 3.43 corre-
lated with the prefrontal ERV; and (4) the GABA/GLX ratio
(34, 40, 0) t = 3 and prefrontal ERV signals significantly
correlated (Fig. 4). GLX/Cr and GABA/GLX ratios were
reduced in binge drinkers in general. For binge drinkers
scanned on a Monday, ratings of problematic alcohol use
(SADQ and AUDIT) negatively correlated with ERV signals

in the amygdala-hippocampal complex (�14,
�16, �18) t = 3.9, (18, �8, �28) t = 3.4.

In summary, ERV encoding was blunted
in the amygdala-hippocampal complex of binge
drinkers compared with controls, and increased
binge drinking ratings and spectroscopic abnor-
malities were associated with increased blunting
of ERV encoding within binge drinkers alone.

Reward prediction error signals
As expected, RPE signals were encoded in the nu-
cleus accumbens of controls (�12, 8, �6) t = 7.8,
(12, 8, �14) t = 6.81; subgenual cingulate cortex
(2, 50, �14) t = 5.03; and posterior cingulate (4,
�45, 30) t = 4.21 (Fig. 5, Table 3). Similarly for
binge drinkers, RPE signals were present in the
bilateral accumbens (�10, 12, �8) t = 2.5, (10, 12,
�8) t = 2.5; subgenual cingulate cortex (6, 50,
�18) t = 4.8; and posterior cingulate (6, �34, 40)
t = 3.3 (Table 3). Compared with controls, binge
drinkers exhibited significantly blunted RPE sig-
nals in the nucleus accumbens (�14, 8, �8) t =
5.46, d = 0.8; (14, 8, �12) t = 4.96; and posterior
cingulate (0, �46, 26) t = 3.05 (Fig. 5, Table 3).
For all binge drinkers (combined Friday and

Monday groups), the AUDIT score negatively correlated with
RPE nucleus accumbens (�16, 14, �10) t = 3.6, (10, 18, �12) t =
3.6 signal strength and STAI-S (�22, 8,�3) ratings.

Figure 3. MR spectroscopy results. A, The GLX/Cr differed between binge alcohol drinking
groups, with the binge drinkers scanned on Monday having higher ratios (p = 0.04, d =
�0.8). B, The GABA/GLX ratio differed between binge alcohol drinking groups, with the
binge drinkers scanned on Friday having slightly higher ratios (p = 0.05, d = 0.7). C, No sig-
nificant differences between groups were found for GABA/Cr, but a possible trend (p = 0.08,
d = 0.6) was present.

Figure 4. Expected reward value signals. A, Encoding of the ERV signal in the amygdala-hippocampal complex (AHC)
in controls with significantly blunted ERV signals in binge drinkers compared with controls. B, Illustration of an ROI cen-
tered at the maximally significant AHC voxel. C, AUDIT score significantly negatively correlated with the ERV signal for
only the binge drinking group. D, Blunted encoding of the ERV signal in binge drinkers compared with controls in the
prefrontal region. E, Illustration with an ROI centered at the maximally significant voxel. F, In binge drinkers alone the
GABA/GLX ratio was negatively correlated with the ERV signal. All regions significant at p, 0.05, whole-brain corrected.
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Discussion
Addiction has been formulated as an aberrant type of associative
learning (McClure et al., 2003; Redish, 2004). A common feature
of different types of associative learning is that dopamine firing
at the time of the reward [unconditioned stimulus (US)] dimin-
ishes, and dopamine firing at the time of the cue [conditioned
stimulus (CS)] predicting US delivery increases (Fig. 1; Kumar et
al., 2008; Gradin et al., 2011). There is robust experimental evi-
dence in healthy animals and humans for cue-induced dopamine
release for natural reinforcers (Schultz et al., 1997; Contreras-
Vidal and Schultz, 1999; Pessiglione et al., 2006). Associating
learning is quite specific to the cues and reinforcers used during
learning (Schultz et al., 1997; Contreras-Vidal and Schultz, 1999;
Niv et al., 2005; Pessiglione et al., 2006; Chase
et al., 2015).

