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Capacity limitations in visual tasks can be observed when the number of task-related objects increases. An influential idea is that such
capacity limitations are determined by competition at the neural level: two objects that are encoded by shared neural populations
interfere more in behavior (e.g., visual search) than two objects encoded by separate neural populations. However, the neural rep-
resentational similarity of objects varies across brain regions and across time, raising the questions of where and when competition
determines task performance. Furthermore, it is unclear whether the association between neural representational similarity and task
performance is common or unique across tasks. Here, we used neural representational similarity derived from fMRI, MEG, and a
deep neural network (DNN) to predict performance on two visual search tasks involving the same objects and requiring the same
responses but differing in instructions: cued visual search and oddball visual search. Separate groups of human participants (both
sexes) viewed the individual objects in neuroimaging experiments to establish the neural representational similarity between those
objects. Results showed that performance on both search tasks could be predicted by neural representational similarity throughout
the visual system (fMRI), from 80 ms after onset (MEG), and in all DNN layers. Stepwise regression analysis, however, revealed task-
specific associations, with unique variability in oddball search performance predicted by early/posterior neural similarity and unique
variability in cued search task performance predicted by late/anterior neural similarity. These results reveal that capacity limitations
in superficially similar visual search tasks may reflect competition at different stages of visual processing.
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Significance Statement

Visual search for target objects is slowed down by the presence of distractors, but not all distractors are equally distracting—
the more similar a distractor is to the target, the more it slows down the search. Here, we used fMRI, MEG, and a deep neural
network to reveal where, when, and how neural similarity between targets and distractors predicts visual search performance
across two search tasks: oddball visual search (locating the different-looking object) and cued visual search (locating the cued
object). The results also revealed brain regions, time points, and feature levels that predicted task-unique performance. These
results provide a neural basis for similarity theories of visual search and show that this neural basis differs across visual search
tasks.
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stimuli that activate neurons in nearby regions of the visual cor-
tex (Desimone, 1998). While most early studies focused on com-
petition in visuotopically organized areas (Reynolds et al., 1999),
more recent work has provided evidence that this principle
extends to the representational space of objects in the ventral
temporal cortex (VIC; Reddy and Kanwisher, 2007; Bao and
Tsao, 2018; Kliger and Yovel, 2020).

If the level of competition between objects is determined by
their representational similarity in the visual cortex, we would
expect this to be reflected in behavior as well. Indeed, several
studies have linked neural representational similarity in the
visual cortex to visual search efficiency (Sripati and Olson,
2010; Proklova et al., 2016), providing a link between neural sim-
ilarity and stimulus similarity, as postulated in theories of visual
search (Duncan and Humphreys, 1989). A more general link to
behavior was demonstrated by a series of fMRI studies that
related neural representational similarity to performance on
multiple visual tasks (visual search, visual categorization, visual
working memory, visual awareness; Cohen et al., 2014, 2015,
2017). In these studies, objects that evoked relatively similar
fMRI activity patterns, when presented in isolation, were found
to interfere more with each other in these visual tasks. For exam-
ple, participants were faster to search for a car among faces (rel-
atively low neural similarity) than for a car among phones
(relatively high neural similarity). For all tasks, this relationship
was most strongly observed in the ventral and lateral occipito-
temporal cortices. Integrating the findings across studies, the
authors concluded that the representational similarity of objects
in the visual cortex reflects “a stable architecture of object repre-
sentation that is a primary bottleneck for many visual behaviors”
(Cohen et al., 2017).

One interpretation of these findings is that different kinds of
visual judgments involving the same set of objects would be lim-
ited by the objects’ representational similarity in the same parts of
the visual cortex. Alternatively, the relationship between neural
representational similarity and visual task performance may
differ across tasks. For example, tasks that rely more on low-level
features could be constrained by the objects’ representational
similarity in the low-level visual cortex, whereas tasks relying
on matching visual input to memory templates may be con-
strained by representational similarity in the high-level visual
cortex (Cohen et al,, 2017). In the present study, we aimed to
reveal the common and unique representational stages that con-
strain two superficially similar visual search tasks: cued visual
search (Wolfe, 2020) and oddball visual search (Arun, 2012).
As an example of these tasks, consider a fruit basket containing
an apple and three oranges; on one occasion, we may search
for the apple (cued visual search), while on another occasion,
we may search for the different-looking object (oddball visual
search). These tasks involve the same visual input and require
the same response. However, previous research has shown that
only performance on the cued visual search task is influenced
by the categorical similarity of the objects (Moores et al., 2003,
Belke et al., 2008; Telling et al., 2010; Yeh and Peelen, 2022).
This raises the question of how performance on these tasks
relates to the objects’ neural representational similarity in the
visual cortex, both spatially (fMRI) and temporally (MEG).

