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Neuroimaging studies of human memory have consistently found that univariate responses in parietal cortex track episodic
experience with stimuli (whether stimuli are ‘old’ or ‘new’). More recently, pattern-based fMRI studies have shown that parie-
tal cortex also carries information about the semantic content of remembered experiences. However, it is not well understood
how memory-based and content-based signals are integrated within parietal cortex. Here, in humans (males and females), we
used voxel-wise encoding models and a recognition memory task to predict the fMRI activity patterns evoked by complex
natural scene images based on (1) the episodic history and (2) the semantic content of each image. Models were generated
and compared across distinct subregions of parietal cortex and for occipitotemporal cortex. We show that parietal and occipito-
temporal regions each encode memory and content information, but they differ in how they combine this information. Among
parietal subregions, angular gyrus was characterized by robust and overlapping effects of memory and content. Moreover, sub-
ject-specific semantic tuning functions revealed that successful recognition shifted the amplitude of tuning functions in angular
gyrus but did not change the selectivity of tuning. In other words, effects of memory and content were additive in angular
gyrus. This pattern of data contrasted with occipitotemporal cortex where memory and content effects were interactive: memory
effects were preferentially expressed by voxels tuned to the content of a remembered image. Collectively, these findings provide
unique insight into how parietal cortex combines information about episodic memory and semantic content.
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Significance Statement

Neuroimaging studies of human memory have identified multiple brain regions that not only carry information about
“whether” a visual stimulus is successfully recognized but also “what” the content of that stimulus includes. However, a funda-
mental and open question concerns how the brain integrates these two types of information (memory and content). Here,
using a powerful combination of fMRI analysis methods, we show that parietal cortex, particularly the angular gyrus, robustly
combines memory- and content-related information, but these two forms of information are represented via additive, inde-
pendent signals. In contrast, memory effects in high-level visual cortex critically depend on (and interact with) content repre-
sentations. Together, these findings reveal multiple and distinct ways in which the brain combines memory- and content-
related information.

Introduction
Neuroimaging studies have consistently implicated parietal cortex
in episodic memory, leading to a number of theoretical accounts
of these findings (Wagner et al., 2005; Cabeza et al., 2008; Vilberg
and Rugg, 2008; Sestieri et al., 2017; Rugg and King, 2018; Ritchey
and Cooper, 2020). Pattern-based fMRI studies have critically
informed these accounts by showing that parietal cortex also car-
ries information about the content of what is being remembered.
The angular gyrus (ANG) has received particular attention given
that univariate activation in ANG relates to the success, precision,
and vividness of memory retrieval (Wagner et al., 2005; Kuhl and
Chun, 2014; Richter et al., 2016), and activity patterns in ANG
also carry detailed information about the content of remembered
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events (Kuhl et al., 2013; Kuhl and Chun, 2014; Bonnici et al.,
2016; Baldassano et al., 2017; Favila et al., 2018; Lee et al., 2019).
However, the way in which parietal cortex combines memory-
related and content-related information remains an important,
open question (Renoult et al., 2019; Humphreys et al., 2021). In
particular, at a fine-grained level, it is unclear to what degree pa-
rietal memory effects and content effects are overlapping and/or
interactive. For example, are voxels that carry memory signals
segregated from those that carry content information? Or does
successful remembering alter the “sharpness” of content repre-
sentations (Schultz et al., 2019; Woolnough et al., 2020)?

In considering the questions above, occipitotemporal cortex
(OTC) serves as an important reference point. Specifically, it is
well established that OTC carries robust information about stimu-
lus content (Haxby et al., 2001; Grill-Spector andWeiner, 2014) as
well as memory-related information (Miller et al., 1991; Martin et
al., 2018). However, whereas memory effects in parietal cortex are
typically expressed as increases in activation during successful
remembering (repetition enhancement), memory-related effects
in OTC typically manifest as decreased activation (repetition sup-
pression) (Grill-Spector et al., 2006). Notably, these repetition sup-
pression effects in OTC are thought to be stimulus-specific (Grill-
Spector et al., 2006) in that they preferentially occur among voxels
that are sensitive to the content of the repeated stimulus (Martin
et al., 2018). This raises the question of whether a similar interac-
tion between content and memory occurs within parietal cortex.

An important and interconnected issue is how to measure
content representations. To date, most studies have either used
(1) pattern classification algorithms that classify broad visual cat-
egories (e.g., faces vs scenes) (Polyn et al., 2005; Kuhl et al., 2011)
or (2) representational similarity analyses that test for category-
or item-specific patterns of activity (Kuhl and Chun, 2014; Favila
et al., 2018). While these approaches have advanced the field,
they rely on a strict categorization of stimuli (whether stimuli
match a category/stimulus label). This raises an important possi-
bility that apparent content representations in parietal cortex
could reflect categorization that is induced by task demands
(Toth and Assad, 2002; Xu, 2018). This is of particular concern
when experimental stimuli are deliberately selected and grouped
into categories that are salient or explicitly relevant to partici-
pants (Polyn et al., 2005; Kuhl et al., 2011, 2013; Kuhl and Chun,
2014). An alternative approach is to decompose content into
multiple, continuous feature dimensions and to then map these
features to neural activity patterns (Huth et al., 2016; Lee and
Kuhl, 2016; Pereira et al., 2018). This approach has been formal-
ized in voxel-wise encoding models (Naselaris et al., 2011) and
has been successfully applied in a handful of fMRI studies of
memory to date (Naselaris et al., 2015; Bone et al., 2020).

Here, in a human fMRI study, we used voxel-wise encoding
models and a novel form of content “tuning functions” to test
how parietal cortex and OTC combine memory signals with con-
tent representations. Specifically, using a recognition memory
task with hundreds of natural scene images, we tested the degree
to which memory and contents effects were spatially overlapping
within parietal and OTC regions and, critically, whether recogni-
tion memory signals interacted with the expression of content
information.

Materials and Methods
Participants. Twelve healthy subjects were recruited from the

University of Oregon community. All subjects were self-reported as
right-handed, native English speakers, and in good health with no

history of neurologic disorders during pre-experiment screening. All
subjects reported normal or corrected to normal vision. Informed con-
sent was obtained from all subjects according to a protocol approved by
the University of Oregon Institutional Review Board, and all subjects
were paid for their participation. Each subject completed two scanning
sessions performed on separate days; the mean delay between sessions
was 5 d (range: 1-12d). One subject was excluded from data analysis for
falling asleep in the scanner and not completing the task. Another sub-
ject was excluded for not following the instructions for the task. We
therefore report results for 10 subjects (5 female) ranging in age from 18
to 29 years old (mean¼ 23.6, SD¼ 3.8).

Stimuli. The stimulus set consisted of 1284 unique color photographs
of natural scenes. Images were collected from various sources on the
Internet (e.g., Google Images). Content varied among the images, includ-
ing people, places, animals, and objects. Included in the stimulus set were
images of famous people or places; 141 (;11%) included famous people
(e.g., Barack Obama), while 192 (;15%) included famous places (e.g., the
Golden Gate Bridge). Each image was cropped to a 400� 400 pixel square.
A total of 768 images were randomly selected from the image pool for
each subject (384 per session). The number of “famous” images was not
balanced between subjects or sessions. Selected images for each session
were randomly assigned to one of three experimental conditions: repeated
once, repeated 3 times, or novel (1/3 of stimuli in each condition).

Image annotations. Image annotations (verbal descriptions) were col-
lected in an online experiment (Fig. 1B) via Amazon’s Mechanical Turk
using the psiTurk system (McDonnell et al., 2014). A total of 293 subjects
participated for monetary compensation. Informed consent was obtained
from all subjects electronically according to a protocol approved by the
University of Oregon Institutional Review Board. Subjects were shown
images randomly drawn from the stimulus set, one at a time. Each session
had 20 unique images, except for one subject who viewed 17 images
because of a technical error. For each image, subjects were instructed to
type 5-10 words that “best represent the content or situation of the entire
image.”A total of 337 sessions were completed across all subjects: 264 sub-
jects completed 1 session, 19 completed 2, 8 completed 3, 1 completed 4,
and 1 completed 7 (mean¼ 1.15 sessions per subject, SD¼ 0.55). An addi-
tional three sessions from 2 subjects were excluded for failure to follow
the instructions. While it was possible for a given subject to see the same
images across different sessions, this rarely occurred: there was an average
of 22.99 trials (SD¼ 11.07) per subject and an average of 22.94 unique
images (SD¼ 10.74) per subject. Subjects generated on average 5.687
words per image (SD¼ 1.24), and each image had responses from an aver-
age of 5.23 subjects (SD¼ 0.81).

