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In recent years, the field of neuroscience has gone through rapid experimental advances and a significant increase in the use of quan-
titative and computational methods. This growth has created a need for clearer analyses of the theory and modeling approaches used
in the field. This issue is particularly complex in neuroscience because the field studies phenomena that cross a wide range of scales
and often require consideration at varying degrees of abstraction, from precise biophysical interactions to the computations they
implement. We argue that a pragmatic perspective of science, in which descriptive, mechanistic, and normative models and theories
each play a distinct role in defining and bridging levels of abstraction, will facilitate neuroscientific practice. This analysis leads to
methodological suggestions, including selecting a level of abstraction that is appropriate for a given problem, identifying transfer func-
tions to connect models and data, and the use of models themselves as a form of experiment.

Introduction
Recent technological advances in neuroscience have prompted the
growth of new experimental approaches and subfields that investi-
gate phenomena from single neurons to social behavior. However,
rapid growth has also revealed a need to develop new theoretical
frameworks (Phillips, 2015) that integrate the growing quantities
of data and to establish relationships between their underlying
processes. While neuroscience has a strong history of interactions
between experimental and theoretical approaches (Hodgkin and
Huxley, 1952; O’Keefe and Nadel, 1978; Marr, 1982, 1991), there is
still disagreement as to the nature of theory and its role in neuro-
science, including how it should be developed, used, and evaluated
by the community (Bialek, 2018; Goldstein, 2018).

We argue that an idealized view of scientific progress, in
which science is a problem-solving enterprise that strives to
explain phenomena, is well suited to inform scientific practice.
In neuroscience, the phenomena of interest are those that per-
tain to neurons, the nervous system, and its contribution to
cognition and behavior. Because these phenomena span a
wide range of spatiotemporal scales, their explanations often

Received June 16, 2022; revised Dec. 14, 2022; accepted Dec. 18, 2022.
This paper is the result of discussions as part of the workshop “Theoretical and Future Theoretical Frameworks in

Neuroscience” (San Antonio, Feb 4-8, 2019) supported by the National Science Foundation Grants DBI-1820631 to
H.G.R. and IOS-1516648 to F.S. This work was supported by National Institutes of Health Grant T90DA043219 and the
Samuel J. and Joan B. Williamson Fellowship to D.L.; IRP-National Institutes of Health ZIA-AA000421 and DDIR
Innovation Award, National Institutes of Health to V.A.A.; MH118928 to Z.S.C.; National Institute of Neurological
Disorders and Stroke 1U19NS112953, National Institute on Deafness and Other Communication Disorders
1R01DC018455, National Institute of Mental Health 1R01MH106674, and NIBIB 1R01EB021711 to R.C.G.; National
Institute on Deafness and Other Communication Disorders R01DC014101 and Hearing Research Incorporated, Sandler
Foundation to A.H.; H2020 GAMMA-MRI (964644) and H2020 IN-FET (862882) to R.B.J.; National Institute of
Neurological Disorders and Stroke 1R03NS109923 and National Science Foundation/NCS-FO 1835279 to J.D.M.; National
Institute of Mental Health-NIBIB BRAIN Theories 1R01EB026939 to F.S.; IBM Exploratory Research Councils to R.T.; DOD
ARO W911F-15-1-0426 to A.A.; National Science Foundation CRCNS-DMS-1608077 and National Science Foundation-IOS
2002863 to H.G.R.; National Institutes of Health MH060605 to F.N.; and National Institutes of Health MH080318,
MH119569, and MH112688 to A.D.R. The authors further acknowledge the University of Texas at San Antonio
Neuroscience Institute and the New Jersey Institute of Technology Department of Biological Sciences and Institute for
Brain and Neuroscience Research for technical support in the organization of the workshop, as well as all of the
participants in the workshop. We thank Erich Kummerfeld, Hal Greenwald, Kathryn McClain, Simón(e) Sun, and György
Buzsáki for comments on parts of the manuscript; and Matt Chafee and Sophia Vinogradov for help with citations.
*F.N., H.G.R., and A.D.R. contributed equally to this work as co-senior authors.
The authors declare no competing financial interests.
Correspondence should be addressed to A. David Redish at redish@umn.edu.
https://doi.org/10.1523/JNEUROSCI.1179-22.2022

Copyright © 2023 the authors

1074 • The Journal of Neuroscience, February 15, 2023 • 43(7):1074–1088

https://orcid.org/0000-0003-2611-8675
https://orcid.org/0000-0002-6352-9038
https://orcid.org/0000-0002-6483-6056
https://orcid.org/0000-0003-3998-5073
https://orcid.org/0000-0003-0792-8322
https://orcid.org/0000-0001-5600-1924
https://orcid.org/0000-0002-4086-7288
https://orcid.org/0000-0002-4879-5936
https://orcid.org/0000-0003-4144-9042
https://orcid.org/0000-0002-4387-5160
https://orcid.org/0000-0003-3644-9072
mailto:redish@umn.edu


require a “multilevel” approach that combines data from dra-
matically different modalities. Descriptive, mechanistic, and
normative explanations each play distinct roles in building a
multilevel account of neural phenomena: descriptive explana-
tions delineate an abstract characterization of a phenomenon,
while mechanistic and normative explanations bridge abstrac-
tions of different levels. Collectively, these operations unify
scientific theories across disparate experimental approaches
and fields. We show how this view facilitates the bidirectional
interaction between theory and experimentation as well as
theory development.

What is a theory and what is it good for?
Theories are the primary tools by which scientists make sense
of observations and make predictions. Given this central role, it
is surprising how little methodological attention is given in sci-
entific training to the general nature of theories. Traditional
descriptions of science tend to be based on the processes of
theory identification and falsification, in which theories are
proposed as universal truths about the world, tested, provision-
ally accepted if found to be compatible with experimental data,
and rejected when found to be incompatible (Popper, 1959).
According to these traditional descriptions, when theories are
incompatible with experimental data, the conceptual frame-
work on which they are based is called into question and a
new framework is found that can better account for the data
(Popper, 1959; Lakatos, 1980; Kuhn, 2012). However, histor-
ical, philosophical, and sociological analyses argue that these
views do not account for how theory is used in practice (Lakatos,
1980; Feyerabend, 1993; Godfrey-Smith, 2003; Ben-Ari, 2011;
Kaiser, 2014; Firestein, 2015; Laplane et al., 2019). For example,
theories are rarely, if ever, decisively testable, scientists can have
a variety of attitudes toward a theory rather than to simply accept
or reject it (Lakatos, 1978; van Fraassen, 1980; Mermin, 1989;
Ben-Ari, 2011; Kaiser, 2014); and although new discoveries can
provide answers to open questions, the new questions they
prompt may be more consequential (Firestein, 2012).

