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Parental input is considered a key predictor of language achievement during the first years of life, yet relatively few studies
have assessed the effects of parental language input and parent–infant interactions on early brain development. We examined
the relationship between measures of parent and child language, obtained from naturalistic home recordings at child ages 6,
10, 14, 18, and 24months, and estimates of white matter myelination, derived from quantitative MRI at age 2 years
(mean = 26.30months, SD = 1.62, N= 22). Analysis of the white matter focused on dorsal pathways associated with expressive
language development and long-term language ability, namely, the left arcuate fasciculus (AF) and superior longitudinal fasci-
culus (SLF). Frequency of parent–infant conversational turns (CT) uniquely predicted myelin density estimates in both the
AF and SLF. Moreover, the effect of CT remained significant while controlling for total adult speech and child speech-related
utterances, suggesting a specific role for interactive language experience, rather than simply speech exposure or production.
An exploratory analysis of 18 additional tracts, including the right AF and SLF, indicated a high degree of anatomic specific-
ity. Longitudinal analyses of parent and child language variables indicated an effect of CT as early as 6months of age, as well
as an ongoing effect over infancy. Together, these results link parent–infant conversational turns to white matter myelination
at age 2 years, and suggest that early, interactive experiences with language uniquely contribute to the development of white
matter associated with long-term language ability.

Key words: conversational turns; development; early childhood; infancy; language environment; white matter

Significance Statement

Children’s earliest experiences with language are thought to have profound and lasting developmental effects. Recent studies suggest
that intervention can increase the quality of parental language input and improve children’s learning outcomes. However, important
questions remain about the optimal timing of intervention, and the relationship between specific aspects of language experience
and brain development. We report that parent–infant turn-taking during home language interactions correlates with myelination
of language related white matter pathways through age 2 years. Effects were independent of total speech exposure and infant vocal-
izations and evident starting at 6months of age, suggesting that structured language interactions throughout infancy may uniquely
support the ongoing development of brain systems critical to long-term language ability.

Introduction
Early language exposure varies widely in quantity, content,
and interactional style, and this variation has been linked to
multiple aspects of children’s linguistic and cognitive devel-
opment. Beyond the quantity and linguistic quality of home
language input (for recent review, see Rowe and Snow, 2020;
Rowe and Weisleder, 2020), social-interactional variables are
increasingly viewed as important predictors of early and longer-
term language achievement (Tamis-LeMonda and Bornstein,
2002; Hirsh-Pasek et al., 2015; Gilkerson et al., 2017, 2018; Tamis-
LeMonda et al., 2019), as well as language-related brain structure
and function in childhood (Romeo et al., 2018a, b, 2021).

A hallmark of supportive social interaction is the presence of
conversational contingency, meaning that speech is on-topic and
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contextually relevant, with limited response delay across speakers
(Bornstein et al., 2008; Tamis-LeMonda et al., 2014; Masek et al.,
2021). Contingency encourages shared and sustained attention
(Masek et al., 2021), and has been shown to provoke higher-qual-
ity output from learners, including vocalizations that are more
consistent with native phonology during adult–infant interactions
(Goldstein et al., 2003; Goldstein and Schwade, 2008; Warlaumont
et al., 2014). Moreover, speakers adjust and coordinate their out-
put during contingent interactions (Smith and Trainor, 2008;
Huttenlocher et al., 2010; Warlaumont et al., 2014; Abney et al.,
2017; Albert et al., 2018; Elmlinger et al., 2019), which provides a
more effective language stimulus, optimized to the learner’s needs
and ability level, in real time.

Conversational turn counts are often used to characterize the
quality of verbal interactions based on the number of temporally
contingent, back-and-forth exchanges between speakers (Hirsh-
Pasek et al., 2015; Gilkerson et al., 2018). Conversational turns
recorded during naturalistic parent–child interactions have been
found to correlate with vocabulary learning in early childhood
(Zimmerman et al., 2009; Gilkerson et al., 2017; Donnelly and Kidd,
2021), and to predict measures of cognitive and linguistic ability
into adolescence (Gilkerson et al., 2018). Moreover, conversa-
tional turn counts have been shown to correlate with struc-
tural and functional measures of language-related brain
development in childhood, from 4 to 6 years (Romeo et al.,
2018a, b, 2021).

Despite a wealth of behavioral research, studies relating pa-
rental input and parent–child interactions to brain development
before age 3 are still relatively scarce. Given that the first 2 years
of life are marked by considerable growth in language-related
abilities, as well as ongoing white matter maturation and exten-
sive refinement of local cortical architecture (Kostovi�c et al.,
2019), research targeting this period is especially needed. To help
fill this gap, the current study examines the relationship between
white matter myelination at 2 years of age and longitudinal meas-
ures of parental input, child output, and parent–child interac-
tions from 6 to 24months of age. Naturalistic home recordings
were used to estimate to total speech exposure, or adult word
counts (AWC), child-directed speech (CDS), child speech output
(CS), and parent child conversational turns (CT) when children
were 6, 10, 14, 18, and 24months old. Macro-molecular proton
fraction (MPF) mapping (Yarnykh, 2012, 2016) was used to
obtain quantitative estimates of myelin density in the same par-
ticipants at 2 years of age.