Experimental design and procedures. The fMRI experiment consisted
of two sessions per subject. Each session consisted of two phases: a study
phase followed by a retrieval phase (Fig. 1A). The study phase occurred
outside the scanner and was intended to manipulate the episodic history
of the images. During the study phase, subjects performed a pleasantness
judgment task for two-thirds of the images selected for that session.
Each trial consisted of an image shown at the center of the screen over a
gray background for 2.25 s, followed by a fixation dot for 0.25 s. Subjects
were instructed to indicate whether they liked, disliked, or felt neutral
about the image by pressing a corresponding keyboard button within
2.5 s of the image onset. A total of 256 images were presented in the
study phase for each session. Half of these images were shown only one
time, and the other half were shown 3 times. Thus, there were 512
(128 � 11 128 � 3) trials in total, which were divided into 8 blocks of
64 trials each. Trial order was randomized for each session and subject.
Subjects were allowed to take a short break between blocks. Subjects
were told in advance that the study phase would be followed by a mem-
ory test on the items presented.

After finishing the study phase, subjects entered the fMRI scanner
and completed the retrieval phase. During the retrieval phase, subjects
performed a recognition memory test. Images were presented one at a
time, and subjects judged whether or not each image had appeared in
the study phase and how confident they were in this decision. Each trial
consisted of an image shown at the center of a gray screen for 1.5 s, fol-
lowed by a fixation dot for 8.5 s. Subjects were asked to respond by
pressing a button on the response box that corresponded to their
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memory judgment (sure old, likely old, likely new, sure new) within 4 s
of the image onset. There were 8 scan runs. Each run consisted of 48 tri-
als, divided evenly between the three experimental conditions (16 trials
repeated once; 16 repeated 3 times; 16 novel). Stimuli in the repeated
once condition had appeared once during the study phase, stimuli in the
repeated 3 times condition had appeared 3 times during the study phase,
and stimuli in the novel condition had not appeared in the study phase.
Thus, there were 256 “old” trials and 128 “new” trials per retrieval ses-
sion (384 trials total). Each image was shown only once during the re-
trieval phase, and images were not repeated across sessions. Trial order
was randomized for each run, session, and subject. A 2 TR blank screen
was added at the beginning of each retrieval run to provide subjects with
additional time to prepare for the first trial. An extra 2 TRs were also
added at the end of each run to fully capture the BOLD responses evoked
by the last trial.

Sessions 1 and 2 were identical in procedure, except that in Session 1
the study and retrieval phases were both preceded by practice trials. The
practice trials used a separate set of images that were not included in the
1284 images used in the main experiment. There were 8 study practice
trials identical to the study trials in the main experiment. There were 6
retrieval practice trials that consisted of an image presented in the center
of a gray screen for 1.5 s, followed by a fixation dot for 3.5 s. Subjects
could respond within 4 s of the image onset.

fMRI acquisition. fMRI scanning was conducted at the Robert and
Beverly Lewis Center for NeuroImaging at University of Oregon on
the Siemens Skyra 3T MRI scanner. Whole-brain functional images
were collected using a T2*-weighted multiband accelerated EPI
sequence (TR¼ 2 s; TE¼ 25 ms; flip angle¼ 90°; multiband accelera-
tion factor¼ 2; 72 horizontal slices; grid size 104� 104; voxel size
2� 2 � 2 mm3). A scanning session consisted of 8 functional runs,
and a total of 244 volumes were collected for each run. Fieldmap
images were also acquired once per session to correct for B0 magnetic
field inhomogeneity. A whole-brain high-resolution anatomic image
was collected at the end of each scanning session using a T1-weighted
MPRAGE pulse sequence (grid size 256� 256; 176 sagittal slices;
voxel size 1� 1 � 1 mm3).

fMRI data preprocessing. Preprocessing of the neuroimaging data
was conducted using FSL (FMRIB Software Library, http://www.fmrib.
ox.ac.uk/fsl). Functional images were first corrected for head motion
within each functional run using MCFLIRT, and then across runs and
sessions using linear transformation such that all functional volumes

were aligned to the first volume of the first session. Motion-corrected
images were then corrected for B0 magnetic field inhomogeneity using
FUGUE. Tomore precisely coregister the unwarped images to the first vol-
ume of the first session, we performed an additional nonlinear transforma-
tion using FNIRT. Finally, functional images were spatially smoothed with
a Gaussian kernel (4 mm FWHM) and high-pass filtered (cutoff¼
0.01Hz). Our decision to spatially smooth the data were based on prior
studies, which have shown a modest but reliable advantage in multivariate
analyses when spatial smoothing is applied (e.g., Kamitani and
Sawahata, 2010; Op de Beeck, 2010). High-resolution anatomic
images were brain extracted and coregistered to the functional images
using linear transformation.

Region of interest (ROI) definition. All ROIs were subject-specific
and anatomically defined. For each subject, FreeSurfer’s cortical
reconstruction (recon-all) was applied to the high-resolution ana-
tomic image obtained in Session 1. Six bilateral cortical ROIs were
defined based on FreeSurfer’s Destrieux atlas (Destrieux et al., 2010):
In the lateral and medial parietal cortex, we examined the superior
parietal cortex (SPC), intraparietal sulcus (IPS), supramarginal gyrus
(SMG; a combination of the SMG and the Jensen sulcus), ANG, and
posterior medial cortex (PMC; a combination of the precuneus, sub-
parietal sulcus, and dorsal posterior cingulate gyrus). We also exam-
ined the OTC, which consisted of several brain areas spanning the
occipital and ventral temporal cortex (the occipital pole, inferior occi-
pital gyrus and sulcus, middle occipital gyrus, superior occipital
gyrus, cuneus, lingual gyrus, fusiform gyrus, parahippocampal gyrus,
calcarine sulcus, anterior and posterior transverse collateral sulcus,
middle occipital sulcus and lunatus sulcus, superior occipital sulcus
and transverse occipital sulcus, anterior occipital sulcus and preocci-
pital notch, lateral and medial occipitotemporal sulcus, parieto-occi-
pital sulcus). All ROIs were masked by subject-specific whole-brain
masks generated from functional images to exclude areas where signal
dropout occurred. The number of voxels included in the ROIs varied
across subjects, with OTC being the largest (SPC range¼ 1707-2798,
mean¼ 2116.7, SD¼ 315; IPS range¼ 2100-3114, mean¼ 2570.2,
SD¼ 345.8; SMG range¼ 2250-3171, mean¼ 2643.3, SD¼ 298.4;
ANG range¼ 1965-2720, mean¼ 2226.5, SD¼ 255.2; PMC range¼
2617-4387, mean¼ 3540.1, SD¼ 540.6; OTC range¼ 18,609-24,022,
mean¼ 21,222, SD¼ 1733.9). Importantly, using a smaller OTC ROI
(i.e., 2500 voxels randomly selected within each subject’s OTC mask)
did not significantly influence voxel-wise encoding model performance;

Figure 1. Experimental procedures and analysis methods. A, Procedures for the study phase and the retrieval phase. During the study phase, subjects indicated whether they liked, disliked,
or felt neutral about each presented image. During the retrieval phase, subjects performed a recognition memory test where they indicated whether they had seen each image in the study
phase (“old”) or not (“new”), and how confident they were in their memory judgment (“sure” or “likely”). B, Image annotation task. In a separate online experiment, we collected verbal
descriptions of image stimuli from independent human subjects. For each image, subjects typed 5-10 words that best described the image. C, Content-based encoding model analysis. We first
performed a principal component analysis on the word embedding vectors describing the image stimuli (averaged across all words describing each image). We then used linear regression to
model the relationship between each image’s first 30 principal component scores and each voxel’s activation level evoked by the image during the retrieval phase.
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a repeated-measures ANOVA with factors of OTC ROI size (original
mask, 2500 voxels) and encoding model type (content, memory)
revealed neither a significant main effect of OTC size on model predic-
tion accuracy nor an interaction (F values, 4.3, p values. 0.068).