Here, using the approach of Cohen et al. (2017), we related
performance on cued and oddball visual search tasks to neural
representational similarity using fMRI, MEG, and a deep neural
network (DNN). This design allowed us to test where and when
neural representational similarity predicts task performance that
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is common and/or unique to cued and oddball visual search,
thereby informing theories of visual search.

Materials and Methods

Visual tasks. We examined competition at the behavioral level in
three visual tasks involving the same-object set (Fig. 1A): cued visual
search, oddball visual search, and a same/different task. Reaction time
(RT) data were taken from previous studies, each involving a different
group of participants [cued visual search task (N=16, 6 males and
10 females) and same/different task (N=24, 8 males and 16 females),
Yeh and Peelen, 2022; oddball visual search task (N=18, 2 males and
16 females), Proklova et al., 2016]. For all analyses, we took the reciprocal
of RT (1/RT) as a measure of dissimilarity (i.e., faster responses indicate
higher dissimilarity), following previous recommendations (Arun,
2012). The three tasks had different procedures but shared the same sti-
muli (Fig. 1A). Eight animate and eight inanimate objects were used as
stimuli, and each object had four exemplars (64 stimuli in total). All sti-
muli were grayscaled and were presented on a gray background.

In the cued visual search task (Fig. 1C), participants were instructed
to search for a predefined target (e.g., searching for a bird) and indicate
the target location (left or right side of the search array). The search array
contained a target and a distractor, and each object was set as the target
with equal frequency. In the oddball visual search task (Fig. 1D), partic-
ipants indicated the location of the oddball object. In each oddball search
display, 16 objects were presented in a 4 x 4 grid, consisting of one odd-
ball target and 15 identical distractors (at slightly different sizes). Finally,
in the same/different task (Fig. 1E), participants indicated whether the
two objects were the same or different. The task consisted of two condi-
tions, same-object and different-object conditions. In the same-object
condition, the display consisted of two identical objects. The size of the
objects was varied, with one object being 90%, 100%, or 110% as large
as the other, but this was irrelevant to the task. In the different-object
condition, the display consisted of two different objects at their original
size. For more details, see the methods of Experiments 1 and 2 in Yeh and
Peelen (2022) and Experiment 1 in Proklova et al. (2016).

We added the same/different task based on previous research show-
ing that variations in RT across object pairs in the same/different task are
highly correlated with variations in RT in the oddball task (Jacob and
Arun, 2020). We replicated this finding in our data. Specifically, we com-
puted the correlation between performance on the oddball and same/
different tasks for corresponding object pairs using a split-half correla-
tion analysis. We first randomly assigned participants to one of two
groups and then computed the correlation between the object pair means
of the two datasets both within and between tasks. We repeated this pro-
cedure 100 times and computed the average of the outputs. We found
that performance on the oddball visual search task was closely related
to performance on the same/different task, with the between-task corre-
lation (r=0.85) being close to the within-task correlations (same/differ-
ent, r = 0.90; oddball, =0.97). This confirms that the same/different task
and the oddball visual search task provided similar measures of pairwise
task performance. To examine whether same/different task performance
was more similar to oddball than cued search task performance, we cor-
related individual same/different data with the group-averaged oddball
and cued search task data. Then, we used the Fisher z-transformed cor-
relation coefficient to run the paired ¢ test (two-tailed). The result showed
that the correlation between the same/different and oddball task data
(Z, = 0.65) was significantly higher than the correlation between the
same/different and cued task data (Z, = 0.57) (p=0.002). We also ran
the reverse analyses, correlating individual oddball/cued task data with
the averaged same/different task data, and then ran an independent ¢
test (two-tailed). The result again showed that the correlation between
the same/different and oddball task data (Z, = 1.07) was significantly
higher than the correlation between the same/different and cued task
data (Z, = 0.81) (p <0.001).