A pragmatic view: science as problem-solving
We propose that a pragmatic view of the scientific enterprise
(James, 1907; Laudan, 1978; Ben-Ari, 2011; Douglas, 2014) is
better suited to inform scientific practice. In this view, science is
a process through which we solve empirical problems and an-
swer questions about observable phenomena (Laudan, 1978;
Nickles, 1981; Haig, 1987; Douglas, 2014; Firestein, 2015; Redish
et al., 2018). Empirical problems can range from matters of basic
scientific interest (for example, “How does the brain process vis-
ual signals?” or “How does an animal select between alternative
choices?”), to those with more obvious applications (such as
“Which brain functions are disrupted in schizophrenia?”).
Like any other problem, a scientific problem can be seen as a
search to achieve a desired goal, which is specified by the state-
ment of the problem (Newell and Simon, 1972). However, sci-
entific problems are often ill defined (Bechtel and Richardson,
2010), in part because the search space and solution criteria are
not always explicitly stated and in part because they evolve with
additional discoveries (Firestein, 2012). For example, the dis-
covery of multiple memory and decision-making systems raises
further questions of how those systems interact (Scoville and
Milner, 1957; O’Keefe and Nadel, 1978; Squire, 1987; Nadel,
1994; Balleine and Dickinson, 1998; Schacter, 2001; Daw et al.,
2005; Redish, 2013), while the question “How does the pineal
gland generate consciousness?” (Descartes, 1637) is now considered

outdated. Further, scientific problems are never definitively solved,
but are only deemed “adequately solved” by a research community.
What is seen as an adequate solution in one socio-historical context
may not be in another: as new data become available, standards
change, or alternative solutions are presented. While a continuously
evolving landscape of problems and proposed solutions might seem
to counter a notion of progress in science, scientific theories have
been used to explain and control progressively more phenomena
over the course of the scientific record (Laudan, 1978; Douglas,
2014). According to the pragmatic view, this progress results from
community-maintained standards of explanation, under an over-
arching drive to better predict and control natural phenomena of
potential relevance to society (Hacking, 1983; Douglas, 2014).

We can thus define a scientific explanation (Hempel and
Oppenheim, 1948; Woodward, 2019) as a proposed solution to
an empirical problem, and scientific theories to be the ideas we
use to form explanations. Where traditional views have tried to
specify the form theories take, the pragmatic view sees theory
structure as closely tied to its function and context. As a result, a
theory can include a wide and complex range of structural ele-
ments, including those that are not formalized (Winther, 2021).
While theories may be spelled out in the scientific literature, they
are more often used implicitly in the explanation of phenomena
and design of experiments. By shifting theories from “proposals
of truth to be falsified” to “proposed problem-solving tools,” the
pragmatic view prompts us to assess a theory by its utility: what
empirical problems it can solve, how easily it can be used to solve
them, and how good its solutions are. It also requires criteria to
evaluate the quality of solutions to a problem and a set of stand-
ards by which we measure the utility of the theory, such as accu-
racy, simplicity, falsifiability, generalizability, and reproducibility
(Laudan, 1978; van Fraassen, 1980; Chang, 2007b, 2011; Schindler,
2018). Through competition to solve empirical problems, theories
become more precise, provide clearer and more concise explana-
tions, can be used to make more reliable and accurate predictions,
and can be applied to larger domains.

Conceptual frameworks provide constructs and constraints
Assessing scientific explanations inevitably involves considera-
tions that are not directly related to solution quality but are
instead constraints on the form solutions can take. These con-
straints constitute a conceptual framework (Table 1): a language
within which explanations are proposed. In effect, a conceptual
framework is a set of foundational theories that provide a con-
ceptual structure on which further theories within that program
are built (Lakatos, 1978; Laudan, 1978; Kuhn, 2012).

The stability of such a framework allows its component theo-
ries to change without rebuilding their conceptual foundations.
For example, under the modern framework of neuropsychiatry,
psychiatric disorders are framed in terms of biophysical dysfunc-
tions in neural structure. Current debates about the underpinnings
of schizophrenia include hypotheses of dysfunction within dopa-
minergic or glutamatergic systems, dysfunctional pruning of den-
drites, and dysfunctional oscillatory dynamics (Moghaddam and
Javitt, 2012; Glausier and Lewis, 2013; Uhlhaas and Singer, 2015;
Howes et al., 2017). However, they all lie within a general frame-
work of biophysical changes in neural processes. The consistency
of this founding idea allows us to modify theories without disrupt-
ing the foundational premise, which allows them to be directly
compared and contrasted.

While explanations are naturally comparable within a frame-
work, theories under different frameworks are composed of fun-
damentally different objects and describe the world in different
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terms, which makes them difficult to compare. For example,
explanations under the traditional psychoanalytic framework
(Luyten et al., 2015) are fundamentally different from those under
the modern neuropsychiatry framework (American Psychiatric
Association, 2013; Cuthbert and Insel, 2013; Insel and Cuthbert,
2015; World Health Organization, 2021). The two frameworks are
composed of fundamentally different objects and are described in
different terms: in contrast to the neuropsychiatric framework,
psychoanalytic explanations for schizophrenia invoke unconscious
conflicts and/or distorted ego functions as the key factors underly-
ing psychosis (Luyten et al., 2015). Even the categorizations of psy-
chiatric phenomena are different under these frameworks, making
direct comparisons of explanations for the same phenomena
across frameworks difficult (Feyerabend, 1993).

Despite the difficulties in directly comparing theories across
frameworks, all frameworks are not equivalent. One can com-
pare conceptual frameworks by asking how well their theories
allow us to predict and control our environment (Lakatos, 1978).
This is not to say that all research requires a direct application,
but rather that consideration of practical components is necessary
for a complete understanding of scientific progress (Laudan, 1978;
Douglas, 2014). For example, the psychoanalytic framework
implies treatment-based analytic therapy, while the modern
neuropsychiatry framework suggests medication as a key
component. Furthermore, under the new framework known
as computational psychiatry, psychiatric disorders are attrib-
uted to computational “vulnerabilities” in the systems architec-
ture of the brain (Redish, 2004; Redish et al., 2008; Montague et
al., 2012; Huys et al., 2016; Redish and Gordon, 2016). Theories
in this new framework suggest that such disorders would be
treatable by changing information processing: by modifying
the physical substrate (e.g., through electrical stimulation or
pharmacological changes), enhancing compensation processes
(e.g., through cognitive training), or changing the environ-
ment (e.g., by giving a student with ADHD extra time on a
test). The pragmatic view suggests that the ultimate adoption
(or not) of this framework will come down to how successfully
it can be applied to unsolved problems.

Models as the interface between theories and phenomena
While “theoretical” work may appear further from “applied” sci-
ence than its experimental counterpart, models can act as an
interface between theory and phenomena. A model consists of a
structure and an interpretation of how that structure relates to its

target phenomena (Frigg and Hartmann, 2006), also known as
the model’s “construal” (Weisberg, 2013). For example, the equa-
tion tdV=dt ¼ �V1Vrest is a mathematical structure that is
interpreted to represent the temporal dynamics of the membrane
potential, V, of a passive cell with time constant, t , and resting
potential, Vrest (Hodgkin and Huxley, 1952; Koch and Segev,
1989; Rall, 1992; Hille, 2001; Gerstner et al., 2014). Models whose
structure consists of mathematical equations or computational
processes are amenable to simulation and analytical treatment.
Models can be constructed from many different kinds of inter-
preted structures, such as physical structures that are interpreted
to represent the double helix of DNA (Watson and Crick, 1953)
or diagrammatic structures that are interpreted to represent pro-
tein interactions involved in signaling cascades (Alon, 2006).
Many “animal models” used in experimental neuroscience are
physical structures interpreted to represent other phenomena,
such as the 6-OHDA rat or the MPTP monkey, which are inter-
preted to represent the pathology of Parkinson’s disease (Schultz
et al., 1989; Dorval and Grill, 2014).