GLM analysis. To obtain trial-by-trial fMRI activation patterns for
each subject and session, GLM analyses were performed using SPM12
(http://www.fil.ion.ucl.ac.uk/spm).

The design matrix for each scanning run included 48 trial regressors
convolved with the canonical HRF. Six motion parameters and impulse
responses representing volumes with unusually large motion (i.e.,
motion outliers detected using the function fsl_motion_outliers in FSL)
were included as nuisance regressors, along with an intercept regressor.
Thus, the dimensions of the entire design matrix for each session varied
across subjects [1952 TRs � (4401 number of motion outlier TRs)
regressors]. One-sample t tests against a contrast value of 0 were per-
formed to obtain trial-specific t statistic maps. Our decision to use t sta-
tistic maps as trial-specific activation patterns was based on our previous
studies, which demonstrated reliable pattern-based content representa-
tions in the parietal cortex using the same methodology (Lee and Kuhl,
2016; Lee et al., 2016, 2019).

Encoding model analysis.We created two separate voxel-wise encod-
ing models: a memory-based encoding model and a content-based
encoding model. The memory-based encoding model captured informa-
tion about the episodic history of images and participants’ subjective
memory judgments. The content-based encoding model captured infor-
mation about the semantic content of images.

The memory-based encoding model included regressors represent-
ing the three levels of image repetition during the study phase (novel,
repeated once, repeated 3 times) crossed by the four levels of recognition
memory decisions (“sure old,” “likely old,” “likely new,” “sure new”).
Separate regressors were generated for each trial type (e.g., novel images
classified as “sure new”), with a value of 1 for the relevant trials and 0 for
the remaining trials. Additionally, while not a factor of interest — and
not a factor that was controlled for when selecting stimuli— pre-experi-
mental familiarity of images (or at least the potential for pre-experimen-
tal familiarity) was included as a regressor. Namely, trials in which the
presented image contained a famous place or a famous person were
assigned a value of 1, and the remaining trials were assigned a value of 0.
Thus, there were 13 regressors in total.

Additionally, we created four simplified memory-based encoding
models with fewer regressors to examine the contributions of the image
repetition condition and recognition memory response variables to the
model prediction accuracy. The four simplified models included the
following: (1) a “two-level repetition condition” model using two lev-
els (novel vs repeated) instead of three levels (novel, repeated once,
repeated 3 times) of the repetition condition variable. This model
included a regressor with a value of one for repeated trials and zero
for novel trials, along with four regressors representing each of the
four memory responses; (2) a “no repetition condition” model which
included four memory response regressors but did not include the
repetition condition variable; (3) a “two-level memory response con-
dition” model using two levels (old vs new) instead of four levels
(sure old, likely old, likely new, sure new) of the memory response
variable. This model included a regressor with a value of 1 for sure
new/likely new trials and 0 for sure old/likely old trials, along with three
regressors representing each of the three repetition conditions; and (4) a “no
memory response condition” model which included three repetition condi-
tion regressors but did not include the memory response variable. All sim-
plified models also included the pre-experimental familiarity regressor. We
also built a separate memory-based encoding model, including all regressors
except for pre-experimental familiarity to assess the effect of the variable. In
all memory-based encoding models, all regressors were normalized (z-
scored) across all trials included in the model.

The content-based encoding model was created using the human
annotations collected from the online experiment (Fig. 1B,C). Each
online subject’s responses (words describing each image) were spell-
checked and transformed into vectors of 300 numbers using Google’s
pretrained Word2Vec model. Words not included in the Word2Vec
model were excluded from the analysis. For each image, the Word2Vec

vectors were averaged across all words describing the image (responses
were concatenated across online subjects) to generate a single vector per
image. For dimensionality reduction (to reduce overfitting), a principal
component analysis was performed on the Word2Vec vectors across all
images used in the experiment. For each image, the first 30 principal com-
ponent scores were selected to represent the image presented at each re-
trieval trial, and were used as the 30 regressors of the semantic encoding
model. The first 30 principal components explained 70% of the variance
among the vectorized descriptions. Using more principal components led
to lower model performance, supporting the efficacy of the dimensionality
reduction step in mitigating overfitting (see Results).

For both the memory-based and content-based encoding models, we
used linear regression to predict the activation level of each voxel within an
ROI for each retrieval trial from a single scanning session or both sessions.
When a single scanning session was used, the trial-by-trial activation maps
(t statistics) of an ROI were normalized (z-scored) across trials within the
session. When both scanning sessions were used, the activation maps were
first normalized across trials within each session, and then across all trials
from both sessions. Trials in which subjects failed to make recognition
memory responses were excluded from analyses. We used a leave-one-trial-
out cross-validation method; we first generated the parameter estimates of
the independent variables (regressors) using all but one trial included in the
model, and used the parameter estimates to predict the activation of the
left-out trial.

We tested the performance of the models using a two-alternative-
forced-choice (2AFC) test method for which chance-level accuracy was
50% (Lee and Kuhl, 2016). Specifically, for each retrieval trial, we com-
puted the cosine similarity between its predicted activation pattern and
its measured (actual) activation pattern (same-image similarity). We also
computed the cosine similarity between the predicted activation pattern
of the trial and the measured activation pattern of every other trial
(across-image similarity). We then separately compared the trial’s same-
image similarity to each of the across-image similarity values. Thus, N –
1 2AFC tests were performed for each trial, where N is the total number
of trials in the experiment. For each test, the prediction was considered
accurate when same-image similarity was greater than across-image sim-
ilarity. Thus, the accuracy for each trial was represented by the per-
centage of accurate predictions across all tests for that trial. These
trial-level accuracy values were then averaged across trials (and
sessions, where relevant) to generate a subject-specific prediction
accuracy for each ROI. This 2AFC test allowed us to test whether
the models successfully predicted neural activation patterns for
specific trials rather than generic patterns shared across trials.
Statistical significance of 2AFC model accuracy was tested using
the methods described in Statistical tests.

Within each ROI, and for each subject, we also identified individual
voxels whose activation levels were significantly explained by the mem-
ory-based and/or content-based encoding models. To do this, we com-
puted the Pearson correlation between the predicted time course of trial-
by-trial activation levels and the measured activation time course for
each voxel in an ROI. We then generated a null distribution of correla-
tions by randomly shuffling (1000 times) trial numbers and then recom-
puting the correlation between the predicted and measured activation
time courses. The significance (one-tailed p value) of the encoding
model accuracy within the voxel was defined as the proportion of corre-
lation values in the null distribution, which were greater than or equal to
the actual correlation between the predicted and measured time courses
computed using the original (not shuffled) trial order.

For analyses related to encoding model accuracy and voxel distribu-
tions, we report the results obtained using data combined across both
sessions. Results from single-session analyses were only used to inde-
pendently select memory/content voxels that were then used for the con-
tent tuning analysis in a cross-validated manner (see below).

Content tuning analysis. To characterize how individual brain
regions combined episodic history and semantic content of images dur-
ing retrieval, we generated content tuning functions for individual voxels
within each ROI by measuring a given voxel’s response to different
semantic categories of images. These tuning functions were separately
generated for “hit” (old scenes endorsed as “old”) and “correct rejection”
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(new scenes endorsed as “new”) trials to assess whether the shape of the
tuning function interacted with recognition memory. We focused on hit
versus correct rejection trials, as opposed to the repetition variable,
because prior studies have shown that parietal memory responses are
more strongly related to subjective memory decisions (i.e., responses)
than to the objective repetition history of a stimulus (e.g., Rissman et al.,
2010).