Neural measurements and representational dissimilarity. Neural
responses evoked by each individual object were recorded with fMRI
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Figure 1.

Stimuli and tasks. A, All stimuli used in the experiments. B, In the behavioral experiments, stimuli were paired based on categorical and perceptual similarity (Yeh and Peelen, 2022),

for a total of 32 pairs. C, Task procedure of the cued visual search task. Participants were asked to search for a predefined target (in Chinese, the cue in English was not shown in the real
experiment) and press the button corresponding to the target location (ITl, intertrial interval). D, Task procedure of the oddball visual search task. Participants were asked to search for an oddball
stimulus and press the button corresponding to the target location. E, Task procedure of the same/different task. Participants were asked to judge whether the two objects were the same or

different.

and MEG. These data were taken from previous studies [fMRI (N =18, 7
males and 11 females), Proklova et al., 2016; MEG (N =29, 16 males and
13 females), Proklova et al., 2019]. During those recordings, only one
object was presented at a time, and no search task was performed.

The representational dissimilarity of the fMRI data was computed using
the approach of Proklova et al. (2016), restricted to the 32 pairs used in the
behavioral experiments (Fig. 1B). Briefly, following Proklova et al. (2016),
we computed the correlation between the beta values of the objects in
each pair across the voxels of searchlight spheres (100 voxels each).
Then, the representational similarity values were transformed into dissim-
ilarity values by subtracting the correlation values from 1.

The representational dissimilarity of the MEG data was computed
using pairwise decoding analyses for each time point (10 ms) for each
participant, following Proklova et al. (2019). Neural dissimilarity is

reflected by the decoding accuracy: the higher the decoding accuracy,
the greater the neural dissimilarity. We used the 32 pairs of neural dis-
similarity results of magnetometers [Proklova et al. (2019) reported sim-
ilar results for magnetometers and gradiometers]. We combined data
across the two experiments reported by Proklova et al. (2019).

Finally, we established the representational dissimilarity of the
object set in AlexNet (Krizhevsky et al., 2017), a feedforward DNN for
object classification. We first obtained activations elicited by the stimuli
(individual objects) at each layer of AlexNet. For each relevant pair of
stimuli, at each layer, the similarity between the activation patterns
was computed using correlation. Then, the representational similarity
values were transformed into dissimilarity values by subtracting the
correlation values from 1. The schematic of the analysis approach is
illustrated in Figure 2.
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Schematic of analysis approach. Neural activity for individual objects was measured with fMRI, MEG, and a DNN. These activity measures were used to compute the neural rep-

resentational dissimilarity for 32 pairs of stimuli that were presented in the visual tasks. Finally, neural representational dissimilarity was used to predict task performance using regression
analysis. This analysis can show where, when, and in which layer neural representational dissimilarity predicts task performance.

Relating neural representational dissimilarity to task performance.
We used linear regression analysis to relate pairwise neural representa-
tional dissimilarity to pairwise task performance. We used the
z-transformed neural dissimilarity to predict the z-transformed task per-
formance (1/RT). For fMRI and MEG analyses, we used the dissimilarity
values of 32 pairs from each participant to predict the group-average task
performance in random-effects statistical analyses across the participants
in the neuroimaging experiments. This way, the statistical analyses tested
for consistency across the participants of the fMRI and MEG studies,
with the averaged behavioral data as to-be-predicted values. Please
note that this approach is more conservative than the reverse approach
of averaging the neural data and testing across individual behavioral par-
ticipant data, considering that the neural data are likely to be much more
variable than the behavioral data. Indeed, the split-half within-task cor-
relations for the behavioral data were very high (same/different, r=0.90;
oddball, r=0.97; cued, r = 0.94). Analyses that used the reverse approach
—averaging the neuroimaging data and testing across the behavioral par-
ticipants—gave qualitatively similar and statistically more significant
results than those reported here, confirming that the behavioral data
were more consistent across participants than the neuroimaging data.
Here, we report the results across the participants of the neuroimaging
experiments to address our research question concerning the neural cor-
relates of two types of visual search behavior. Note, however, that this
approach was not possible for the DNN analysis, for which there were
no participants, such that for that analysis, we used the dissimilarity val-
ues obtained from AlexNet to predict task performance for each partic-
ipant in the behavioral tasks (again using random-effects analyses). This
resulted in beta maps (fMRI), beta timelines (MEG), and betas for each
layer (DNN), reflecting the associations between neural representational
dissimilarity and performance on each of the three tasks (Fig. 2).