Our first aim was to test effects of parent and child language
on dorsal language pathways associated with language compre-
hension and production, namely, the left arcuate fasciculus (AF)
and superior longitudinal fasciculus (SLF). The dorsal language
system has long been associated with speech production and sen-
sory-motor integration (Hickok and Poeppel, 2007; Hickok,
2012; Skeide and Friederici, 2016), receptive and expressive lan-
guage skills in infants and toddlers (Salvan et al., 2017; Girault et
al., 2019; Sket et al., 2019), and phonological awareness and lin-
guistic processing in childhood (Lebel and Beaulieu, 2009;
Saygin et al., 2013; Skeide et al., 2016; Romeo et al., 2018b; Su et
al., 2018). Moreover, the organization of these white matter path-
ways has been found to correlate with conversational turn counts
in older children, and to mediate the association between conver-
sational turns and language skills at 4-6 years of age (Romeo et
al., 2018b). After examining these pathways, we conducted an ex-
ploratory analysis that included the right hemisphere AF and
SLF, as well as 16 additional projection, association, and com-
missural tracts (Mori et al., 2006).

The studies cited above used diffusion imaging to obtain met-
rics, such as fractional anisotropy (FA), which are sensitive to
multiple aspects of the underlying tissue organization (Le Bihan,
1991; Beaulieu, 2002; Alexander et al., 2007, 2019). Validation
studies suggest that diffusion-based metrics are often only mod-
estly or moderately correlated with myelin content (Mancini et
al., 2020; Lazari and Lipp, 2021). The current study therefore
combines diffusion imaging with quantitative MPF map-
ping, to more specifically probe myelin-related tissue prop-
erties. MPF is sensitive to changes in myelin content within
both gray and white matter (Khodanovich et al., 2017, 2019;
Corrigan et al., 2021; Kisel et al., 2022), and validation stud-
ies have demonstrated a strong linear relationship between
MPF and myelin density estimates obtained from histologic
staining (Underhill et al., 2011).

The current sample was drawn from a larger intervention
study (Ferjan Ramírez et al., 2019, 2020), which manipulated pa-
rental language input from 6 to 18months. In that study, the
quantity of parent–child conversational turns, but not total adult
words in the environment, increased during the intervention pe-
riod, and predicted language outcomes in the second year of life
(Ferjan Ramírez et al., 2019, 2020). Language input variables and
child language abilities are frequently interrelated over develop-
ment (Rowe, 2012; Rowe et al., 2012; Bornstein et al., 2016;
Tamis-LeMonda et al., 2019; Donnelly and Kidd, 2021), and so
the current sample provides a unique opportunity to assess the
relative effects of specific language variables over the first 2 years
of life.

Materials and Methods
Participants. Seventy-nine families were recruited through the

University of Washington Subject Pool as part of a previously pub-
lished home language intervention study (Ferjan Ramírez et al.,
2019, 2020). Criteria for inclusion were full-term birth and normal
birth weight (6-10 lb), no birth or postnatal complications, and English as
the sole language spoken at home. The Hollingshead Index (Hollingshead,
1975) was used to create a socio-economic status (SES) score based on pa-
rental occupation and formal education level. SES ranged from 30 to 66
(mean=47.82, SD=10.84) in the current sample (i.e., working- to upper-
middle class).

All families provided informed consent during an orientation session
when children were 6months old. After completing the intervention
study, families in both the intervention and control groups were invited
to return for a follow-up MRI session when children were ;2 years old
(mean= 26.30months, SD=1.62). Fifty-one families returned and com-
pleted at least a partial MRI scan (MRI sessions were ended if children
became restless before completing the full set of scans). Nineteen chil-
dren completed all structural scans with usable data, and 3 additional
children completed all but the diffusion MRI scan with usable data
(details on MRI data quality assurance and subject exclusions are given
below). In total, 22 children (14 female) were included in the current
analysis. Five were members of the control group, while the rest had par-
ticipated in the home language intervention. Since the goal of the current
study was to examine the correlation between home language experience
and markers of white matter myelination at 2 years of age, data were ana-
lyzed for the whole available sample as a single group. Behavioral analy-
sis of the larger dataset is reported in a separate set of publications
(Ferjan Ramírez et al., 2019, 2020).