We first categorized the image stimuli by applying K-medoids clus-
tering (Lloyd, 1982) to the full Word2Vec vectors (not the dimensionally
reduced data) for all images used in the experiment. Cosine distance was
used as the distance metric to measure the similarity between each image
vector and the cluster medoid. To select the number of clusters (k), we
performed the clustering analysis using a range of k values (5-20). To
ensure that the clusters were distinct from each other and that there was
at least one image per cluster per repetition condition in every subject
and session, we selected k that maximized the number of clusters that
had at least 80 images per cluster (a somewhat arbitrary threshold), after
excluding images whose cosine distances to their corresponding cluster
medoids were greater than the mean cosine distance of each image to
the medoid of all images used in the experiment (mean¼ 0.4). This
resulted in nine clusters roughly corresponding to the following semantic
categories (as subjectively identified by the experimenters): human (e.g.,
human faces, celebrities), animal, food, building, indoor scene, street
scene, water (e.g., beaches, lakes), mountain, and activity (e.g., sports
games). It is important to note that each image was assigned to only one
of the nine categories, despite the fact that images often combined ele-
ments from multiple categories (e.g., see images in Fig. 1). Among the
1284 images used in the experiment, 146 images were excluded from the
content tuning analysis as they were not strongly associated with any of
the categories (i.e., cosine distance to the assigned cluster medoid. 0.4).
The mean number of images per cluster was 12.6, 12.8, and 12.5 for novel,
repeated once, and repeated 3 times conditions, respectively.

We then generated tuning functions separately for each subject,
voxel, and for the hit and correct rejection trials. Generating the tuning
functions involved a two-step, cross-validated process (e.g., Serences et
al., 2009). Specifically, each session of the fMRI data was alternately used
for each step (with results then averaged across the two cross-validation
folds). The first step was to use data from one fMRI session to determine
each voxel’s mean activation for each of the nine semantic categories
identified from the clustering analysis (see above). The mean activation
per category was independently computed for the hit and correct rejec-
tion trials and data were then averaged across the hit and correct rejec-
tion trials (this ensured that hit and correct rejection trials had equal
weight). For each voxel, the nine semantic categories were then rank-or-
dered from the category that evoked the highest mean activation to the
category that evoked the lowest mean activation. This rank ordering was
equivalent to defining “preference bins” for each voxel (e.g., Serences et
al., 2009). The second step was to test whether these category preferen-
ces, generated from half of the data, generalized to the held-out data (i.e.,
data from the other fMRI session). To do so, for each voxel, we com-
puted the mean activation for each rank-ordered semantic category
using the held-out data. For a given voxel, its mean response for each of
the rank-ordered semantic categories was defined as its content tuning
function. To the extent that category preferences successfully generalized
across fMRI sessions, this would be reflected by a negatively sloped tun-
ing function (i.e., decreasing activity for progressively “less preferred”
categories). Critically, content tuning functions were separately com-
puted for hit trials and correct rejection trials by segregating trials from
the held-out data according to memory status (hit, correct rejection) and
then averaging across trials within each memory status (i.e., averaging
the hit trials and averaging the correct rejection trials).

Finally, within each ROI, we separately considered content tuning
functions for (1) voxels that showed significant prediction effects for the
memory-based encoding model (“memory voxels”) and (2) voxels that
showed significant prediction effects for the content-based encoding
model (“content voxels”). Significant prediction effects were defined as
p, 0.05 (uncorrected) from the one-tailed permutation tests described
in Encoding model analyses. The rationale for comparing tuning func-
tions for “memory voxels” versus “content voxels” was to test whether

some voxels preferentially— or even selectively— carried content infor-
mation or memory information. Critically, however, the encoding mod-
els used for voxel selection were based on only half of the data (the same
half of the data used to identify the content tuning preferences). Thus,
the voxel selection procedures (i.e., how the voxel groups were defined)
and the category preference procedures (i.e., how tuning functions were
defined) were based on fMRI data that were entirely independent from
the critical test data. Again, this ensured that there was no circularity to
these analyses (Kriegeskorte et al., 2009).

In summary, our procedure for generating content tuning functions
allowed us to test whether the relative content preferences of a voxel,
which were defined using half of the data, generalized to independent,
held-out data. This cross-validated procedure critically ensured that
there was no circularity in how the content tuning functions were gener-
ated. Importantly, while tuning functions were always generated in a
voxel-specific manner and individual voxels were likely to have different
category preferences, our approach readily allowed for tuning functions
to be averaged across voxels within an ROI. That is, our approach tested
the degree to which each voxel’s category preferences were preserved
(across sessions), regardless of whether individual voxels had similar cat-
egory preferences.

Statistical tests. To test the accuracy of our 2AFC test, where chance
performance would correspond to 50% accuracy, we used two-tailed,
one-sample t tests to compare observed accuracy to 50%. For direct
comparison between pairs of ROIs or conditions, we performed two-
tailed, paired-samples t tests. For comparisons involving more than two
ROIs/conditions or for testing interactions between different factors, we
used repeated-measures ANOVAs, with subject number as the error fac-
tor. Within the ANOVAs, linear contrast analyses were used to test for
linear trends along the rank-ordered category preference bins in the con-
tent tuning analysis.

To test the significance of encoding model accuracy within each indi-
vidual subject, we performed nonparametric permutation tests. For each
subject, we generated the null distribution of accuracy by randomly shuf-
fling the trial numbers and then computing the subject-specific accuracy
using the same 2AFC test method as described above in Encoding model
analysis (number of iterations¼ 1000). The significance (one-tailed p
value) of subject-specific model accuracy was defined as the proportion
of accuracy values in the null distribution which were greater than or
equal to the actual accuracy computed using the original trial order.

Results
Behavioral results
All behavioral data were first averaged across sessions and
then across subjects. Data are reported as mean 6 SD. During
the study phase (which occurred outside the fMRI scanner),
the mean percentages of trials receiving each pleasantness rating
were as follows: “like” ¼ 55.28 6 19.35%, “dislike” ¼ 11.89 6
11.13%, “neutral” ¼ 30.706 18.67%, no response¼ 2.126 5.89%.
The mean percentage of images with a consistent response across
all three presentations was 80.516 5.94%. Because pleasantness rat-
ings were only included as an incidental encoding task, these data
are not considered further. During the scanned recognition
memory task, the mean hit rate was 88.51 6 8.93% and the

Table 1. Mean number of memory responses by repetition conditiona

Novel Repeated once Repeated 3 times

Mean SD Mean SD Mean SD

Sure new 82.00 40.92 10.80 6.04 1.45 1.14
Likely new 32.20 33.27 13.90 17.52 2.65 4.15
Likely old 6.55 7.87 16.00 18.90 10.10 17.81
Sure old 5.90 4.91 85.55 30.05 112.55 19.68
aThe table displays the mean number of memory responses per session made by the 10 subjects in each rep-
etition condition. The number of memory responses was first averaged across sessions within each subject,
and means and SDs were then computed across subjects. Each repetition condition had 128 trials per
session.

Lee et al. · AddingMeaning to Memories J. Neurosci., September 20, 2023 • 43(38):6525–6537 • 6529



mean false alarm rate was 9.82 6 7.77%. Mean sensitivity
(measured by d9) was 2.77 6 0.80 (range: 1.37-4.02), which
was significantly above chance (t(9) ¼ 10.97, p, 0.0001).
Sensitivity did not differ between Sessions 1 and 2 (t(9) ¼
0.29 p¼ 0.779). Sensitivity was significantly higher for
images that were presented 3 times in the study phase com-
pared with those presented once (d9 ¼ 3.37 6 0.38 vs 2.47 6
0.47, respectively; t(9) ¼ 8.41, p, 0.00007). The number of
trials associated with each memory response (sure new, likely
new, likely old, sure old) and each repetition condition is
shown in Table 1.