Furthermore, to explore unique associations between representa-
tional dissimilarity and task performance, we ran two-step regression
analyses to (1) compare the cued visual search task with the oddball
visual search task and (2) compare the cued visual search task with the
same/different task. To calculate betas reflecting task-unique associa-
tions, we first ran a linear regression analysis using one task performance
(e.g., cued visual search) to predict the other task performance (e.g., odd-
ball visual search). Then, we ran another linear regression analysis using
the z-transformed neural dissimilarity values to predict the z-transformed
residual of the first regression analysis. Overall, we obtained four beta maps
(fMRI), beta timelines (MEG), and betas for each layer (DNN) for three
tasks. Two are for the cued visual search task when removing the effect
of the oddball visual search task and the same/different task, one is for
the oddball visual search task when removing the effect of the cued visual
search task, and one is for the same/different task when removing the effect
of the cued visual search task.

Statistical tests. To test the significance of the beta values, we used
one-sample ¢ tests against zero and controlled the type I error for multi-
ple comparisons. For the fMRI analyses, we used a voxel-level threshold
of p <0.001 (uncorrected) and a cluster-level threshold of p <0.05 (FWE
corrected) to control type I errors for the whole brain. Clusters were only
reported when the cluster size was larger than 50 voxels. For fMRI MNI y
coordinate, MEG, and DNN analyses, the statistical significance of cor-
relations was tested using cluster-based nonparametric permutation one-
sample f tests against zero to determine the window of significant corre-
lation, controlling for multiple comparisons (Maris and Oostenveld,
2007). The permutation test was with null distribution created from
1,000 Monte Carlo random partitions using a cluster correction for
type I error (p <0.05, one-tailed).
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Results

fMRI: spatial associations between neural representational
dissimilarity and task performance

To test for brain regions in which neural representational dissim-
ilarity predicted task performance, we performed single regres-
sion analyses using a whole-brain searchlight approach (see
Materials and Methods). For each sphere, neural representational
dissimilarity (based on responses evoked by objects presented in
isolation) was used to predict pairwise task performance (Fig. 2),
separately for the three tasks. The results showed that perfor-
mance on all three tasks was predicted by representational
dissimilarity in both the low- and high-level visual cortices

A
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(Fig. 3A; Table 1), in line with previous reports (Proklova et al.,
2016; Cohen et al., 2017). This was confirmed by an analysis
that averaged beta values across x and z coordinates, with signifi-
cantly positive beta values in both the posterior and anterior
visual cortex regions (Fig. 4, solid lines). These results thus reveal
considerable overlap in the brain regions that predicted perfor-
mance on each task.

Next, we tested for task-specific associations between neural
representational dissimilarity and task performance by first
regressing out performance on the oddball visual search task
from performance on the cued visual search task (and vice versa).
The same analysis was repeated for the same/different task and

Associations between neural representation and task performance

- Cued visual search task - Oddball visual search task - Same/different task
=-8 z=-4

=-20 =-16 =

Unique associations between neural representation and task performance
I Cued visual search task [JJll Oddball visual search

C

12 z=-8

task

Unique associations between neural representation and task performance
I Cued visual search task [l Same/different task

Figure 3.

z=-8

Whole-brain fMRI searchlight maps relating neural representational dissimilarity to task performance. A, Clusters in which neural representational dissimilarity predicted task

performance, separately for each task. B, Clusters in which neural representational dissimilarity predicted performance unique to the cued visual search task (red) and the oddball visual search
task (blue). €, Clusters in which neural representational dissimilarity predicted performance unique to the cued visual search task (red) and the same/different task (green).
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Table 1. All significant clusters in the whole-brain fMRI analyses