In creating a model, a researcher has to make foundational
assumptions in the terms they use, the form those terms take,
and the relationships between them. These assumptions instan-
tiate aspects of a theory in an explicit expression with a well-
defined form. The voltage equation above instantiates the theory
that a neuron’s electrical properties arise from a semipermeable
membrane (Hodgkin and Huxley, 1952; Rall, 1992), while the 6-
OHDA model instantiates the theory that Parkinson’s disease
arises from dopaminergic dysfunction (Langston and Palfreman,
2013). This explicit formulation of theories can force us to con-
front hidden assumptions (Marder, 2000), and provide useful
insights for the design of experiments or potential engineering
applications.

Further, in selecting some aspects of a phenomenon to include,
and others to ignore, creating a model abstracts a multi-faceted
phenomenon into a concise, but inevitably simplified, representa-
tion. Thus, models simultaneously act as an instantiation of a
theory and an abstraction of a phenomenon (Rosenblueth and
Wiener, 1945; Stafford, 2009). This dual role of models is the foun-
dation of their use in explanation (Cartwright, 1997).

Descriptive, mechanistic, and normative explanation
The terms “descriptive,” “mechanistic,” and “normative” are
widely used in neuroscience to describe various models. A

Table 1. Terminology used in this manuscript: three neuroscience examples

Examples

Cellular Systems Disease

Framework
A general description about the struc-
ture of the world, providing a lan-
guage and a conceptual basis for
developing theories

Explanations for differences in neural functional
properties can be appropriately described in
terms of differences in the electrochemical prop-
erties of membranes and proteins.

Explanations of the production of move-
ment by skeletal muscle contractions
can be appropriately described in
terms of patterns of action potentials
in the CNS.

Explanations of neurodegenerative dis-
eases can be appropriately described
in terms of dysfunction in cellular
processes.

Theory
A set of ideas that can be used to
explain a set of phenomena (the do-
main of the theory)

Specific voltage-gated ion channels enable excitable
properties of neurons, such as the action
potential.

Many movements are generated by cen-
tral pattern generators that are pri-
marily driven by internal oscillatory
dynamics.

Parkinson’s disease entails the loss of
dopaminergic function in the substantia
nigra.

Model
An instantiation of aspects of a theory
in an (often mathematical) structure,
which is interpreted to represent
aspects of a phenomenon

The Hodgkin–Huxley equations represent the volt-
age-dependent conductances that underlie the
action potential.

Half-center oscillators represent neural
circuits in the notochord that underlie
swimming processes in the lamprey.

Dopaminergic loss caused by 6-OHDA in
rodents and MPTP in nonhuman pri-
mates represent similar losses in
Parkinson’s disease that underlie
behaviors, such as bradykinesia and
tremors.
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pragmatic view prompts us to consider how these terms relate to
the type of problem they are used to solve (Kording et al., 2020).
In doing so, we find that these labels correspond to three dif-
ferent explanatory approaches in neuroscience, which are used
to solve three different types of problems: “what” problems,
“how” problems, and “why” problems (Dayan and Abbott, 2001)
(Fig. 1).

Descriptive explanations
The first problem often encountered in scientific research is:
What is the phenomenon? Phenomena are not divided into dis-
crete entities a priori, but instead appear as a continuous multi-
faceted stream with many possible methods of observation and
many aspects that could be observed. Thus, the set of characteris-
tics that define a phenomenon are often unclear. This problem is
addressed with a descriptive explanation (Kaplan and Bechtel,
2011). For example, to explain the spikes observed from a hippo-
campal neuron we could use a theory of “place cells” (O’Keefe
and Nadel, 1978): a collection of ideas that defines the relation-
ship between neural activity in the hippocampus and an animal’s
position in an environment, which can be instantiated in a model
that specifies that relationship in an equation (O’Keefe and
Nadel, 1978; Redish, 1999; Colgin, 2020). Descriptive models are
founded on basic assumptions of which variables to observe
and how to relate them. At its heart, a descriptive explanation
is simply a selective account of phenomenological data; indeed,
descriptive models are often called phenomenological models
(Craver, 2007; Kaplan, 2011) or, when they are well established,
phenomenological laws (Cartwright, 1997).

Mechanistic explanations
After addressing the “what” question, one might ask: How does
the phenomenon arise? This problem is addressed with a mech-
anistic explanation, which explains a phenomenon in terms of
its component parts and their interactions (Machamer et al., 2000;

Craver, 2007; Bechtel and Richardson, 2010).
For example, to explain the activity of place
cells, we can create explanations based on
afferent information from other structures,
internal connectivity patterns, and intra-
neuronal processing, which can be instanti-
ated in a model that specifies how they
interact to produce neural firing (Redish,
1999; Hartley et al., 2000; Barry et al., 2006;
Fuhs and Touretzky, 2006; Solstad et al.,
2006; Giocomo et al., 2011; Sanders et al.,
2015). A mechanistic model is founded on
an assumption of which parts and processes
are relevant, and illustrates how their interac-
tion can produce a phenomenon or, equiva-
lently, how the phenomenon can emerge
from these parts. Often these parts are con-
sidered to be causally relevant to the phe-
nomenon, and a mechanistic explanation is
often also referred to as a causal explana-
tion (Machamer et al., 2000; Craver, 2007;
Bechtel and Richardson, 2010).

Mathematical mechanistic models in
neuroscience often take the form of a dy-
namical system (Koch and Segev, 1989;
Ellner and Guckenheimer, 2006; Izhikevich,
2007; Ermentrout and Terman 2010; Gerstner
et al., 2014; Börgers, 2017; Gabbiani and Cox,
2017), in which a set of variables represent

the temporal evolution of component processes or their equi-
librium conditions. For example, the classic Hodgkin–Huxley
model uses a set of four coupled differential equations to rep-
resent the dynamics of membrane potential and voltage-de-
pendent conductances, and shows how an action potential can
emerge from their interaction by producing a precise predic-
tion of the progression of the membrane potential in time
(Hodgkin and Huxley, 1952). However, qualitative mechanis-
tic models, in which complex processes are summarized in
schematic or conceptual structures that represent general
properties of components and their interactions, are also
commonly used. For example, Hebb considered a conceptuali-
zation of neural processing in which coincident firing of synap-
tically connected neurons strengthened the coupling between
them. From this model, Hebb was able to propose how memo-
ries could be retrieved by the completion of partial patterns and
how these processes could emerge from synaptic plasticity, as
cells that were coactive during a particular stimulus or event
would form assemblies with the ability to complete partially
activated patterns (Hebb, 1949).

Mechanistic models represent the (assumed) underlying
processes that produce the phenomenon (Craver, 2007; Kaplan
and Bechtel, 2011). They can be used to make predictions about
situations where the same processes are presumed to operate
(Ellner and Guckenheimer, 2006). This includes the effects of
manipulations to component parts, and circumstances beyond
the scope of data used to calibrate the model.

Normative explanations
In addition to the mechanistic question of “how,” we can also
ask the question: Why does the phenomenon exist? This kind
of problem is addressed with a normative explanation, which
is used to explain a phenomenon in terms of its function
(Barlow, 1961; Kording et al., 2007; Bialek, 2012). A normative

Figure 1. The three explanatory processes that underlie scientific explanations. Descriptive theories address the question
of “what is the phenomenon?” and identify the repeatable characteristics of that phenomenon. Mechanistic theories
address the question of “how does the phenomenon arise?” and explains the phenomenon in terms of the parts and inter-
actions of other phenomena at lower levels of abstraction. Normative theories address the question of “why do the phe-
nomena exist?” and allow a comparison of the phenomenon to an identified function or goal. Normative theories allow the
determination of whether a process is achieving its goal; inadequacies generally imply an incomplete understanding of the
limitations engendered by processes at a lower level of abstraction.
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explanation of place cells would appeal to an animal’s need to
accurately encode its location, and could instantiate that need
in a model of a navigation task (O’Keefe and Nadel, 1978;
McNaughton and Nadel, 1990; Redish, 1999; Zilli and
Hasselmo, 2008). Appealing to a system’s function serves as a
guiding concept that can be a powerful heuristic to explain its
behavior based on what it ought to do to perform its function
(Dennett, 1989). This kind of explanation has a long history in
the form of teleological explanation, which explains a thing by
its “purpose” (Aristotle, no date), and is often used implicitly
in biological sciences, for example, stating that the visual sys-
tem is “for” processing visual information. In neuroscience,
functions often come in the form of cognitive, computational,
or behavioral goals.