Memory-based encoding model
The memory-based encoding model attempted to predict the ac-
tivity patterns evoked by each scene image based on three varia-
bles: the number of repetitions in the study phase, response
during the recognition memory task, and pre-experimental fa-
miliarity (for details, see Materials and Methods). For each
region of interest (Fig. 2A), prediction accuracy was assessed for
each image by using cosine similarity to compare the predicted ac-
tivity pattern to (1) the activity pattern evoked by that image
(same-image similarity), and (2) the activity pattern evoked by
other images (across-image similarity; see Materials and Methods;

Figure 3. Prediction accuracy for alternative encoding models. A, Prediction accuracy for the original full memory model (Full model), a simplified model using two levels (novel vs repeated)
instead of three levels (novel, repeated once, repeated 3 times) of the repetition condition variable (2-level rep cond), and a simplified model not including the repetition condition variable
(No rep cond). The full model performed numerically better than simplified models in all regions, except for OTC, suggesting that the inclusion of the image repetition condition variable
enhanced the explanatory power of the full memory model. B, Prediction accuracy for the original full memory model (Full model), a simplified model using two levels (old vs new) instead of
four levels (sure old, likely old, likely new, sure new) of the memory response variable (2-level resp cond), and a simplified model not including the memory response variable (No resp cond).
The full model performed better than simplified models in all regions, suggesting that the inclusion of the memory response variable enhanced the explanatory power of the full memory
model. C, Content model prediction accuracy as a function of the number of principal components. Principal component analysis was applied to the word embedding vectors representing each
image, and the first 30, 100, 200, and 300 components were selected and included as regressors in the content model for each ROI. A–C, Model prediction accuracy was assessed using 2AFC
tests (chance level¼ 50%). Colored dots represent the mean across subjects. Error bars indicate SEM across subjects.

Figure 2. Prediction accuracy for the memory-based and content-based voxel-wise encoding models. A, ROIs shown on the inflated cortical surface of the left hemisphere (left ¼ lateral
view; right ¼ medial view). B, 2AFC test for assessing the trial-level accuracy with which the encoding models predicted the activation pattern within an entire ROI. For each model (memory-
based and content-based), we predicted the activation pattern within each ROI for each image shown during the retrieval phase. The prediction was considered accurate when the predicted
pattern was more similar to the actual (evoked) activation pattern than the pattern evoked by a different image. C, 2AFC test accuracies of the memory model (left) and the content model
(right). Colored dots represent individual subjects. White circles represent the mean across subjects. Error bars indicate SEM across subjects. Dotted horizontal lines indicate statistical significance
thresholds (one-tailed, p, 0.05) defined from null distributions generated through permutation tests (averaged across all subjects).
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Fig. 2B). If same-image similarity exceeded across-image similarity
for a given comparison, this was considered an accurate prediction.
Using this method, chance accuracy corresponds to 50%.

Accuracy was above chance for each of the ROIs, as
assessed by one-sample t tests (SPC: 54.936 2.21%, t(9) ¼
6.68, p¼ 0.0001; IPS: 55.506 2.07%, t(9) ¼ 7.99, p, 0.0001;
SMG: 55.416 2.19%, t(9) ¼ 7.42, p, 0.0001; ANG: 56.786
1.61%, t(9) ¼ 12.60, p, 0.0001; PMC: 55.706 1.70% t(9) ¼
10.06, p, 0.0001; OTC: 54.286 2.89%, t(9) ¼ 4.45, p¼
0.002; Fig. 2C). However, accuracy also significantly varied
across the ROIs (repeated-measures ANOVA: F(5,45) ¼ 5.04,

p¼ 0.001), and was numerically highest in ANG and lowest in
OTC. A direct contrast between ANG and OTC revealed signifi-
cantly greater accuracy in ANG (paired-samples t test: t(9) ¼ 4.67,
p¼ 0.001). Considering individual subjects, accuracy was above
chance, as determined by subject-specific permutation tests (one-
tailed, p, 0.05; see Materials and Methods), for every subject (10
of 10) for ANG, IPS, and PMC; for 9 of 10 subjects for SPC and
SMG; and for 8 of 10 subjects for OTC.

We conducted additional tests to examine the contributions
of the image repetition and recognition memory response varia-
bles to the memory-based encoding model accuracy. Specifically,

Figure 4. Voxel-specific encoding model accuracy and the distribution of different voxel types. A, For each voxel, we measured the encoding model accuracy by computing the Pearson corre-
lation between the predicted trial-by-trial activation time course (“Predicted activity”; left) and the actual (evoked) time course (“Measured activity”; right). B, An example subject’s distribution
of voxel-wise correlations between predicted and actual time courses in the ANG (left) and the OTC (right). Predictions were generated from either the content-based encoding model (filled
bars) or the memory-based encoding model (unfilled bars). Voxels were considered to show significant effects for the content or memory models when their corresponding correlation values
were greater than the statistical significance threshold (one-tailed, p, 0.05) defined from null distributions generated through permutation tests. Dotted vertical lines indicate the statistical
threshold averaged across all voxels within each ROI (r ¼ 0.06 for both models and regions). C, Mean percentages of voxels within each ROI that show significant effects of (1) the content
model only (Content only), (2) the memory model only (Memory only), (3) both models (Overlap), and (4) neither model (Neither). D, Percentages of voxels within each ROI that were labeled
as “content only” or “memory only.” Colored filled/unfilled dots represent individual subjects’ content/memory only voxel percentages, respectively. Black filled/unfilled dots represent averages
across subjects. Error bars indicate SEM across subjects.

Table 2. Statistical comparison of prediction accuracies for simplified memory-based encoding models versus the original (full) memory-based encoding modela

Two-level repetition condition
(novel vs repeated)

No repetition
condition

Two-level memory
response (old vs new)

No memory
response

ROI Mean t p Mean t p Mean t p Mean t p

SPC 54.42 1.30 0.23 54.61 0.84 0.42 53.54 5.56 0.0004 52.78 6.48 0.0001
IPS 55.23 0.79 0.44 55.12 1.02 0.33 54.39 2.77 0.02 53.27 4.71 0.001
SMG 55.22 0.60 0.56 55.11 0.78 0.46 54.15 6.09 0.0002 52.95 7.11 0.00006
ANG 56.33 1.56 0.15 56.06 2.55 0.03 55.51 4.90 0.0008 54.32 4.74 0.001
PMC 55.40 1.13 0.29 55.25 1.69 0.12 54.21 4.00 0.003 52.98 6.47 0.0001
OTC 54.24 0.11 0.92 54.29 �0.02 0.98 53.20 1.88 0.09 52.21 3.02 0.01
aFor each ROI and simplified memory model, the mean model prediction accuracy was computed by averaging the 2AFC test accuracies (chance level¼ 50%) across the 10 subjects. Two-tailed paired-samples t tests were per-
formed to compare the accuracy of each simplified model against the full model accuracy (for all t tests, degrees of freedom¼ 9).
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we created simplified versions of the memory-based encoding
model with either reduced or no levels of image repetition or rec-
ognition memory response conditions (for details, see Materials
and Methods). These simplified models were then compared
with the original full memory-based encoding model. The full
model demonstrated at least numerically higher performance
compared with the simplified models in all regions, except that
OTC showed numerically higher accuracy without the inclusion
of the image repetition condition (Fig. 3A,B). The results of the
statistical comparisons between the full model and each simpli-
fied model can be found in Table 2. Overall, these results indicate

that both the image repetition condition and memory response
variables contributed to the overall explanatory power of the
memory-based encoding model.