p-value Cluster size Peak coordinate Peak beta
Side (FWE corrected) (voxels) (v 2 Peak T value estimate
Associations
Cued visual search Right <0.001 1,227 42, —58, —16 10.51 0.31175
<0.001 115 14, —84, -8 5.7 0.19394
Left <0.001 1,506 —32, —48, —18 10.11 0.27905
Oddball visual search Right <0.001 825 44, —60, —12 9.24 0.24019
Left <0.001 2,61 —38, —48, =22 9.14 0.20948
Same/different task Right <0.001* 4,637 42, —58, —20 11.05 0.26975
Left —42, —62, —14 10.12 0.26403
Unique associations (Cued vs oddball)
Cued visual search Right <0.001 258 40, —50, —14 7.81 0.27657
=0.005 69 46, —80, —2 8.72 0.23764
Left <0.001 338 —32, —48, —18 N4 0.3008
=0.002 80 —46, —82, —2 6.04 0.18502
Oddball visual search Left <0.001 390 —20, —88, —14 730 0.21728
Unique associations (Cued vs S/D)
Cued visual search Right <0.001 180 40, —66, —14 6.17 0.22685
<0.001 114 46, —78, —2 791 0.22901
Left <0.001 271 —32, —48, —18 9.69 0.3129
=0.001 92 —46, —80, —2 5.39 0.19838
Same/different task Right <0.001 356 26, —96, —2 1.77 0.24915
Left <0.001 762 —20, =90, —6 7.02 0.23973

Peak coordinates are in MNI space.
*The significant cluster for the same/different task includes both right and left hemispheres.
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Figure 4.  fMRI results across the visual hierarchy. The graphs show the average beta estimate along the y coordinate axis for the left (top panel) and right (bottom panel) hemispheres.
The means were computed for every 5 mm in the MNI y coordinate (averaging across the x and z coordinates). The solid lines show results from analyses relating neural representational
dissimilarity to performance on each task separately. The dashed lines show results from analyses relating neural representational dissimilarity to performance on one task, after regressing
out performance on another task [stated after the “-" symbol; e.g., “Cued (-Oddball)” refers to cued visual task performance that excluded the covariance with oddball task performance].
Significant clusters (cluster-based permutation tests, p < 0.05, one-tailed) are highlighted in bold.
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the cued visual search task. The results revealed several brain
regions in which neural representational dissimilarity predicted
variability in task performance that was unique to one of the tasks
(Fig. 3B; Table 1). Specifically, unique variability in cued visual
search performance was predicted by relatively anterior regions
in the visual cortex, overlapping the fusiform gyrus, while unique
variability in oddball visual search performance was predicted by
more posterior regions. This result was replicated when includ-
ing the same/different task instead of the oddball task (Fig. 3C;
Table 1), showing that these unique associations did not simply
reflect differences in the displays of cued and oddball visual
search tasks (Fig. 1). The posterior-anterior difference was also
clearly observed in the y coordinate analysis (Fig. 4), with the
unique prediction of the cued visual search task strongest at
y=—60 and the unique prediction of the oddball visual search
task strongest at the most posterior parts of the visual cortex
(y=-100). These results thus reveal that performance on two
highly similar visual search tasks are uniquely predicted by
neural representational dissimilarity in different brain regions.

MEG: temporal associations between neural representational
dissimilarity and task performance

Recent MEG studies have shown that patterns of activity across
MEG sensors can be used to decode object properties in a time-
sensitive manner (Grootswagers et al., 2017; Robinson et al.,
2023), revealing the representational dynamics of visual process-
ing (Carlson et al., 2013; Cichy et al., 2014). Using this approach,
we tested when neural representational dissimilarity predicts
visual search performance. The regression analysis linking neural
representational dissimilarity to task performance was otherwise
identical to that performed on the fMRI data (Fig. 2). The results
showed that performance on all three tasks was predicted by neu-
ral representational dissimilarity from 80 ms after stimulus onset
(cluster-based p<0.001; Fig. 5). The analyses testing for task-
specific associations revealed unique associations between neural
representational dissimilarity and task performance of the odd-
ball visual search task (cluster-based p <0.001) and the same/
different task (cluster-based p<0.001) starting from around
80 ms after stimulus onset (Fig. 5). Unlike the fMRI results, no
unique association was found between neural representational
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dissimilarity and cued visual search task performance. These
results provide a clear temporal association between neural rep-
resentational dissimilarity and task performance and show that
the unique association between neural representational dissimi-
larity and cued visual search task performance that we observed
in fMRI was not captured by MEG activity patterns.