Language environment and child language measures. The home
Language Environment Analysis System (LENA Pro version 3.4.0,
LENA 2015) was used to collect naturalistic first-person recordings from
all families over 2 weekend days when children were 6, 10, 14, 18, and 24
months old. Parent and child language variables were manually coded
from the LENA recordings by trained research assistants, following pro-
cedures outlined previously (Ramírez-Esparza et al., 2014, 2017a,b;
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Ferjan Ramírez et al., 2019, 2020, 2021), and summarized below.
Although the LENA software package can be used to obtain auto-
mated counts of child vocalizations and parent-child conversational
turns, prior studies suggest that these estimates are susceptible to
error and bias because of factors such as overlapping speech and
noise in the recordings (Gilkerson and Richards, 2008; Gilkerson et
al., 2017; Bulgarelli and Bergelson, 2020; Cristia et al., 2020, 2021;
Ferjan Ramírez et al., 2021). We therefore opted to use manually
coded measures. LENA’s automatic AWC measure was used for the
purposes of coding interval selection and to control for ambient
speech exposure in statistical models, as described below.

Each family’s two daily recordings were first preprocessed using the
LENA Advanced Data Extractor Tool, and custom software was written
to identify 50 unique 30 s intervals per day containing the highest daily
AWC, spaced at least 3min apart. This step ensured that all selected
intervals contained enough language data for analysis and excluded
uninformative periods, such as infant naps. In total, 100 30 s intervals
were identified per participant at each age. Coders then tabulated the
percentage of intervals containing child speech or speech-like vocaliza-
tions (CS) and/or child-directed speech (CDS) from adults, and the total
number of parent–child conversational turns (CT) across all intervals.
Intraclass correlations were calculated using a training file from
Ramírez-Esparza et al. (2014) to assess intercoder reliability (see also
Shrout and Fleiss, 1979; Ramírez-Esparza et al., 2017a,b). Mean intra-
class correlation coefficients ranged from 0.93 and 0.98. Exact variable
definitions used by the coders are given in Table 1. All participants had
usable LENA recordings at all time points, from 6 to 24months.

All families also completed the MacArthur–Bates Communicative
Development Inventory, Words and Sentences form (Fenson et al.,
1994). Measures of child productive vocabulary and the mean length of
a child’s three longest utterances (M3L) at 24months were derived from
the inventory and used to assess child language skill.

MRI acquisition protocol. All data were acquired using a 3.0 T
Philips Ingenia MRI system with a 32-channel head coil while chil-
dren were in natural sleep. High resolution T1-weighted images were
acquired using a multiecho MPRAGE sequence with FOV= 230�
230� 180, acquisition voxel size 1.0� 1.0� 1.0 mm3, reconstructed
voxel size 0.5� 0.5� 0.5 mm3, TR/TI/TE1/TE2=13/1200/3.7/9.7ms, shot
interval 2250ms, and flip angle=8°. T1-weighted images were used as a
common reference space for later anatomically guided analysis of MPF
maps and of diffusion-weighted images, as described below.

A fast 3D protocol was implemented for MPF mapping, according to
the single-point synthetic reference method (Yarnykh, 2012, 2016), includ-
ing three spoiled gradient-echo sequences with magnetization transfer
(TR=31ms, flip angle=8°), proton-density (TR=21ms, flip angle=4°),
and T1 (TR=21ms, flip angle=25°) contrast weightings. Off-resonance sat-
uration in the magnetization transfer-weighted sequence was applied at the
offset frequency 4kHz with effective flip angle=430° and pulse duration
7ms. All images were obtained in the sagittal plane with dual-echo readout
(TE1/TE2=4.9ms/10.0ms), FOV=240� 240� 200mm3, and actual voxel
size of 1.25� 1.25� 1.24 mm3 interpolated to 0.625� 0.625� 0.620 mm3.
Actual flip-angle imaging B1 maps (Yarnykh, 2007) (TR1/TR2/TE= 60/240/
4.8ms, flip angle=60°, voxel size 2.5� 5.0� 5.0 mm3) were acquired in the
same geometry and reconstructed with 0.625� 0.625� 0.620 mm3 voxel
size.

Diffusion-weighted data were acquired using a single-shot DWI-EPI
sequence with FOV=230� 230� 146, acquisition voxel size 1.8� 1.8� 1.9
mm3, reconstructed voxel size 1.4� 1.4� 1.9 mm3, TR/TE=11926/97ms,
flip angle=90°. Each diffusion scan included 6 non–diffusion-weighted
(b=0) volumes and 64 diffusion-weighted volumes acquired with a b-value
of 2000 s/mm2 (50 noncollinear gradient directions) or 800 s/mm2 (12 addi-
tional noncollinear gradient directions). An additional set of 6 non–diffu-
sion-weighted volumes were acquired using the same parameters but a
reversed phase encoding direction (posterior-anterior), for use in correcting
EPI distortions (Andersson et al., 2003), as described below.

MPF mapping. MPF maps were reconstructed according to a single-
point synthetic reference algorithm (Yarnykh, 2016) with correction of
B1 field nonuniformity using custom-written C-language software and
previously determined constraints for the nonadjustable two-pool model

parameters (Yarnykh, 2012); software for reconstruction of MPF maps is
available at https://www.macromolecularmri.org. Before map reconstruc-
tion, individual echo images in each dataset were averaged to increase
SNR (Helms and Dechent, 2009). Rigid-body registration of the compo-
nent image volumes was performed using the FLIRT toolbox of the FSL
software package (Smith, 2002). Resulting MPF maps were then aligned to
each subject’s own T1-weighted anatomic image, again using rigid body
registration. For visualization purposes, a study-specific template was con-
structed using the “buildtemplateparallel” function of the Advanced
Normalization Tools software package (version 2.2.0).