We also tested whether excluding the pre-experimental famil-
iarity variable (whether or not scenes had “famous” content) had
any impact on the memory-based encoding model accuracy.
Removing this variable from the model resulted in slightly but
significantly lower accuracies in ANG (�0.286 0.29%, t(9) ¼
3.04, p¼ 0.014) and PMC (–0.286 0.35%, t(9) ¼ 2.51, p¼ 0.033),
but no significant difference for other parietal ROIs (SPC:
–0.056 1.0%, t(9) ¼ 0.14, p¼ 0.89; IPS: –0.486 0.80%, t(9) ¼

Figure 5. Content tuning analysis. A, Nine semantic categories of image stimuli were identified by applying k-medoid clustering on the word embedding vectors describing the images. Each
dot represents an image, located on a 2-dimensional space created by applying t-distributed stochastic neighbor embedding dimensionality reduction on the word embedding vectors of all
images. Different colors represent different semantic categories. Each black dot and its associated picture represent the medoid image of each category. The labels for each category (“water,”
“animal,” etc.) reflect subjective assessments (made by the experimenters) based on the clustering— these labels are purely descriptive. B, Content tuning functions for hit and correct rejec-
tion (CR) trials, separately for each ROI (row) and for content voxels (left) and memory voxels (right). Reliable content tuning is reflected by greater activation for “preferred” semantic catego-
ries (left ¼ most preferred category; right ¼ least preferred category). C, Memory effects (averaged across memory and content voxels) for ANG (red) and OTC (teal) as a function of voxels’
category preference. For ANG, memory effects were defined as z-scored activation for hit – correct rejections; whereas for OTC, memory effects were defined as z-scored activation for correct
rejections – hits. Shaded areas represent SEM across subjects.
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1.88, p¼ 0.09; SMG: –0.136 0.52%, t(9) ¼ 0.79, p¼ 0.45). For
OTC, however, accuracy significantly increased when pre-ex-
perimental familiarity was excluded (2.816 1.68%, t(9) ¼
�5.27, p¼ 0.0005). These data indicate that pre-experimen-
tal familiarity positively contributed to prediction accuracy
only for ANG and PMC, and very modestly for these regions.
Ultimately, we do not consider this variable in more detail given
the fact that the number of “famous” versus “nonfamous” scenes
was not balanced across subjects, runs, or repetition conditions.
That said, our rationale for including the variable in the memory-
based encoding model was that it does reflect a form of memory
for an image and might therefore explain meaningful variance.

Content-based encoding model
The content-based encoding model attempted to predict the activ-
ity pattern evoked by a scene image based on the 30 principal
components that represented the content of the image (see
Materials and Methods; Fig. 3C). Prediction accuracy was assessed
using the same procedures as for the memory-based encoding
model (i.e., by comparing same-image similarity to across-image
similarity). Accuracy was above chance for each of the ROIs except
SMG, as assessed by one-sample t tests (SPC: 53.26 1.65%, t(9) ¼
5.84, p¼ 0.0002; IPS: 54.06 2.10%, t(9) ¼ 5.68, p¼ 0.0003; SMG:
50.46 2.18%, t(9) ¼ 0.52, p¼ 0.615; ANG: 54.36 2.88%, t(9) ¼
4.48, p¼ 0.0015; PMC: 53.896 2.16%, t(9) ¼ 5.42, p¼ 0.0004;
OTC: 62.16 2.75%, t(9) ¼ 13.19, p, 0.0001). Accuracy markedly
varied across the ROIs (repeated-measures ANOVA: F(5,45) ¼
58.08, p, 0.0001; Fig. 2C), with OTC exhibiting the highest accu-
racy. While ANG exhibited the highest accuracy (numerically)
among parietal ROIs, ANG accuracy was significantly lower
than accuracy in OTC (paired-samples t test: t(9) ¼ 16.34,
p, 0.0001). Considering individual subjects, accuracy was
above chance, as determined by subject-specific permutation
tests (one-tailed p, 0.05), for every subject (10 of 10) for
OTC; for 9 of 10 subjects for PMC; for 8 of 10 subjects for
SPC, IPS, and ANG, and for 3 of 10 subjects for SMG.

To test whether the content model and the memory model
were differentially predictive of activity patterns across ROIs, we
performed a repeated-measures ANOVA with factors of ROI
(all ROIs) and encoding model type (memory, content). The
interaction between ROI and model type was highly significant
(F(5,45) ¼ 49.364, p, 0.0001). This interaction was largely driven
by the fact that OTC was associated with higher accuracy than
the parietal ROIs for the content model, but lower accuracy than
the parietal ROIs for the memory model. There was also a signifi-
cant interaction when directly comparing ANG versus OTC
(F(1,9)¼ 191.34, p, 0.0001).

Distribution of memory and content voxels
We next assessed the percentage of voxels within each ROI
that exhibited significant effects for each encoding model
(the memory-based and content-based models; see Materials
and Methods, Fig. 4). For this analysis, we used a liberal
threshold (p, 0.05) as the goal was only to assess the relative
distribution of these voxels across ROIs. Within each ROI,
each voxel was labeled according to one of four categories:
content only, memory only, overlap (i.e., both), or neither
(Fig. 4C). As a first step, we compared the mean percentage
of content versus memory voxels (excluding overlap voxels)
across ROIs (Fig. 4D). An ANOVA with factors of voxel type
(content, memory) and ROI revealed a significant main
effect of ROI (F(5,45) ¼ 4.86, p¼ 0.001), a significant main
effect of voxel type (F(1,9) ¼ 12.57, p¼ 0.006), and a signifi-
cant interaction between ROI and voxel type (F(5,45) ¼
14.216, p, 0.0001). The main effect of ROI was primarily
driven by the relatively high percentage of significant voxels
(content and memory) in ANG. The main effect of voxel type
reflected an overall higher percentage of memory voxels (mean¼
24.716 8.50%) compared with content voxels (mean¼
14.606 5.47%). However, the significant interaction reflected
the fact that, whereas parietal ROIs exhibited relatively more
memory voxels than content voxels, OTC exhibited the opposite
pattern. Paired-samples t tests applied to the individual ROIs
revealed an effect/trend toward a higher percentage of memory
voxels compared with content voxels for each of the parietal ROIs
(SPC: 25.256 4.77% vs 11.986 2.09%, t(9) ¼ 2.24, p¼ 0.052; IPS:
20.906 2.47% vs 13.606 1.63%, t(9) ¼ 2.01, p¼ 0.076; SMG:
32.636 4.79% vs 8.416 2.10%, t(9) ¼ 3.98, p¼ 0.0032; ANG:
35.716 2.88% vs 13.046 2.07%, t(9) ¼ 5.08, p¼ 0.0007; PMC:
24.386 2.14% vs 14.506 1.66%, t(9) ¼ 2.99, p¼ 0.015); for OTC,
however, there was a significantly lower percentage of memory
voxels than content voxels (9.406 1.11% vs 26.046 2.21%, t(9) ¼
�5.48, p¼ 0.0004). A direct comparison between ANG and OTC
revealed a significant interaction between ROI and voxel type
(F(1,9) ¼ 40.18, p¼ 0.0001), again reflecting the relative bias to-
ward memory voxels in ANG and content voxels in OTC.

We also compared the total percentage of significant voxels
(content1 memory1 overlap) across the ROIs. A repeated-meas-
ures ANOVA revealed a significant main effect of ROI (F(5,45) ¼
8.93, p, 0.0001) with ANG again containing the highest percentage
of total significant voxels (Fig. 4C). Similarly, considering the per-
centage of overlap voxels alone, there was a significant main effect
across ROIs (F(5,45)¼ 5.71, p¼ 0.0003), with ANG containing the
highest percentage of overlap voxels and SMG containing the low-
est. Direct contrasts (paired-samples t tests) between ANG and
OTC revealed a higher total percentage of significant voxels

Table 3. Analysis of content tuning functionsa

Category Effects
(content tuning)

Category p
Voxel Type

Memory Effects
(hit vs. CR)

Memory p
Voxel Type

ROI F p F p F p F p

ANG 319.38 , 0.0001 37.24 , 0.0001 90.78 , 0.0001 67.89 , 0.0001
IPS 248.96 , 0.0001 19.93 0.002 4.65 0.06 11.83 0.007
SMG 38.16 , 0.0001 10.72 0.02 32.68 0.0003 7.25 0.03
SPC 164.31 , 0.0001 32.72 , 0.0001 0.16 0.70 0.32 0.59
PMC 228.75 , 0.0001 11.72 0.0007 112.56 , 0.0001 8.07 0.02
OTC 1762.10 , 0.0001 300.43 , 0.0001 1.77 0.22 7.98 0.02

For each region of interest (ROI) separate ANOVAs were applied to the content tuning functions to test for (1) linear effects of semantic category preference (across the 9 semantic categories; Category Effects); (2) interactions
between Category Effects and voxel type (memory voxels versus content voxels; Category p Voxel Type); (3) main effects of memory (hits versus correct rejections; Memory Effects); and (4) interactions between Memory
Effects and voxel type (Memory p Voxel Type). Notes: Category Effects and Memory Effects included voxel type (memory voxels versus content voxels) as a factor, but overlap voxels were excluded; for all ANOVAs, degrees of
freedom = 1,9.
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(content 1 memory 1 overlap) in ANG compared with OTC
(ANG: 66.466 14.85%; OTC: 48.596 9.16%; t(9) ¼ 5.05,
p¼ 0.0007) but no significant difference in the percentage of over-
lap voxels (ANG: 17.706 3.45%; OTC: 13.146 2.37%; t(9) ¼ 1.09,
p¼ 0.29).