When quantified, normative models formalize the goal of
the phenomenon in an objective function (also known as a util-
ity or cost function), which defines what it means for a system
to perform “well.” These models are founded on an assumed
statement of a goal and the constraints under which the system
operates. For example, models of retinal function formalize the
goal of visual processing using equations that represent the abil-
ity to reconstruct a sensory signal from neural responses, under
the constraints of sensory degradation and a limited number of
noisy neurons (Rieke et al., 1997; Field and Rieke, 2002; Doi
and Lewicki, 2014). Such an approach also relies on an assump-
tion of an underlying optimization process. This assumption is
often justified by appealing to evolution, which might be
expected to optimize systems (Barlow, 1961; Parker and Smith,
1990; Bialek and Setayeshgar, 2008). However, evolution does
not guarantee optimality because of limitations of genetic
search (Gould and Lewontin, 1979; Gould, 1983). Moreover,
there are numerous processes in physical, biological, neuro-
logic, and social systems that can drive phenomena toward a
state that maximizes or minimizes some objective function;
however, these processes each also have their own unique limi-
tations. For example, physical processes that minimize surface-
to-volume ratio create hexagonal tessellations in beehives, but
this process is limited by the physical properties of construction
(Thompson, 1992; Smith et al., 2021). Economic markets might
be expected to optimize the balance between offer and selling
price, but are limited by imperfect and unbalanced informa-
tion and the limited decision-making abilities of agents
(Akerlof, 1978; Kahneman et al., 1991; Shleifer, 2000; Fox,
2009; Gigerenzer and Gaissmaier, 2011). Similarly, super-
vised learning might be expected to optimize object discrimi-
nation, but its implementation in the brain would be limited
by constraints, such as synaptic locality and the availability
of credit signals and training data (McNaughton et al., 1978;
Häusser and Mel, 2003; Takeuchi et al., 2014; Richards et al.,
2019; Hamrick et al., 2020; Hunt et al., 2021). Where each of
these processes might be expected to bring systems toward
an optimal solution, the constraints under which they oper-
ate may themselves impose distinct signatures on the systems
they optimize.

The descriptive/mechanistic/normative classification depends on
context
Theories and models do not exist in isolation, but are embedded
in scientific practice. As the descriptive/mechanistic/normative
categorization reflects the problem being solved, it can be applied
to both theories and models depending on the context (i.e., kind
of explanation) in which they are being used. In general, this cat-
egorization is independent of whether an explanation is accepted

by the scientific community. For instance, a mechanistic expla-
nation does not cease to be mechanistic if it is not adopted (e.g.,
because some of its predictions are not experimentally corrobo-
rated). Further, models with the same structure can be used for
different purposes, and can thus be assigned to a different cate-
gory in different contexts. For example, the integrate-and-fire
model can be used as a descriptive model for membrane poten-
tial dynamics, or as a mechanistic model for the neuronal input-
output transformation; and while the Hodgkin–Huxley model
was discussed above as a mechanistic model for the problem of
spike generation, it was originally proposed to be “an empirical
description of the time course of the changes in permeability to
sodium and potassium” (Hodgkin and Huxley, 1952). Indeed,
theories often start as an effort to solve one class of problem, and
over time develop aspects to address related problems of differ-
ent classes, resulting in a theory with descriptive, mechanistic,
and normative aspects.

Levels of abstraction
In selecting some aspects of a phenomenon to include, and
others to ignore, a model abstracts a multifaceted phenom-
enon into a more concise, but inevitably simplified, repre-
sentation. That is, in making a model, we replace a part of
the universe with a simpler structure with arguably similar
properties (Rosenblueth and Wiener, 1945; Weisberg, 2013).
It could be argued that abstraction is detrimental to model
accuracy (i.e., that “The best material model for a cat is
another, or preferably the same cat”), and is only necessary
in light of practical and cognitive limitations (Rosenblueth
and Wiener, 1945). However, abstraction is important in sci-
entific practice, and its role extends beyond addressing those
limitations (Potochnik, 2017).

Box 1: levels of abstraction

An illustrative example of levels of abstraction comes
from computer science (Colburn and Shute, 2007; Wing,
2008), in which higher-level languages abstract the details
specified in lower-level languages by concealing detailed
code in a single function that provides the same relation-
ship. Computational abstraction simplifies a process, such
that it is independent of its component processes or even
its physical substrate. For example, there are many algo-
rithms that sort a list of numbers, but any computational
sort command produces the same output regardless of the
algorithm used. Computational abstraction is used in neu-
roscience, for example, when we simplify the molecular
process of synaptic transmission in a more abstract model
that represents its net effect as an increased firing rate of a
postsynaptic neuron. This simplification is akin to con-
ceptual abstraction (O’Leary et al., 2015), by which more
abstract, or idealized, models aim to capture general
properties of a process rather than the specific details of
any one event or dataset. In neuroscience, computa-
tional abstraction is often discussed in terms of David
Marr’s three levels of analysis (Marr, 1982; Pylyshyn,
1984): the implementational level is a low-level, con-
crete statement of a phenomenon, the algorithmic level
is an abstraction of the implementational level, explain-
ing the process by which the phenomenon occurs, and
the computational level is a high-level (normative) state-
ment of the goal of the process.
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Distinct levels of abstraction also arise in neuro-
science when considering problems at different spatio-
temporal scales (Churchland and Sejnowski, 1994). For
example, we might consider synaptic transmission in
terms of the interactions of various proteins at nanome-
ter to micrometer scales, or we might consider a more
abstract model in which neural activity is propagated
across the cortex at scales of millimeters or centimeters.
When we model phenomena at a given spatiotemporal
scale, we make an abstraction that prioritizes organiza-
tional details at that scale (e.g., cellular), while further
simplifying details at others (e.g., subcellular and net-
work) (Eronen and Brooks, 2018). One promising per-
spective on the emergence of spatiotemporal levels
suggests that models at higher levels of abstraction arise
from their lower level counterparts via a natural dimen-
sionality reduction of the parameter space (Machta et al.,
2013; Transtrum et al., 2015). Such a reduction is possible
because models of complex systems are “sloppy”: they
have a large number of dimensions in parameter space
along which model parameters can vary without affecting
relevant macroscopic observables (i.e., the microscopic
parameters are degenerate with respect to macroscopic
behavior) (Gutenkunst et al., 2007; for examples in neu-
roscience, see, e.g., Prinz et al., 2004; Panas et al., 2015).
Thus, abstraction from lower to higher spatiotemporal
scales can be seen as a reduction of the lower-level pa-
rameter space that removes sloppy dimensions but pre-
serves “stiff” dimensions that have strong influence on
observable properties at the higher level. The appropriate
dimensionality reduction could be as simple as taking the
mean or asymptote of some parameter over a population
(Wilson and Cowan, 1973; Pinto et al., 1996; Destexhe and
Sejnowski, 2009), or the set of microscopic parameters
needed to produce the same macroscopic behavior might be
nonlinear and complex (Prinz et al., 2004; Rotstein et al.,
2006; Jalics et al., 2010; Transtrum et al., 2015).