Quality assurance for the T1-weighted anatomic images and the
source images used to construct the MPF maps was performed as fol-
lows: One operator first rated all of the images using a 3 point scale (0 =
severe artifacts precluding further usage; 1 = minor artifacts present but
further processing can be performed; and 2 = no problems with image
quality). Datasets containing any image with a quality grade of 0 were
excluded from further analysis. After MPF map reconstruction, two
operators performed consensus reviews of MPF maps for the presence
of residual artifacts. In total, 4 participants were excluded based on qual-
ity review. Three additional participants were found to have minor arti-
facts in one or more images that did not preclude further analysis. The
final MPF sample size (N= 22) reflects the participants who passed qual-
ity assessment.

Diffusion MRI analysis. Diffusion data preprocessing was conducted
using the FSL tools (version 6.0.1) for motion and eddy current correction
(FSL eddy) (Andersson and Sotiropoulos, 2016) and brain extraction (FSL
BET) (Smith, 2002). Quality assurance of the raw diffusion-weighted and
B0 images was first performed by an operator using the same 3 point scale
that was used to assess the T1-weighted images and the MPF source
images (0 = severe artifacts precluding further usage; 1 = minor artifacts
present but further processing can be performed; and 2 = no problems
with image quality). Datasets containing any image with a quality grade of
0 were excluded from further preprocessing and analysis. The final diffu-
sion MRI sample size (N=19) reflects the participants who passed quality
assessment.

After quality assurance, diffusion-weighted volumes were first aligned
to an average of the non–diffusion-weighted volumes in each scan using
rigid body registration (SPM version 12) (Ashburner and Friston, 1997).
Volumes were next aligned to the subject’s own T1-weighted anatomical
image, again using rigid body registration. Diffusion gradients were
adjusted to account for transformations applied during image registration
and motion correction (Leemans and Jones, 2009).

Additional processing was performed using the MRtrix3 software
package (Tournier et al., 2019). Single-tissue constrained spherical decon-
volution (Tournier et al., 2004) was used to estimate the single-fiber
response function within white matter using the b=0 and 2000 s/mm2

volumes (FA cutoff: 0.8, lmax=4). Probabilistic fiber tracking was then
conducted using the iFOD2 algorithm (Tournier et al., 2010), with
500,000 initial streamlines. The resulting whole-brain fiber estimates were
segmented using the Automated Fiber Quantification software package
(AFQ, https://github.com/yeatmanlab/AFQ) (Yeatman et al., 2012b) to
identify specific white matter fiber tracts in subject native space.

Table 1. Parent and child language variables measured from 6 to 24 monthsa

Variable
name Variable definition

CDS Total number of intervals (of 100) in which an adult spoke directly to the
child

CS Total number of intervals (of 100) in which children either repeated or inde-
pendently produced one or more of the following: fully resonant vowels,
consonant–vowel syllables, syllable strings, speech utterances intermixed
with nonspeech, word-like strings, single words, or word strings

CT Total number of adult utterances directed to the child followed within 5 s by
a child utterance directed to the adult, or vice versa; counted in discrete
pairs (child-to-parent = 1 turn; parent-to-child-to-parent = 1 turn; child-
to-parent-to-child-to-parent = 2 turns)

aVariable definitions used in manual coding of the Language Environment Analysis System (LENA) recordings
at each age.
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Analysis of MPF profiles. For all participants who completed the dif-
fusion MRI scans (N=19), MPF values were extracted for each fiber
tract and summarized as a weighted-mean across fiber nodes at the tract
core (Yeatman et al., 2012b). For participants who did not complete the
diffusion MRI scans (N=3), tracts were identified as follows: MPF maps
were first aligned to a standard-space template brain and probabilistic
white matter labels were used to define initial candidate tracts (Mori et
al., 2006). Tract locations were then visually confirmed relative to the
same waypoint ROIs used in AFQ, after transformation into subject
native space. Finally, the core of each tract was defined in 3D coordinates
using the MATLAB Image Processing Toolbox (using the bwmorph3
and bwconncomp functions). All analyses were replicated with and with-
out these 3 participants.

Tract profiles were first visualized by extracting 100 evenly
spaced nodes along each tract (Yeatman et al., 2012b). Mean MPF
values were then calculated for each tract by averaging the middle 80%
of locations between cortical endpoints. This approach helps to minimize
the influence of bending/branching fibers near cortical termination points,
and also helps to avoid errors related to partial volume effects near the
white/gray matter border. A study in older children (Romeo et al., 2018b)
previously reported effects that were specific to the anterior section of the
left AF and SLF. Therefore, tracts were also subdivided into evenly sized
“posterior” and “anterior” portions (nodes 11:50 and 51:90), and mean
MPF values were tested within these subregions. Finally, a more fine-
grained analysis was conducted along each tract by extracting 20 sum-
mary locations per subject and tract. Output from AFQ was trans-
formed such that all tract profiles were oriented with nodes increasing
from right to left, posterior to anterior, and inferior to superior, to sim-
plify visualization of tract profiles.