Content tuning as a function of recognition memory
decisions
The preceding analyses indicate that content information and
memory information were broadly distributed across parietal
cortex and OTC, while also highlighting differences in how in-
formation was distributed across regions. To better characterize
how individual brain regions combined memory and content
information, we conducted a complementary series of analy-
ses in which we generated “content tuning functions” for each
ROI. Critically, separate tuning functions were generated for
hits (old scenes endorsed as “old”) and correct rejections (new
scenes endorsed as “new”) to test whether content tuning dif-
fered as a function of recognition memory status (for details,
see Materials and Methods). To generate these tuning func-
tions, we first used k-medoids clustering applied to scene
image annotations to group the scene images into nine seman-
tic categories (see Materials and Methods; Fig. 5A). For every
voxel within each ROI, half of the fMRI data (i.e., data from
one fMRI session) were used in a cross-validated manner to
rank-order the nine categories according to the voxel’s “pref-
erence” (i.e., its relative activation to images from each cate-
gory). These voxel-specific preferences were then tested for
generalization in the held-out data (i.e., data from the other
session). Successful generalization would be evidenced by voxels
displaying the same relative profile of activation across categories
(i.e., the same “tuning”) in the held-out data. Specifically, we
tested for a linear trend in activation as a function of category
preference (i.e., that activation decreased from the “most” to
“least” preferred categories). Finally, within each ROI, we com-
pared tuning functions for: (1) voxels that exhibited significant
content effects (content voxels) and (2) voxels that exhibited
significant memory effects (memory voxels), as defined based
on results from independent encoding model analyses (see
Materials and Methods). The rationale for separately consid-
ering content voxels and memory voxels (and for excluding
the overlap voxels) is that it provides another way for assess-
ing the separability (or inseparability) of content and memory
information. Namely, if voxels specifically selected for exhibit-
ing either content or memory effects (in one half of the data)
nonetheless express the other form of information (in the
held-out half of data), this would provide evidence that these
two forms of information are highly overlapping (or, put
another way, difficult to separate).

For each ROI, we generated a separate repeated-measures
ANOVA with factors of semantic category preference (the nine
rank-ordered category preference bins), recognition memory sta-
tus (hit, correct rejection), and voxel type (content, memory).
We first tested for main effects of semantic category preference
(combining across the content and memory voxels): that is,
whether the semantic tuning preferences identified from half of
the data (one session) generalized to the held-out data (the other
session). Indeed, for each ROI, there was a significant linear
trend as a function of category preference (see Table 3, Category
effects). These linear trends indicate that category preferences
were preserved across independent sessions and validate our
approach for generating semantic tuning functions. Notably, the
linear trends of semantic category preference interacted with

voxel type (content vs memory voxels) for all ROIs (Table 3). In
each case, this interaction reflected a stronger linear trend
(“sharper” tuning) for content voxels than memory voxels (see
Fig. 5B).

We next tested for main effects of memory (hit vs correct rejec-
tion). Significant main effects of memory were observed in SMG,
ANG, and PMC, but not in IPS, SPC or OTC (see Table 3,
Memory effects). Interactions between memory and voxel type
were present in all of the ROIs, except SPC (SPC: F(1,9) ¼ 0.32,
p¼ 0.59, IPS: F(1,9) ¼ 11.84, p¼ 0.007 SMG: F(1,9) ¼ 7.25, p¼
0.03, ANG: F(1,9) ¼ 67.89, p, 0.0001, PMC: F(1,9) ¼ 8.07,
p¼ 0.02; OTC: F(1,9)¼ 7.98, p¼ 0.02; Table 3). Interestingly, how-
ever, while this interaction reflected a stronger effect of memory
(hit . correct rejection) for memory voxels compared with con-
tent voxels in the parietal ROIs, OTC exhibited precisely the oppo-
site effect, with a stronger effect of memory (in the direction of
hits, correct rejections) for content voxels compared with mem-
ory voxels (Fig. 5B). The fact that memory effects in OTC were
stronger for content voxels than memory voxels suggests that
memory effects in OTC were fundamentally related to a voxel’s
content sensitivity. This finding is consistent with prior evidence
that repetition suppression signals in OTC are content dependent
(Grill-Spector et al., 2006).

Finally, and critically, we tested whether the shape of the
content tuning functions differed as a function of recognition
memory status (hit, correct rejection). An ANOVA that again
included factors of category preference (the nine semantic cate-
gories), recognition memory status (hit, correct rejection), and
voxel type (content voxels, memory voxels) revealed a significant
interaction between category preference (the linear trend across
category preference bins) and memory (hit, correct rejection) for
OTC (repeated-measures ANOVA: F(8,72) ¼ 13.37, p¼ 0.0003),
but not for any of the parietal ROIs (SPC: F(8,72)¼ 1.87, p¼ 0.17,
IPS: F(8,72) ¼ 0.001, p¼ 0.97 SMG: F(8,72)¼ 0.02, p¼ 0.90, ANG:
F(8,72) ¼ 3.47, p¼ 0.06, PMC: F8,72 ¼ 0.22, p¼ 0.64). (None of
the ROIs exhibited a three-way interaction between semantic cat-
egory, memory status, and voxel type: all p values. 0.32). For
OTC, the interaction between semantic category and memory
status reflected a relatively stronger effect of memory (correct
rejection. hit) for “preferred” semantic categories.

To formally contrast the relationships between memory
effects and content effects in ANG versus OTC, we computed,
for each ROI and averaging across content and memory voxels,
the size of the memory effect (the difference between hits vs cor-
rect rejections) for each category preference bin. Importantly,
however, we defined memory effects in ANG as hit – correct
rejection, whereas for OTC memory effects were defined as cor-
rect rejection – hit. The rationale for this different definition
across ROIs is that here, and in numerous prior studies, memory
effects in ANG are reflected by increased activation for “old”
items (repetition enhancement) (Wagner et al., 2005; Cabeza et
al., 2008; Sestieri et al., 2017; Rugg and King, 2018), whereas
memory effects in OTC are reflected by decreased activation for
“old” items (repetition suppression) (Miller et al., 1991; Grill-
Spector et al., 2006). Thus, this allowed us to compare the abso-
lute magnitude of memory effects across ANG and OTC.
Indeed, there was a significant interaction between ROI (ANG,
OTC) and category preference (the linear trend) (F(1,9) ¼ 6.605,
p¼ 0.01; Fig. 5C), confirming that memory effects in ANG and
OTC were differentially sensitive to category preference. As
described above, memory effects in OTC were relatively stronger
for more “preferred” semantic categories. In contrast, memory
effects in ANG were robust and generally consistent across
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category preference bins. Thus, despite the fact that ANG and
OTC each contained information about memory and content,
these regions combined these forms of information in distinct
ways. We additionally tested this idea by directly correlating
trial-by-trial encoding model prediction accuracies (i.e., Pearson
correlations between the actual and predicted activation pat-
terns) across the two models. We found that, across trials, OTC
showed significantly higher correlations than ANG (OTC:
0.166 0.07; ANG: 0.086 0.06; t(9) ¼ 2.85, p¼ 0.019) and than
all other parietal ROIs (t values. 2.5, p values, 0.034). These
findings reinforce the conclusion that memory and content rep-
resentations were more strongly integrated in OTC than in parie-
tal cortex.