Descriptive models define abstractions at different levels
Abstraction is most obvious when we consider the construc-
tion of descriptive explanations. First, abstractions are made
when researchers decide which aspects of a phenomenon not
to include. For example, the cable equation which describes
the relationship between axonal conductance and membrane
potential (Rinzel and Ermentrout, 1989; Rall, 1992; Gerstner
et al., 2014) does not include details about intracellular or-
ganelles, the dynamics of individual ion channels, or the
impact of nearby neurons on the extracellular potential.
Importantly, these models do not include many larger-scale
effects (e.g., the neuron’s embedding in a circuit, or the social
dynamics of the agent) as well as smaller scale factors
(Vinogradov et al., 2022). The process of abstraction thus
applies to both phenomena at smaller scales (organelles) and
at larger scales (social interactions of the agent) that are
hypothesized to be unnecessary to address the question at
hand. Each of these factors are abstracted away, leaving only
the features chosen to be represented in a model’s structure.

Second, the aspects that are included must be represented in
an idealized form. For instance, ionic flux through the cell mem-
brane is not a strictly linear current function of voltage and con-
ductance, but we often idealize it as such for tractability (Koch
and Segev, 1989; Rall, 1992; Hille, 2001). These idealizations are

assumptions about a phenomenon which are, strictly speaking,
false, but are used because they serve some purpose in creating
the model (Potochnik, 2017).

Classic accounts of neuroscience emphasize analysis at differ-
ent levels of abstraction (Wimsatt, 1976; Marr, 1982; Sejnowski
et al., 1988; Churchland and Sejnowski, 1994; Shepherd, 1994;
Craver, 2007) (Box 1). However, despite the ubiquity of level-
based views of neuroscience and a number of proposed schemes,
no consensus can be found on what the relevant levels of abstrac-
tion are, or even what defines a level (Guttinger and Love, 2019).
Suggestions of different level schemes range from those of com-
putational abstraction (Colburn and Shute, 2007; Wing, 2008),
which simplifies a process to be independent of its specific imple-
mentation or physical substrate, to levels of conceptual abstrac-
tion, which delineate the degree of idealization versus relatability
to data (O’Leary et al., 2015), and levels of physical abstrac-
tion, which are used to deal with different spatiotemporal
scales (Churchland and Sejnowski, 1994). However, recent
analyses suggest that natural phenomena are not organized
into levels in a universally coherent manner (Potochnik and
McGill, 2012; Potochnik, 2017, 2020). From a pragmatic view,
levels of abstraction need not reflect discrete “levels” in nature
but are indicative of our problem-solving strategies and con-
straints. Because different abstractions can facilitate different
research aims (Potochnik, 2017), multiple descriptive models
are needed to represent the same phenomenon but abstract
different features to different degrees.

Mechanistic and normative models connect levels of abstraction
Without links between them, we would be left with a hodge-
podge of different descriptions. However, unification has been
noted as a strong desideratum for scientific theories (Keas, 2018;
Schindler, 2018). The relationship between different descriptions
of the same phenomena can often be expressed in terms of a
mechanistic explanation. For example, we might describe single-
neuron activity in terms of membrane currents, or by listing a set
of spike times: a natural reduction in the dimensionality that can
result from many possible combinations of currents (Golowasch
et al., 2002; Prinz et al., 2004). A mechanistic model (e.g.,
Hodgkin and Huxley, 1952) that demonstrates how spike times
emerge from currents connects the descriptions at the two levels
and, in addition, does so asymmetrically, as it does not claim to
be a mechanism by which currents emerge from spike times. By
bridging descriptions that each abstract different features to
different degrees, mechanistic explanations create a multile-
vel “mosaic unity” in neuroscience (Craver, 2007), in which
descriptions are grounded through their interconnections,
and more abstract features are grounded in their emergence
from less abstract counterparts (Oppenheim and Putnam,
1958; Craver, 2002, 2007; Bechtel, 2008; Kaplan and Bechtel,
2011).

In contrast, a normative explanation connects descriptions by
appealing to the ability of less abstract features to satisfy a descrip-
tion of more abstract goals. For example, the mammalian hypo-
thalamus could be described as maintaining body temperature like
a thermostat (Morrison and Nakamura, 2011; Tan and Knight,
2018) or as a circuit of interconnected neurons. A normative
model connects the two descriptions by explaining the negative
feedback loop in the circuit through its ability to achieve those
thermostatic functions. Because functions exist over a range of
levels, from cellular to behavioral or computational, we could
imagine a “multilevel” approach to understanding the mamma-
lian hypothalamus that in turn uses the goal of a negative
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feedback loop to explain the developmental processes that
establish hypothalamic connectivity. Like their mechanistic
counterparts, normative explanations establish links between
descriptions, which each have their own utility for different
problems by virtue of their unique abstractions.

Thus, the threefold division of explanatory labor in neuro-
science falls naturally into the different roles a model can play in
terms of levels of abstraction. Descriptive explanations define
abstractions of phenomena at different levels, while mechanis-
tic and normative explanations bridge levels of abstraction.
Descriptive models, rather than “mere” descriptions of phe-
nomena (as they are sometimes dismissed), are the necessary
foundation of both normative and mechanistic models. In turn,
mechanistic and normative explanations connect a description
at a “source” level to a description at a higher or lower “target”
level (Fig. 2). Each of the terms that represent the components of
mechanistic models and the constraints of normative models are
descriptive models at a lower level of abstraction, while those that
represent the emergent properties of mechanistic models and the
goals of normative models are descriptive models at a higher level
of abstraction. Given their multilevel nature, a dialogue between
descriptive, normative, and mechanistic models is needed for a
theoretical account of any neuroscientific phenomenon.

At what level of abstraction should a model be built?
As different abstractions trade-off advantages and disadvantages,
the selection of which abstraction to use is highly dependent on
the problem at hand (Herz et al., 2006). Current neuroscientific
practice generally attempts two approaches for selecting the
appropriate level of abstraction, which serve different purposes.
The first approach is to try to find as low a level as possible that
still includes experimentally supported details and accounts for
the phenomenon. For example, one might explain the phenom-
enon of associative memories using compartmental models of
pyramidal cell networks, including specific active conductances,
dendritic compartments, pharmacological effects on different
inputs arriving at different compartments and identifying the
consequences for learning and recall (Hasselmo, 1993). The mul-
tiplicity of parameters and variables used in this approach pro-
vides many details that can be matched to observable features of

a phenomenon and can capture unexpected properties that
emerge from their interaction. However, these details need to be
extensively calibrated to ensure the model is accurate, and can be
very sensitive to missing, degenerate, or improperly tuned pa-
rameters (Traub et al., 1991, 1999). The second approach is to
try to find the most abstract level that can still account for the
phenomenon. For example, we might instead appeal to the clas-
sic Hopfield network, in which units are binary (11, �1), con-
nections are symmetrical, and are updated using a very simple
asynchronous rule (Hopfield, 1982; Hertz et al., 1991). While
more abstract models sacrifice the ability to make predictions
about lower-level details, their insights are often more robust to
specific (e.g., unobserved) physiological details, and by reducing
a complicated system to a small number of effective parameters,
they allow for powerful analysis on the influences to the system
properties. Further, abstract models can provide conceptual ben-
efits, such as intuition for how the system works and the ability
to generalize to other systems that can be similarly abstracted
(Gilead et al., 2012, 2019; O’Leary et al., 2015).