Experimental design and statistical analysis. Statistical analyses were
performed in MATLAB (R2020a) using custom software and the
MathWorks Statistics and Machine Learning toolbox. Bivariate correla-
tions (Pearson’s r, two-tailed test of significance) with were first tested
for each language variable (AWC, CDS, CS, and CT) and each white
matter ROI (left posterior AF; left anterior AF; left posterior SLF; left an-
terior SLF). Simple effects of SES and sex were also tested, and found to
be nonsignificant (all p. 0.1), so these variables were not included
in further analyses. After testing the bivariate effects, MPF was
regressed on CT while controlling for environment-level (CDS,

AWC) and child-level (CS) variables, to
test whether significant effects of CT
might be explained more simply in terms
of greater overall speech exposure (CDS,
AWC) or greater child “talkativeness”
(CS). Finally, longitudinal mixed models
were used to estimate individual growth in
CT from 6 to 24months. Visualization of
raw CT scores suggested a nonlinear effect
of time, and model comparisons suggested
that including both age and age2 effects
provided a better fit than including only a
linear effect of age. Age was centered at
6 months, and restricted maximum likeli-
hood estimation was used for the final
model fits. Individual intercept, slope
(age), and acceleration (age2) terms were
then used to predict 26-month MPF.

In older children (4-6 years) (Romeo et al.,
2018b), correlations with child language and
parent–child conversational turns have been
found to colocalize, and white matter organiza-
tion has been shown to account for the relation-
ship between conversational experience and
child language. Correlations were therefore
tested for MPF and child language skill (child
productive vocabulary and mean utterance
length, M3L), to assess whether similar relation-
ships might exist in the current sample.

Effects were first tested using mean MPF
values calculated for the anterior and poste-

rior subregions of each tract, and then at each of the more finely
sampled node locations. For the node-wise analysis, results were
corrected for multiple comparisons along each tract using a permu-
tation-based approach (Nichols and Holmes, 2002) to account for
spatial similarity within individual white matter tracts (Yeatman et
al., 2012b). To evaluate anatomical specificity, effects were tested in
the same manner within right hemisphere AF and SLF tracts, as well
as within 16 additional projection, association, and commissural
tracts identified as part of the automated tract segmentation in AFQ
(Mori et al., 2006; Yeatman et al., 2012b).

For the full sample (N = 22), given a = 0.05 and 1 – b = 0.8/0.7,
the current study was powered to detect an effect size of 0.39/0.31
in a regression with a single predictor, and an effect size of 0.617/
0.497 in a multiple regression with three predictors. A prior study
examining the effect of conversational turns in 4- to 6-year-old
children reported effects sizes for the FA in the left AF and SLF
that ranged from 0.42 to 0.51 (Romeo et al., 2018b). We therefore
expected that the current study should be adequately powered to
detect the hypothesized relationships.

Code accessibility. Software for white matter tract segmentation is
available at https://github.com/yeatmanlab/AFQ. Software for recon-
struction of MPF maps is available at https://www.macromolecularmri.
org/. Custom software written for statistical analysis and figure creation
is available at https://github.com/libbyhuber/JN2023. All additional soft-
ware used for image reconstruction and analysis is available from the
authors by request.

Results
Figure 1 shows example tractography-based reconstructions for
the left AF and SLF, and sample mean MPF maps. Table 2 shows
bivariate correlations for mean MPF in each white matter ROI
versus AWC, CDS, CS, and CT at each age. Significant effects
(p, 0.05) were observed for CDS and CT at all ages tested from
6 to 18 months, although no significant correlations were
observed at 24 months, the age closest in time to the MRI
scan (mean=26.30months, SD=1.62 months, N= 22). After

Figure 1. Anatomical ROIs and MPF estimates. Top left, Average macro-molecular proton fraction (MPF) values throughout
the gray and white matter, visualized in group template space. Top right, Example tractography-based reconstructions of the
left superior longitudinal fasciculus (SLF) and left arcuate fasciculus (AF). Bottom, Individual MPF estimates are plotted at each
sampled location along the SLF and arcuate, for all participants. Dashed lines indicate the boundaries of the posterior (left) and
anterior (right) ROIs for each tract. Tract profiles are visualized with left/anterior/superior (L/A/S) coordinates increasing from
left-to-right in the plots.
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correction for multiple comparisons across language variables
and white matter ROIs, the effect of CT at 18months remained
significant for left anterior arcuate. Tract profiles for the left AF
and SLF, and bivariate correlations with 18 month CT, are plotted
in Figure 2. The effect of 18 month CT remained significant while
controlling for concurrent (18 month) AWC (CT partial r=0.50,
p=0.0023; AWC partial r=0.12, p=0.40), CDS (CT partial
r=0.50, p=0.025; CDS partial r=0.0012, p=0.996), and CS (CT
partial r=0.49, p=0.0052; CS partial r=0.034, p=0.83), consist-
ent with a specific effect of CT, rather than overall speech expo-
sure (AWC), directed speech input (CDS), or child output (CS).