Discussion
Here, we used voxel-wise encoding models and content tuning
functions to characterize content representations of natural scene
images in parietal and occipitotemporal cortices during a recog-
nition memory task. We show that memory- and content-related
signals are robustly distributed and highly overlapping within
parietal cortex, particularly within the ANG. While these two
forms of information were expressed within common voxels
in ANG, they were statistically independent: content tuning did
not interact with memory effects. In contrast, memory effects in
OTC were preferentially carried by content-sensitive voxels and
the magnitude of these effects was dependent on the degree to
which a given OTC voxel “preferred” the content of a remem-
bered stimulus. These findings provide new insight into how the
brain combines content and memory information.

Our findings are consistent with numerous fMRI studies
of human memory showing that content information can be
decoded from parietal cortex (Kuhl and Chun, 2014; Bird et al.,
2015; Bonnici et al., 2016; Lee et al., 2016, 2019; Favila et al.,
2018). However, our combination of semantic (content-based)
encoding models (Huth et al., 2016; Pereira et al., 2018) and con-
tent tuning functions provides a richer and more rigorous char-
acterization of content representations than typical decoding
measures. In particular, the content representations measured
here cannot be explained as category or stimulus labels that are
adaptively generated to satisfy task demands (Toth and Assad,
2002). Rather, the encoding model represents content as contin-
uous weights across a diverse set of features (Lee and Kuhl, 2016;
Bone et al., 2020). Moreover, the models were trained on images
that were distinct from test images, avoiding the possibility that
the model learned stimulus-specific labels. For the tuning func-
tions, although we grouped images into nine semantic categories,
this was done for dimensionality reduction and these categories
were not behaviorally relevant to subjects. Thus, our findings
provide some of the most compelling evidence to date that parie-
tal regions involved in episodic memory also encode rich and
multidimensional content information (Bird et al., 2015; Huth et
al., 2016; Bone et al., 2020).

By generating separate encoding models for memory- and con-
tent-related information, we were able to compare the relative sen-
sitivity of parietal and occipitotemporal regions to each type of
information. Not surprisingly, content effects were stronger in
OTC than in parietal cortex (Figs. 2C, 3B–D). Within parietal cor-
tex, however, there were qualitative differences across subregions.
For example, while SMG and ANGwere both characterized by rel-
atively strong memory effects (Figs. 2C, 4D), content effects were
more apparent in ANG than in SMG (Fig. 2C). Thus, our findings
provide a unique characterization of functional heterogeneity

across parietal regions (Hutchinson et al., 2014; Sestieri et al.,
2017). In particular, our findings support the idea that, among pa-
rietal regions, ANG was uniquely sensitive to the combination of
memory and content information (Fig. 4C) (Kuhl and Chun,
2014; Bonnici et al., 2016; Humphreys et al., 2021).

For our tuning function analyses, we sought to more precisely
determine whether content representations changed as a func-
tion of recognition memory (Woolnough et al., 2020). Critically,
we first independently identified subject-specific voxels from the
encoding models based on whether they exhibited memory or
content effects. Notably, we excluded “overlap voxels” to test
whether specific populations of voxels selectively expressed ei-
ther memory or content information. Within ANG, memory
effects (hit . correct rejection) were, not surprisingly, stronger
in memory voxels than content voxels; and, conversely, content
tuning was stronger (sharper tuning) in content voxels than
memory voxels. In other words, ANG contained voxels that pref-
erentially expressed either memory or content effects. Critically,
however, content voxels still expressed memory effects and
memory voxels still expressed content effects. Thus, even when
we deliberately attempted to select voxels in ANG that only
expressed one type of information based on half of the data, these
voxels nonetheless strongly expressed both forms of information
in the held-out data. Thus, memory and content effects were not
merely overlapping in ANG (Shimamura, 2011; Kuhl and Chun,
2014; Bonnici et al., 2016; Ramanan et al., 2018; Rugg and King,
2018): they were difficult to segregate.

Our second main finding from the tuning function analyses
was that the shape of content tuning in ANG was unaffected by
recognition memory success. Specifically, when contrasting tun-
ing functions for hits versus correct rejections, there was a shift
in the tuning functions (hit . correct rejection), but the tuning
functions were parallel. Put another way, recognition-related
increases were unrelated to a voxel’s preference for the content of
the recognized image. Thus, although individual voxels in ANG
were reliably tuned to different types of content and these same
voxels also strongly reflected recognition memory success, content
representations were invariant to recognition memory success.

Importantly, the tuning function results in ANG statistically
contrasted with OTC. First, memory effects in OTC tuning func-
tions (hit , correct rejection) were stronger for content voxels
than for memory voxels. While counterintuitive, this suggests
that memory effects in OTC were secondary to, or derived from,
content representations. Indeed, the number of content voxels in
OTC was also much higher than the number of memory voxels
(Fig. 4C); thus, selecting voxels on the basis of content sensitivity
was a more effective form of feature selection. Second, there was
a statistical interaction between memory effects and content tun-
ing in OTC. Namely, OTC memory effects were stronger for
voxels that “preferred” the content of the remembered image.
Importantly, this interaction in OTC statistically differed from
the relative independence of content and memory effects in
ANG (and other parietal regions) (Fig. 5B,C). Thus, in contrast
to ANG, memory effects in OTC scaled with the degree to which
voxels preferred the content of a recognized image (Grill-Spector
et al., 2006).

Collectively, our findings are consistent with theoretical
accounts which argue that ANG functions as a convergence zone
for multiple sources of information during memory retrieval
(Seghier, 2013; Ramanan et al., 2018; Tibon et al., 2019) and that
ANG jointly contributes to both semantic and episodic memory
(Humphreys et al., 2021). While our findings cannot adjudicate
between all of the competing theories of how the ANG
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contributes to memory (Wagner et al., 2005; Cabeza et al., 2008;
Vilberg and Rugg, 2008), a unique conclusion we can draw is
that univariate increases in ANG during successful recognition
were not driven by the representation of recognized content.
Instead, recognition effects may be better characterized as a
broadband signal that rides on top of feature-specific channels
that are tuned to different types of content. One interesting pos-
sibility is that recognition memory signals in ANG could reflect a
global bias toward internal processing that is induced by success-
ful recognition (Honey et al., 2017). However, it is important to
emphasize that our findings are based on a recognition memory
paradigm and, therefore, may not generalize to other forms of
memory (cued or free recall) where to-be-remembered content
must be internally generated as opposed to being perceptually
available. Interestingly, there is evidence that content representa-
tions in ANG are actually stronger during cued recall than dur-
ing perception (Xiao et al., 2017; Favila et al., 2018; Long and
Kuhl, 2021). It would therefore be informative to apply the anal-
yses used here to more thoroughly compare content representa-
tions during recall versus perception. Another issue that is
beyond the scope of the current study is the degree to which the
effects reported here depend on the subjective experience of
remembering versus the objective experience of stimulus repeti-
tion. A compelling body of evidence indicates that the ANG is
involved in (Hutchinson et al., 2014; Kuhl and Chun, 2014;
Ramanan et al., 2018), and even necessary for (Simons et al.,
2010; Yazar et al., 2014; Tibon et al., 2019; Zou and Kwok, 2022),
the subjective experience of remembering. In contrast, memory
effects in OTC may be more closely related to objective effects of
stimulus repetition (Sayres and Grill-Spector, 2006; Ward et al.,
2013). Here, we were not able to tease these apart because the
proportion of “miss” trials (objectively “old” but subjectively
“new” trials) was very low. Finally, it would also be informative
to consider the relative timing of content and memory represen-
tations across ANG and OTC (Staresina and Wimber, 2019).
While difficult to address with fMRI, intracranial electrophysio-
logical measures have the potential to provide unique insight
into these dynamics (Gonzalez et al., 2015).

In conclusion, our findings provide new insight into how the
brain combines information about “what” is being remembered
with information about “whether” something is being remem-
bered. By directly contrasting memory and content effects across
different brain regions, we show that there are multiple ways in
which the brain combines these two forms of information. Our
findings will hopefully inform and constrain theoretical accounts
of parietal contributions to memory and inspire new, targeted
research studies that further characterize how content and mem-
ory signals are combined in the brain.
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