Another important consideration is the ability of models at
different levels to interface with different experimental modal-
ities or scientific fields. Every measurement is itself an abstrac-
tion, in that it is a reduced description of the part of the universe
corresponding to the measurement (Chang, 2007b). For exam-
ple, fMRI measures blood flow across wide swaths of cortex but
abstracts away the interactions between individual neurons,
while silicon probes measure extracellular voltage but abstract
away intracellular processes, and calcium imaging measures neu-
ronal calcium levels, but abstracts away the electrophysiology of
neuronal spiking. All of these are discussed as “neural activity,”
but they likely reflect different aspects of learning, performance,
and dynamics. Moreover, subsequent processing abstracts these
signals even further, such as correlation (functional connectom-
ics) in fMRI, sorting voltage signals into putative cell “spiking”
from silicon probes, and treating calcium transients as “events”
from calcium imaging. The abstraction made by one measure-
ment device might lend itself to explanations at a given level, but
not others, and the measurements available are important con-
siderations when selecting which abstractions to make in our
models.

Figure 2. Interactions between three explanatory processes and levels of abstraction. Descriptive explanations define an idealized abstraction of specific aspects of a phenomenon for discus-
sion, measurement, and repeatability. Mechanistic explanations account for properties of a phenomenon by their emergence from less abstract phenomena, while normative explanations
account for those properties by appealing to their ability to perform more abstract goals.
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Similarly, models at different levels are often used by distinct
scientific fields or communities. The existence of a literature with
a rich body of relevant work can provide details and support for
components of a model outside of the immediate problem of in-
terest. Integrating theories and models across these different
fields can be particularly beneficial for scientific progress (Grim
et al., 2013; Wu et al., 2019); however, crossing levels can be a
sociological problem as well as a methodological one because dif-
ferent fields of study often use different languages and operate
under different conceptual frameworks.

In general, it is important that researchers spell out the
abstractions being made in their models, including their pur-
poses as well as their limitations. By being concrete about the
abstractions made, researchers can increase the reliability of their
theories. Importantly, as noted above, it is useful to acknowledge
not only the simplifications made about smaller-scale phenom-
ena, but also the simplifications made as to larger-scale interac-
tions that have been abstracted away from a theory.

Theory development and experimentation
Traditional views emphasize the use of experiments to test
proposed theories (Popper, 1959), and even consider an inter-
play in which theories suggest new experiments and unex-
pected experimental results reveal the need for new theories
(Laudan, 1978; Firestein, 2015). However, theories do not
arise fully formed but are developed over time through an
interaction with experimentation (Laudan, 1978; Hacking,
1983; Bechtel, 2013; Douglas, 2014; Firestein, 2015). We now
consider two crucial pieces of that dialogue: the domain of a
theory, or phenomena it is intended to pertain to, and a trans-
lation function, which specifies how it should relate to phe-
nomena in its domain. Experimentation plays two key roles in
relation to theory: (1) grounding model assumptions and (2)
assessing the quality of model-based explanations. We then
discuss an often underappreciated form of experimentation,
in which models themselves are the experimental subjects.
These modeling experiments allow us to explore the (some-
times hidden or unexpected) implications of a theory itself,
identify its underlying inconsistencies, and can be used to pre-
dict novel phenomena. Together, this reveals a picture in
which theory development is not relegated to simply propos-
ing theories to be tested, but instead entails a complex experi-
mental paradigm in which models play an active role in the
simultaneous development, assessment, and utilization of the-
ories within explicit conceptual frameworks.

Linking theory and phenomena
The domain of a theory is the set of phenomena that it purports to
explain (Mitchell et al., 1986; Redish, 1997; Kuhn, 2011, 2012).
The domain is therefore a set of data-imposed constraints, and
the theory should provide an explanation consistent with those
constraints. Theoretical studies should be explicit about what
phenomena do and do not lie in their intended domain. In
practice, nascent theories are often evaluated not only by their
ability to explain data in their proposed domain (Laudan, 1978;
Feyerabend, 1993) but also by their potential to expand beyond
the initial domain with further development (Lakatos, 1978).
For example, the theory that action potentials arise from volt-
age-dependent changes in ionic permeability (Hodgkin and
Huxley, 1952; Goldman and Morad, 1977; Katz, 1993; Hille,
2001) should apply to the domain of all action potentials in all
neurons. Early theories of action potential function identified volt-
age-gated sodium currents as the primary depolarizing component

and formalized their action in models that developed into the
Hodgkin–Huxley framework (Hodgkin and Huxley, 1952).
When some action potentials were later found to be inde-
pendent of sodium concentrations, it was straightforward to
incorporate other voltage-gated channels within the same
framework (Koch and Segev, 1989; Hille, 2001; Gerstner et
al., 2014).

By instantiating a theory in a specific structure (Rosenblueth
and Wiener, 1945; Stafford 2009), models play a key role in
connecting a theory to phenomena in its domain. However, no
model is directly comparable to experimental data by virtue of
its structure alone. As noted above, a model also consists of an
interpretation of how that structure relates to its target phe-
nomena (Weisberg, 2013). This interpretation is specified by a
translation function: a statement of how the model’s compo-
nents map onto its target phenomena. A translation function
may be as straightforward as “variable V represents the mem-
brane potential in millivolts,” but it can also be less constrained,
e.g., “variable V describes the slow changes in the membrane
potential and ignores all spiking activity.” In other cases, the
translation function can be complex, as parts of the model can
have a loose correspondence to general features of large classes
of data, and can represent highly abstract effective parameters
or qualitative behaviors. For example, the units in Hopfield’s
attractor network models (Hopfield, 1982; Hopfield and Tank,
1985; Hertz et al., 1991) are not meant to directly correspond to
measurable properties of biological neurons but are instead
intended to reflect qualitative features, namely, that neural pop-
ulations are “active” or not. In effect, the translation function
spells out the abstractions made by the model. Specifying the
translation function of a model is as important as defining its
structure (Weisberg, 2013). While these descriptions are often
provided for highly abstract models, models that describe finer
spatiotemporal scales (e.g., detailed compartmental models of
neurons) are often considered to be “biologically realistic” and
assume a simple or obvious translation function. However, it
is important to remember that these models are also abstrac-
tions, albeit at a different level, and a proper description of the
abstractions made will help clarify both the uses and the limi-
tations of such models. By specifying the intended correspon-
dence between model terms and phenomena, the translation
function operationalizes the concepts associated with those
terms in the theory (Bridgman, 1927; Chang, 2007a).

Experiments ground model assumptions
With a well-defined translation function in hand, we can con-
sider the ways in which models are informed by experimental
data. As outlined above, the components of descriptive, mecha-
nistic, and normative models are each based on a different set of
foundational assumptions. These assumptions are not generally
arbitrary but are informed by experimental observations and
results.