An exploratory analysis of 18 additional white matter tracts
identified as part of the AFQ pipeline (Mori et al., 2006;
Yeatman et al., 2012b), including the right hemisphere AF and
SLF, revealed no other significant correlations with 18 month
CT. Examination of individual nodes showed small clusters of
significant effects for 6 and 10 month CT within the left and
right inferior longitudinal fasciculus (ILF) and inferior frontal
occipital fasciculus (IFOF). Additionally, negative correlations
in a small number of nodes were observed in the ILF and
IFOF for CS at 6 and 18months and AWC at 6 and 10months.
These effects were not significant after correcting for multiple
comparisons across language measures, however.

As shown in Table 2, CT effects were strongest at 18months,
although comparable effects were observed in the left anterior ar-
cuate across all ages. Individual growth estimates obtained from
a linear mixed model showed a significant correlation between

26 month MPF and linear growth in CT from 6 to 24months
(r(20) = 0.70, p, 0.001), as well as between 26 month MPF and
change in CT growth over the same period (age2; r(20) = –0.59,
p = 0.0040). In other words, greater initial growth in CT from
6months predicted higher MPF at 26months. To further exam-
ine the effect of growth in CT, individual growth estimates from
14 to 24months (the middle through the final available time
point) were obtained from a second model, with an intercept at
14months and a linear effect of age. While the 14 month inter-
cepts predicted 26 month MPF (r(20) = 0.59, p = 0.0037), linear
growth from 14 to 24months was not a significant predictor
(r(20) = 0.31, p = 0.16).

Finally, correlations were tested between MPF and 24 month
measures of productive vocabulary and mean utterance length
(M3L). No significant correlations were observed for vocabulary
in the left arcuate or SLF, and no significant correlations were
observed in any white matter location for M3L. However, an ex-
ploratory analysis, including 18 additional tracts, showed signifi-
cant correlations between vocabulary and MPF in the right ILF
and the right IFOF, as shown in Figure 3. Average MPF within
the posterior portion (nodes 11:50) of the right ILF and IFOF
correlated with 24 month vocabulary (p, 0.05).

Discussion
The current study examines the relationship between home lan-
guage interactions during infancy and white matter develop-
ment, measured at 2 years of age. Parent–infant CT uniquely
predicted MRI estimates of myelin density within the left AF, in-
dependent of total adult speech exposure, child-directed speech
input, and children’s speech-related utterances. Exploratory anal-
yses in 18 additional white matter tracts indicated a high degree
of anatomic specificity. Further, longitudinal analyses suggested
a distinct contribution from CT at 6 and 14months, and growth
in CT over this period, within the left arcuate. Together, these
findings suggest that white matter development is sensitive to
interactional elements of language experience during first 2 years
of life, and point to ongoing effects of language experience start-
ing as early as 6months of age.

Correlations with CT were localized to dorsal language path-
ways that are associated with the development of expressive and
receptive language skills, as well as adult language performance.
The left AF and SLF connect dorsal language regions within
posterior/superior temporal and inferior frontal lobes, includ-
ing classical Wernicke’s (BA 22) and Broca’s (BA 44/45) areas
(Hickok and Poeppel, 2007; Rauschecker and Scott, 2009;
Rauschecker, 2011). The dorsal language system has long
been associated with speech production and sensory-motor
integration (Wernicke, 1874; Saur et al., 2008; Hickok, 2012;
Roelofs, 2014; Skeide and Friederici, 2016). Structural charac-
teristics of the AF and SLF have also been shown to correlate
with a variety of language-related measures over development,
including phonological awareness, expressive vocabulary,
syntactic processing, and emerging literacy skills (Dronkers
and Ogar, 2004; Lebel and Beaulieu, 2009; Wilson et al.,
2011; Yeatman et al., 2011, 2012a; Friederici and Gierhan,
2013; Lebel et al., 2013; Saygin et al., 2013; Skeide et al.,
2016; Travis et al., 2017; Su et al., 2018; Vanderauwera et
al., 2018). In addition, the arcuate has been implicated in general
cognitive processes related to attention (de Diego-Balaguer et al.,
2016) and working memory (Meyer et al., 2014).