Redish (2004) proposed that drug asso-
ciative learning can be modeled using a
TD approach with pharmacological enhance-
ment of dopamine release at the time of drug
delivery, causing enhancement of the ERV of
the drug. McClure et al. (2003) identified the
psychological concept of incentive salience
(Robinson and Berridge, 1993) with the com-
putational notion of ERV, suggesting that TD
theory formalizes incentive-sensitization ideas
about attributing incentive salience through a
boosting process. However, Robinson and
Berridge (1993) favor a more complex view of incentive salience,
proposing the ERV is transformed to a different motivational
value, with ERV and motivation potentially dissociable (Berridge,
2012). Experimentally, as noted earlier, for humans with alcohol
or other drug dependency, drug cue exposure is associated with
dopamine release (Volkow et al., 2006; Wong et al., 2006; Cox et
al., 2017), which has been linked to subjective craving (Sell et al.,
2000; Volkow et al., 2006; Saunders et al., 2013). Dopamine
release at the time of drug delivery is in contrast blunted (Volkow
et al., 1997; Martinez et al., 2005, 2007). These observations
appear consistent with TD theory (Fig. 1). Furthermore, pre-
clinical work suggests that a small dopamine peak (ERV) on
a blunted tonic dopamine background (because of allostatic
reward blunting) is much more salient than on a normal
tonic dopamine background (Koob and Le Moal, 1997).
Notably, as proposed by Keiflin and Janak (2015), the con-
cept of persistent dopamine-RPE is a key hypothesis for drug
addiction.

In addition, alcohol and drug dependency are associated
with increased time spent obtaining and using alcohol/drugs
but also self-neglect. This suggests that although alcohol/drug
cues are associated with increased salience and dopamine ac-
tivity (Volkow et al., 2006; Wong et al., 2006; Cox et al., 2017),
non-drug/alcohol-related stimuli become undervalued (Koob
and Volkow, 2010; Zilverstand et al., 2018), implying decreased
motivational value of natural rewards. In addition, alcohol/drug
dependency is associated with reduced attention to natural
rewards (Volkow et al., 2004; Koob and Volkow, 2010). Here, we
tested the hypothesis that ERV signals, for non-alcohol-associ-
ated cues, were blunted in binge alcohol drinkers. The RPE signal
is defined as r� ERV (Fig. 1), and previous analyses of our fMRI
data using r showed blunting of this signal in binge drinkers
(Tolomeo et al., 2021). From the perspective of TD theory, this
implies the RPE signal should also be blunted and consequently
the ERV signal at the nonalcohol cue time. Our experimental
results support this hypothesis.

Regarding our second hypothesis of syndrome severity meas-
ures correlating with brain activity consistent with between-
groups findings, increased severity of binge drinking quantified
by AUDIT scores and higher ratings of anxiety were associated
with increased blunting of the ERV in the amygdala/hippocam-
pus. The hippocampus has been linked to craving and alcohol
preoccupation, and the extended amygdala, comprising the cen-
tral nucleus of amygdala, bed nucleus of stria terminalis, and
accumbens shell is important for adverse effects on reward func-
tion produced by stress driven by compulsive alcohol use (Koob
and Le Moal, 2008). Increased GLX/Cr ratios and GABA/GLX
ratios were associated with increased blunting of the ERV in the
prefrontal cortex, supporting our third hypothesis. The results of
our present analyses imply that the motivational importance
(reflected by ERV) of nonalcohol rewards is blunted in binge
drinkers. We conceptualized binge drinking as on a continuum
with alcohol dependency (Fig. 1), so the prediction of this effect
should be more pronounced in alcohol-dependent individuals.

Table 3. Within-group activations and between-group comparisons for reward
prediction error signals

Brain region x y z t Value

Controls
Left nucleus accumbens �12 8 �6 7.80
Right nucleus accumbens 12 8 �14 6.81
Right subgenual cingulate cortex 2 50 �14 5.03
Right posterior cingulate cortex 4 �45 30 4.21

Binge Drinkers
Left nucleus accumbens �10 12 �8 2.5
Right nucleus accumbens 10 12 �8 2.5
Right subgenual cingulate cortex 6 50 �18 4.8
Right posterior cingulate cortex 6 �34 40 3.3

Controls more than binge drinkers
Left nucleus accumbens �14 8 �8 5.46
Right nucleus accumbens 14 8 �12 4.96
Posterior cingulate cortex 0 �46 26 3.05

Table 2. Within-group activations and between-group comparisons for
expected reward value

Brain region x y z t Value

Controls
Left amygdala �30 �4 �22 4.1
Right amygdala 18 �6 �26 3.0
Left orbitofrontal cortex �22 34 �2 2.9
Right orbitofrontal cortex 26 34 �8 3.0

Controls more than binge drinkers
Left amygdala �30 0 �22 4.1
Right amygdala 26 �8 �28 3.2
Left orbitofrontal cortex �18 36 0 3.4
Right orbitofrontal cortex 22 40 0 3.4