Descriptive models are founded on an assumed relation-
ship between variables, which is generally formulated to cap-
ture an observed regularity in experimental data. These initial
observations often rely on “exploratory” experiments, which
attempt to identify empirical regularities and the constructs
with which to describe them (Steinle, 1997). In specifying the
characteristic properties of a phenomenon, descriptive explana-
tions delineate the attributes that are expected to be replicable in
future experiments and play a foundational role in subsequent
mechanistic and normative models. This is extremely important
for the current replication controversy (Baker, 2016; Goodman
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et al., 2016; Fanelli, 2018; Redish et al., 2018). A recent National
Academy report (National Academies of Sciences and Medicine,
2019) characterizes replicability as the ability to obtain consistent
results across multiple studies, and contrasts it with reproducibil-
ity, defined as the ability to get the same results when applying
the same analyses to the same data. Several authors have sug-
gested that the replication crisis is indeed a crisis of theory devel-
opment, as it is the scientific claims (not data) that should be
replicable (Drugmonkey, 2018; Redish et al., 2018; Smaldino,
2019). We suggest that this crisis stems from three sources: (1)
a failure to define domains correctly, assuming that limited
observations correspond to a much larger range of phenom-
ena than they actually do; (2) a failure to formalize observa-
tions in adequate descriptive models (e.g., an overreliance on
correlation, or assumed simple relationships); and (3) a failure
to connect those descriptive models with mechanistic or nor-
mative models that integrate descriptions at different levels of
abstraction.

Mechanistic models are founded on a set of parts and interac-
tions that are assumed to be relevant to a target phenomenon.
The existence of candidate parts/interactions can be informed by
experimental observations, and their relevance (or irrelevance)
to a given target phenomenon is often derived from experimental
or natural interventions (Pearl, 2009). Once the decision is made
to include a part/interaction in a mechanistic model, its corre-
sponding terms can be parameterized by virtue of the descriptive
models at their source level of abstraction. For example, when
trying to explain the phenomenon of burst spiking in thalamo-
cortical neurons, we might observe the presence of a hyperpolar-
ization-activated current (Ih) which, when blocked, disrupts
burst spiking (McCormick and Pape, 1990). We can then cali-
brate the parameters used to model Ih with values acquired
through slice experiments.

Experimental data can also inform the founding assumptions
(goal/constraints) of normative models. For example, when try-
ing to explain the responses of visual neurons, we might parame-
terize the constraints of an efficient coding model with data from
retinal photoreceptors (Field and Rieke, 2002). As with mecha-
nistic models, these normative parameters rely on the descriptive
models we have for photoreceptor properties. However, ground-
ing an assumed function (e.g., “vision”) in experimental data
can be more challenging. This arises from a notable asymmetry
betweenmechanistic and normative approaches: while the founding
assumptions of a mechanistic model (parts/interactions) are less
abstract than their target phenomena, the founding assump-
tions of normative approaches (a function/goal) are generally
more abstract than the phenomenon they are used to explain.
This often results in normative approaches being termed “top-
down,” in contrast to “bottom-up” mechanistic modeling. In
practice, functions are often operationalized via performance
on a specified task, rendering them groundable in experimental
data. For example, the assumed goal of primate facial recogni-
tion areas is grounded in the change in facial recognition abil-
ities when those neural systems are manipulated or absent,
neural responses to facial stimuli, and in the coupling of those
areas with sensory and motor areas providing a behavioral cir-
cuit (Gross et al., 1969; Tsao et al., 2006; Grimaldi et al., 2016;
Moeller et al., 2017).

Experiments assess solution quality
As has been noted by many previous authors, we cannot defini-
tively “confirm” theories (Popper, 1959), nor can we definitively
test/falsify the validity of a theory in isolation (Lakatos, 1980;

Duhem, 1991). However, a theory’s utility does not require abso-
lute confidence in its validity, but only a track record of solving
problems in its domain. By instantiating theories in a model with
a well-defined translation function, we can assess the quality of
solutions proposed with a given theory by comparing the behav-
ior of those models to experimental observations.

In the case of descriptive models, model fitting can estimate
confidence intervals and goodness of fit for the best-fitting pa-
rameter values, and can even be used to quantitatively compare
candidate models to determine which can best explain experi-
mental data with the fewest parameters. A researcher might build
a mechanistic model with terms that correspond to the pro-
posed parts to see if they are able to reproduce features of
the data, or test the model’s ability to predict the effect of
experimental manipulations. Alternatively, a researcher can
hypothesize that the system is performing some function,
make a normative model that instantiates the goal, and see
if properties of the data match those expected from a system
optimizing that goal. In these “confirmatory” (theory-driven/hy-
pothesis-testing) experiments, models are used to apply existing
theories to account for observed phenomena, compare possible
instantiations of a theory, or even compare theories with overlap-
ping domains to see which better accounts for the phenomenon.
In each case, the assumptions of the model act as a hypothesis
and the degree of similarity between model and experimental
data are used to assess the sufficiency of a theory (and its specific
model instantiation) to account for a phenomenon.

However, the value of modeling is often in its ability to show
insufficiency of a theory/model to account for experimental data.
Rather than invalidating the theory, this can often prompt
updates to the theory or a search for yet-unobserved relevant
phenomena. For example, early models of head-direction tuning
found that a mechanism based on attractor networks required
recurrent connections not supported by anatomic data (Redish
et al., 1996). This incompatibility led to subsequent analyses
which found that the tuning curves were more complicated than
originally described, matching those seen in the model without
the recurrent connections (Blair et al., 1997). Similarly, the use-
fulness of normative models often lies in their ability to identify
when a system is performing suboptimally (Parker and Smith,
1990). Such a finding can provide additional information about
unexpected functions or constraints. When there is a mismatch
between a normative model and observed phenomena, one could
hypothesize that the agent is optimizing a different goal (Fehr
and Schmidt, 1999; Binmore, 2005), new constraints that limit
the processes available (Simon, 1972; Mullainathan, 2002), his-
torical processes that could limit the optimization itself (Gould
and Lewontin, 1979; Gould, 1983), or computational processes
that limit the calculations available to the system (Nadel, 1994;
Schacter, 2001; Redish, 2013; Webb et al., 2021). For instance,
several studies have found that foraging subjects tend to remain
at reward sites longer than needed (Camerer, 1997; Nonacs,
2001; Carter and Redish, 2016) and accept longer-delay offers
than would be expected to maximize total reward (Wikenheiser
et al., 2013; Sweis et al., 2018a,b; Schmidt et al., 2019). However,
optimality could be restored by assuming an additional factor in
the cost function (Simon, 1972) subsequently characterized as
“regret”: an increased cost of making a mistake of one’s own
agency compared with equivalently poor outcomes that were
not because of recognizable mistakes (Zeelenberg et al., 2000;
Schmidt et al., 2005; Wikenheiser et al., 2013; Steiner and Redish,
2014; Sweis et al., 2018b, Coricelli et al., 2005). Similarly, Fehr
and colleagues have found that normative explanations of
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behavior in a multiplayer game require an additional com-
ponent with information about one’s companion’s success
in addition to one’s own, to account for the observed behav-
ior (Fehr and Schmidt, 1999; Binmore, 2005; Fehr and
Krajbich, 2014).

Modeling experiments explore theory implications
Confirmatory experiments can even be conducted without
direct comparison to data, as phenomena at both the target
and source levels of abstraction can be pure theoretical entities.
Similar to their benchtop counterparts, we can treat different pa-
rameters or model instantiations as independent variables in
the experiment, and test their sufficiency to account for different
aspects of the phenomenon as the dependent variables (Omar et
al., 2014; Gerkin et al., 2018). One can use these models as
experiments to test the feasibility of theoretical claims in tractable
idealized systems. For example, Hopfield’s attractor network
models (Hopfield, 1982; Hopfield and Tank, 1985) provided
strong support for Hebb’s theory (Hebb, 1949) that increased
connectivity from coactive firing could create associative mem-
ory, by showing that strong connections between simple neuron-
like entities were sufficient to produce cell assemblies that could
be accessed through a pattern-completion process (Hertz et al.,
1991).