Functional specialization for language has been reported
within the first few months of life (Peña et al., 2003; Dehaene-

Table 2. Correlations between 26-month MPF and 6- to 24-month language
measures

White Matter ROI

Language
Measure

Left AF
Posterior

Left AF
Anterior

Left SLF
Posterior

Left SLF
Anterior

6-month
AWC �0.20 (.37) 0.046 (.84) �0.096 (.67) �0.060 (.79)
CDS �0.198 (.39) 0.43* (.049) 0.24 (.29) 0.37 (.096)
CS �0.18 (.42) �0.27 (.22) �0.42 (.052) �0.042 (.85)
CT �0.014 (.95) 0.56** (.0067) 0.46* (.031) 0.35 (.11)

10-month
AWC 0.059 (.80) �0.083 (.71) �0.084 (.71) �0.075 (.74)
CDS �0.073 (.75) 0.58** (.0062) 0.25 (.27) 0.29 (.197)
CS 0.21 (.35) 0.23 (.31) 0.16 (.48) �0.11 (.62)
CT 0.23 (.30) 0.52* (.012) 0.43* (.046) 0.22 (.32)

14-month
AWC �0.12 (.59) 0.11 (.64) �0.11 (.62) 0.092 (.68)
CDS �0.065 (.78) 0.52* (.016) 0.32 (.16) 0.297 (.19)
CS �0.0055 (.98) 0.14 (.55) 0.19 (.39) �0.045 (.84)
CT 0.13 (.56) 0.48* (.024) 0.45* (.034) 0.24 (.29)

18-month
AWC 0.088 (.698) 0.11 (.62) 0.16 (.48) 0.042 (.85)
CDS �0.17 (.46) 0.47* (.032) 0.31 (.17) 0.38 (.087)
CS 0.089 (.70) 0.20 (.38) 0.20 (.38) 0.16 (.48)
CT �0.040 (.86) 0.62**1 (.0020) 0.38 (.08) 0.38 (.079)

24-month
AWC 0.034 (.88) 0.298 (.18) 0.15 (.50) 0.32 (.15)
CDS �0.43* (.0494) 0.065 (.78) �0.026 (.91) �0.093 (.69)
CS 0.064 (.78) 0.36 (.11) 0.398 (.07) 0.27 (.23)
CT �0.24 (.27) 0.35 (.11) 0.20 (.37) 0.13 (.58)

*p , .05, **p , .01, 1significant after Bonferroni correction for multiple comparisons (corrected
p , .05).
Bivariate correlations (Pearson’s r) were tested with macro-molecular proton fraction (MPF) in the left arcu-
ate fasciculus (AF) and superior longitudinal fasciculus (SLF) for each language measure obtained from the
home Language Environment Analysis System (LENA) recordings: Adult-word count (AWC), child-directed
speech (CDS), child speech or speech-like vocalizations (CS), and conversational turns (CT). Correlation values
are given with exact p-values in parentheses.
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Lambertz et al., 2006; Homae et al., 2011; Sato et al., 2012; Shultz
et al., 2014; Dehaene-Lambertz and Spelke, 2015; Dehaene-
Lambertz, 2017), although the cortical language network is
thought to undergo substantial development over the next 7-
8 years (Skeide and Friederici, 2016). Similarly, white matter
pathways associated with language are present at birth (Dubois
et al., 2006; Perani et al., 2011; Skeide and Friederici, 2016), but
they develop rapidly over the first 2 years of life (Geng et al.,
2012; Dubois et al., 2014; Deoni et al., 2016; Gilmore et al., 2018;
Lebel and Deoni, 2018), and show continued, but less dramatic,
developmental myelination through adolescence (Lebel et al.,
2012). In particular, frontal white matter is thought to be relatively
immature through at least 7 years of age (Perani et al., 2011;
Brauer et al., 2013; Skeide et al., 2016), with left lateralized frontal-
temporal connectivity emerging toward the end of the first year
(Emerson et al., 2016).

Studies with infants (3-12months) and young children (1-
5 years) suggest that developmental myelination coincides with
the emergence of language-related skills. For example, MRI
based estimates of myelin water fraction have been shown to cor-
relate with early linguistic and cognitive performance, through
5 years of age (O’Muircheartaigh et al., 2014; Deoni et al., 2016).
Changes in FA from 6 to 24months have also been found to pre-
dict expressive language skills at 24months (Swanson et al.,
2017), suggesting that the rate of early white matter development
has implications for subsequent language achievement. Within
the left AF and SLF, correlations have been reported between
neonatal FA and later receptive and expressive language skills,
through age 2 years (Salvan et al., 2017; Girault et al., 2019; Sket

et al., 2019). This latter set of findings
suggests that language development may
be constrained by stable differences in
white matter organization, already pres-
ent at birth. However, challenges related
to participant motion and low signal-to-
noise in the neonatal brain (Gilmore et
al., 2018) have limited the availability of
data in this age group.

In the current study, parent–infant
CT was associated with myelin density
estimates within the left AF and SLF at
age 2 years, while controlling for total
speech exposure and production. These
findings suggest that direct, one-on-one
interaction may specifically influence the
development of these pathways. In line
with this idea, findings from intervention
and controlled experimental studies sug-
gest that interactions with responsive
adults may directly promote language
learning (Kuhl et al., 2003; Goldstein and
Schwade, 2008; Roseberry et al., 2009,
2014; Ferjan Ramírez et al., 2019, 2020;
Leech and Rowe, 2021).