Figure 5. Reward prediction error signals. A–C, RPE signal encoding in the accumbens of controls (A), with (B) signif-
icantly blunted RPE encoding in binge drinkers compared with controls, also shown (C) as an ROI centered at the maxi-
mally significant voxel. All regions significant at p, 0.05, whole-brain corrected.
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Additionally, choosing between options that differ in terms of
expected reward values may occur in the brain by a mutual in-
hibition competition mechanism, a hypothesis tested in healthy
subjects using computational modeling of learning behavior,
fMRI, and GABA and glutamate spectroscopy (Jocham et al.,
2012). Consistent with this, the authors reported that a model
parameter, the softmax inverse temperature, correlated with
GABA and glutamate concentrations (Jocham et al., 2012).
There is robust preclinical evidence for altered concentration
of these neurotransmitters in alcohol-dependent animals, and
in the present study, we found consistent evidence for spectro-
scopic abnormalities in binge drinking humans. This implies
that abnormal GABA and glutamate concentrations could be
directly linked to abnormal non-alcohol-related value encoding
observed in binge drinking and alcohol-dependent humans.
More work is required to address this hypothesis.

Clinically, abstinence is relatively easy to achieve; however,
achieving sustained abstinence is extremely difficult and argu-
ably represents the biggest problem for advancing addiction
medicine. The two commonest causes of relapse are stress-
induced relapse and alcohol/drug-cue-induced relapse, with
the former being by far the most common cause (Marlatt,
1978). In our view, allostasis theory and TD theory applied to
addiction explain different and complementary features of
addiction. Allostasis theory describes how aversive experien-
ces associated with negative valence system activation are
enhanced in addiction (Tolomeo et al., 2021), emphasizing the
crucial importance of negative reinforcement in sustaining
addiction and causing enduring vulnerability to relapse once
abstinence has been achieved (Koob, 2009). Allostasis theory
provides, in our view, the best framework for studying stress-
induced relapse and discovery of new effective treatments
addressing this problem. However, allostasis theory is not good at
explaining the less common cue-induced relapse, which has been
hypothesized to be caused by alcohol/drug-predicting cues having
(chemically enhanced) value encoded in the dopamine system
because of repeated alcohol/drug reward learning (Redish, 2004).
In our view these theories may be reconciled by hypothesizing
that for nonalcohol/drug rewards, the binary reward response (r)
is blunted (because of allostasis), leading to (by TD theory)
blunted RPE and blunted cue valuation signals. The results of our
present study are consistent with this hypothesis. In contrast,
for the case of alcohol/drug rewards, we hypothesize that the
direct chemical effect on dopamine and other systems results
in enhanced alcohol/drug cue valuation (Redish, 2004), over-
riding allostatic reward blunting. Supporting this is evidence
from PET studies on patients with addiction reporting enhanced
striatal signals at the time of cue exposure and blunted signals at
the time of alcohol/drug delivery (Volkow et al., 1997, 2006).
Blunted striatal responses to the delivery of nonalcohol/drug
rewards are predicted by both TD learning and allostasis theories
in addiction.

The strengths of our present study include the use of compu-
tational modeling to test for functional brain abnormalities in
binge drinkers without confounding brain structure abnormal-
ities that would be present in alcohol-dependent individuals.
One limitation is that it was not practical to also test alcohol cue
responses in the same subjects as it was beyond the scope of the
present study. However, we predict these would be increased,
consistent with PET studies. Additionally, the ERV might in
some situations be dissociable from subjective motivation; how-
ever, our study was not designed to test this theory. The present
work has focused on fMRI signals consistent with cue-induced

dopamine release because of its link to craving and relapse.
However, two-thirds of relapse to alcohol use disorder is because
of stress (Marlatt, 1978), namely, hyperkatefia, with many other
neurotransmitters and systems implicated (Koob and Schulkin,
2018). Another potential limitation is that the average age of
binge drinkers was significantly less than for controls; therefore,
we tested whether between-group differences for ERV and RPE
remained significant after controlling for age.

In summary, using task-based event-related fMRI, previously
we tested hypotheses derived from allostasis theory reporting
results consistent with predictions (Tolomeo et al., 2021). Here,
we analyzed these same data using a TD-model-based fMRI
approach and reported blunted non-alcohol-related ERV cue sig-
nals in binge alcohol drinkers. A better understanding of the
mechanisms of harmful alcohol use will facilitate the develop-
ment of better treatments, which should aim to decrease the
motivational value of alcohol and increase the motivational value
of non-alcohol-related stimuli.
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