Like their physical analogues (e.g., the 6-OHDA rat or the
MPTP monkey), models can be used for exploratory experi-
ments as well. Exploration of the Hopfield model (Kohonen,
1980, 1984; Hopfield, 1982; Hopfield and Tank, 1985) revealed
novel properties of categorization, tuning curves, and pattern
completion in the neuron-like entities, which were later identi-
fied experimentally (Rosch, 1983; Lakoff, 1990; Obermayer et
al., 1992; Swindale and Bauer, 1998; Freedman et al., 2001,
2003; Obermayer and Sejnowski, 2001; Swindale, 2004; Wills et
al., 2005; Yang and Shadlen, 2007; Colgin et al., 2010; de
Villers-Sidani and Merzenich, 2011; Jezek et al., 2011; Nahum
et al., 2013; Kelemen and Fenton, 2016). Exploratory modeling
experiments can instantiate idealized aspects of a theory to help
build intuition for the theory itself. Hopfield’s model and its
subsequent derivatives have provided researchers with a deeper
understanding of how memories can be accessed by content
through pattern-completion processes and given rise to con-
cepts, such as “basins of attraction” (Hopfield, 1982; Hertz et
al., 1991). These computational discoveries can help build
understanding of the theory, and lead to predictions and ideas
for new experiments.

Modeling experiments are especially useful
in the context of theory development (Guest
and Martin, 2020). When a phenomenon can-
not be readily explained using an existing
theory, assumptions can be made as the basis
of a modeling experiment. The behavior of
this model can then be used to evaluate the
sufficiency of these assumptions to account
for the phenomenon. Often, these modeling
experiments precede a well-formed theory,
and a theorist will perform numerous experi-
ments with different models in the process of
developing a theory (van Rooij and Baggio,
2020). Over time, specific successful model
formulations can become closely associated
with the theory and develop into its canonical
instantiations that make the theory applicable
to a wider range of problems and give more
precise solutions.

Box 2: What makes a good neuroscientific theory?
What makes a good model?

Be specific. A theory should be specific, particularly in
terms of what the theory is attempting to explain and the
strategies for doing so. The theory should define what
problems it is trying to solve, and provide the criteria for
an adequate solution. It is important to define the descrip-
tive, mechanistic, and normative components of the
theory and the rationale behind their selection.
Identify the domain. The theory should define the set of
questions and problems that it is trying to solve.
Importantly, this definition should be a reasonable space
of phenomena such that it is easy for someone to deter-
mine whether a new experiment falls within the domain
of the theory or not.
Specify which aspects of the theory are instantiated in
each model, and how. As shown in Table 1, models
instantiate theories, enabling them to be compared with
data. It is important to specify which aspects of the theory
are instantiated in the model and how those aspects are
instantiated. It is also important to identify how those
aspects were chosen, whether from experimental measure-
ments, theoretical assumptions, or best-fit solutions (or
arbitrarily).
Specify the translation function for all models. All mod-
els require translation to be compared with data. While
sometimes those translations will be straightforward, they
usually are not. However, even in situations where the
translation is straightforward, being explicit about the
translation function will make clear what data it explains
and what experimental predictions it makes.
Identify the abstractions. Models at all levels can be use-
ful, but to be useful, one must identify what aspects of the
world are being abstracted away. It is important to include
both abstractions of low-level phenomena and what addi-
tional (potentially higher-level) complexities are being
ignored.
Define which aspects of the research are exploratory
and which are confirmatory. The fact that models are a
form of experiment creates a way forward for theoretical
grant proposals. For example, a researcher can propose to
build a model that crosses levels to address the question

Figure 3. How the various components discussed in this manuscript interact. The domain of a theory is the set
of phenomena which it purports to explain. Theories are instantiated in models, which are an abstraction of phe-
nomena in the domain, as specified by a translation function. By constraining the form solutions can take, a con-
ceptual framework defines a way of looking at a problem, within which models and theories can be proposed. A
given model can instantiate more than one theory, and a theory can be instantiated by more than one model.
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of theoretical viability. Such a proposal may have prelimi-
nary data to show that one can build models at each level,
even if the researcher has not yet put those levels together.
Similarly, a grant proposal can define the domain, even if
the literature review is incomplete. One can also identify
how one is going to explore the parameter space of a set
of models to determine how those parameters affect phe-
nomena across levels.
By being explicit about the scientific question being
addressed, about the assumptions of the theory, the do-
main the theory is purporting to address, and the process
of building and testing models underlying that theory,
grant proposals could be viable even if the theory itself
remains incomplete. We call on funding agencies and
reviewers to recognize that theory is the foundation of
any science, and that construction of rigorous theory and
systematic computational modeling are time-consuming
processes that require dedicated personnel with extensive
training. Our hope is that the framework and associated
language outlined in this document can be used to specify
deliverables that can be understood by both funders and
investigators.

In conclusion, a scientific theory is a thinking tool: a set of
ideas used to solve specific problems. We can think of theoretical
neuroscience as a field which approaches problems in neuro-
science with the following problem-solving methodology: theo-
ries exist within conceptual frameworks and are instantiated in
models which, by virtue of a translation function, can be used to
assess a theory’s ability to account for phenomena in the theory’s
domain or explore its further implications (Fig. 3).

We identified three kinds of explanations that play distinct
roles in this process: those in which descriptive theories and
models are used to define the abstractions by which we describe
a phenomenon; those in which mechanistic theories and models
are used to explain phenomena in terms of lower-level parts and
their interactions; and those in which normative theories and
models are used to explain phenomena in terms of a function at
a higher level of abstraction.

These considerations lead to a more concrete view of theory
in neuroscience under the pragmatic view: a theory is a set of
assumptions available to be instantiated in models, whose ade-
quacy for problems in their domain has been vetted via experi-
mentation, and with a well-established translation function that
defines their connection to phenomena. Over time and through
the development of canonical model formulations, theories
become more rigorous, such that researchers agree on how they
should be implemented to explain specific domains. A
theory in this sense is not a formal set of laws, but a contin-
uously developing body of canonical models and model-
phenomenon correspondences, bound together partly by
history and partly by shared problem-solving methods and
standards (Bechtel, 1993).

What recommendations can we take away from this perspec-
tive? First and foremost, scientists should be explicit about the
underlying components of their theory. Reliability of theoretical
work depends on being explicit about the domain that the theory
purports to cover, the abstractions used (what has been ignored
and left out), and the translation function to connect the theory
to actual measurements. Furthermore, thinking of the pragmatic
aspects suggests being explicit about what problems the work
proposes to solve, what conceptual frameworks the theory fits in,
and what the founding assumptions of the models are.

Finally, it is interesting to consider that we might apply our
taxonomy to our own framework. The concept that “the ultimate
goal of a theory is to provide tools that allow one to better
explain and control one’s environment” is a normative theory of
the goal of scientific theories; the concept that “models instanti-
ate theories and allow one to test their viability and their rela-
tionship to phenomena” is a mechanistic theory of how those
theories achieve that goal; and the concept that “theories live
within a framework that a community applies to them” is a de-
scriptive theory of theories. One could imagine a metascientific
research program which studies the available phenomena (e.g.,
the scientific literature) to test and further develop those theories,
and even the use of models of the scientific process itself (e.g.,
Devezer et al., 2019). The benefits of such a research program
could prove as impactful for scientific practice as other theories
have proven for manipulation of phenomena in their domain.
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