From a behavioral perspective, conver-
sational interactions have several unique
properties. For one, socially contingent
interaction is thought to elicit higher
quality output from children, includ-
ing vocalizations that incorporate native
phonology during infancy (Goldstein et
al., 2003; Goldstein and Schwade, 2008).
Prelexical “babbling” in infancy has, in
turn, been shown to predict expressive

language skills in the first 2 years of life (Oller et al., 1999; Lyakso
et al., 2014; McGillion et al., 2017; Werwach et al., 2021), and to
mediate the effects of parental language input (Ramírez-Esparza
et al., 2014). Prior studies further suggest that both children and
adults adjust and coordinate their output during conversational
interactions (Smith and Trainor, 2008; Warlaumont et al., 2014;
Abney et al., 2017; Albert et al., 2018; Elmlinger et al., 2019).

In addition, conversational interaction may enhance child
uptake by supporting domain general processes, such as memory
(Lugo-Gil and Tamis-LeMonda, 2008) and attention (Masek et
al., 2021). Joint attention has long been linked to early lexical
(Carpenter et al., 1998; Laakso et al., 1999; Brooks and Meltzoff,
2005, 2008; Mundy and Newell, 2007) and phonemic (Conboy et
al., 2015) learning. Sustained (Ruff and Lawson, 1990; Lawson
and Ruff, 2004; Kannass and Oakes, 2008) and selective (Francis
and Nusbaum, 2002) attention has also been implicated in lan-
guage acquisition, and social contingency may facilitate develop-
ment of these abilities (Masek et al., 2021).

In contrast to prior findings for 4- to 6-year-old children
(Romeo et al., 2018b), MPF correlations with child vocabulary
and CT did not colocalize within the white matter. Instead, cor-
relations between MPF and 24-month vocabulary were observed
within the right posterior ILF and IFOF. Recent MEG findings
suggest that neural activity within the right inferior frontal cortex
may be especially relevant for vocabulary learning in the first
years of life (Bosseler et al., 2021). Specifically, evoked responses
at 14 months predicted later child vocabulary, through 30 months
of age (Bosseler et al., 2021). In another recent study, MPF within

Figure 3. MPF correlations with child vocabulary at 24 months. Left, Significant correlations (p, 0.05, corrected for multiple
comparisons along each tract) between macro-molecular proton fraction (MPF) and 24-month productive vocabulary at each
tested location along the right inferior longitudinal fasciculus (ILF) and inferior fronto-occipital longitudinal fasciculus (IFOF) and
IFOF. Color coding represents effect sizes at each anatomical location. Right, Scatterplots represent the correlation between 24-
month productive vocabulary and average MPF values within the posterior portions of the right IFOF and ILF.

Figure 2. Correlations with conversational turns at 18months. Left, Significant correlations (p, 0.05, corrected for multiple
comparisons along each tract) between macro-molecular proton fraction (MPF) and 18-month conversational turns (CT) at each
tested location along the left arcuate fasciculus (AF) and superior longitudinal fasciculus (SLF). Color coding represents effect
sizes at each anatomic location. Right, Scatterplot represents the correlation between 18-month CT and average MPF values
within the left anterior AF (Bonferroni-correctedp, 0.05).
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right lateralized temporal-parietal white matter at 7months was
found to predict 24 month vocabulary (Corrigan et al., 2022). The
current findings are therefore in line with recent evidence for a
right-hemisphere contribution to early word learning.

The current results extend prior findings by demonstrating
a relationship between parent-infant conversational turns and
white matter development within the first 2 years of life, much
sooner than previously observed. Longitudinal analyses sug-
gest an effect of conversational experience occurring as early
as 6months of age. CT at 6months may be especially relevant
for the development of neural systems related to phonological
analysis and phonemic learning, given that this age marks the
onset of a critical period for native phoneme categorization
(Werker and Tees, 1984; for review, see Kuhl, 2010; Maurer
and Werker, 2014). By 12months, most infants have exited
the critical period for phonemic learning, but other windows
of sensitivity may remain, or be newly open (Werker and
Hensch, 2015). The current analysis suggests an additional
effect of CT at 14months, which might reflect distinct proc-
esses related to higher-level linguistic skills, such as lexical
processing (Rowe and Weisleder, 2020), or ongoing develop-
ment of general cognitive skills related to attention or working
memory (Reynolds and Romano, 2016).

Limitations
The current study has important limitations, which need to be
mentioned. First, the sample is limited to native English speakers
and children without known environmental or genetic risk fac-
tors, such as lower SES or family history of dyslexia. Further, the
sample size is relatively small, and most of the study participants
received a home language intervention that increased parental
language input and parent-infant interaction. Future work is
therefore needed to clarify whether the current findings general-
ize to larger and more diverse samples, including samples partici-
pants who did not experience an enriched language environment
as a result of intervention.

Interactions with caregivers play a vital role in early language
learning. The current results suggest that parent-child interac-
tions may also shape the development of language-related white
matter pathways, starting during infancy. Future work is needed
to examine how these early developmental differences contribute
to longer-term language outcomes.
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