DNN: layer-wise associations between representational
dissimilarity and task performance

Finally, we used a feedforward DNN model (AlexNet) to explore
which layers of the hierarchical network predicted task perfor-
mance. We followed the regression approach we used in the
fMRI/MEG analysis but now using the representational dissimi-
larity computed from the patterns of activation in DNN layers
(Fig. 2). The results showed that performance on all three tasks
was predicted by the representational dissimilarity of all 10
selected layers (cluster-based p <0.001; Fig. 6): the input layer,
the five convolutional layers (Convl, Conv2, Conv3, Conv4,
and Convb), the three fully connected layers (FC6, FC7, FC8),
and the softmax layer on the readout (SM). Here, we also found
task-specific associations. The cued visual search task perfor-
mance was predicted by representational dissimilarity in the
deeper layers, including FC6, FC7, FC8, and SM (cluster-based
p=0.005) after regressing out oddball visual search performance,
and was predicted by representational dissimilarity in FC7, FC8,
and SM (cluster-based p=0.0036) after regressing out same/
different task performance (Fig. 6). In contrast, oddball visual
search and same/different task performance were predicted by
all layers after regressing out cued visual search performance,
and contrary to the cued visual search, most strongly with the
earlier layers (cluster-based p <0.001).

Discussion

In this study, we tested whether, where, and when the pairwise
neural representational similarity of objects predicts visual search
performance (RT) involving these object pairs. By using fMRI,
MEG, and a DNN, we established a detailed spatiotemporal asso-
ciation between neural representational similarity and visual
search performance. The results showed that visual search
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MEG results showing temporal associations between neural representational dissimilarity and task performance. MEG results of the regression analyses using neural representational

dissimilarity to predict cued visual search task performance (left panel), oddball visual search performance (middle panel), and same/different task performance (right panel). The solid lines show
results from analyses relating neural representational dissimilarity to performance on each task separately. The dashed lines show results from analyses relating neural representational dis-
similarity to performance on one task, after regressing out performance on another task [stated after the “-" symbol; e.g., “Cued (-Oddball)” refers to cued visual task performance that excluded
the covariance with oddball task performance]. Significant clusters (cluster-based permutation tests, p < 0.05, one-tailed) are highlighted in bold.
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Figure 6.

DNN results showing associations between representational dissimilarity and task performance. DNN results of the regression analyses using representational dissimilarity to predict

the cued visual search performance (left panel), oddball visual search performance (middle panel), and same/different task performance (right panel). The solid lines show results from analyses
relating representational dissimilarity to performance on each task separately. The dashed lines show results from analyses relating neural representational dissimilarity to performance on one

un

task, after regressing out performance on another task [stated after the

symbol; e.g., “Cued (-Oddball)” refers to cued visual task performance that excluded the covariance with oddball task

performance]. Significant clusters (cluster-based permutation tests, p < 0.05, one-tailed) are highlighted in bold.

performance was predicted by neural representational similarity
in both high- and low-level regions of the visual cortex (fMRI),
from 80 ms after onset (MEG), and in all DNN layers. When ana-
lyzed separately, similar brain-behavior associations were
observed for a cued visual search task and an oddball visual
search task. This shared component is in line with previous
results showing that performance on different tasks can be
predicted by the same stable neural similarity structure (Cohen
et al., 2014, 2015, 2017).

Importantly, however, using stepwise regression analysis, we
could relate task-unique components of performance to neural
representational similarity as well. The results showed that neural
representational similarity in regions of the high-level visual cor-
tex (fMRI) and the late layers of a DNN predicted the unique
component of the cued visual search task. In contrast, neural rep-
resentational similarity in regions of the low-level visual cortex
(fMRI) and the early layers of a DNN predicted the unique com-
ponent of the oddball visual search task. These results provide
evidence that performance on superficially similar visual search
tasks, involving the same stimuli and response, is nonetheless
constrained by neural similarity at different stages of visual
processing.

The finding that search performance is predicted by neural
similarity in the visual cortex is in line with theories that explain
visual search efficiency in terms of stimulus similarity (Duncan
and Humphreys, 1989). Specifically, search performance has
been proposed to be determined by a combination of target—dis-
tractor and distractor-distractor similarity (the pairwise
approach in the current study only considers target-distractor
similarity). The similarity theory of visual search used the term
similarity to refer to similarity along multiple dimensions, with
the relevant dimension depending on the experimental stimuli
(e.g., color, shape). For example, in an experiment where color
was the only manipulated dimension, color similarity would
determine search efficiency (Duncan and Humphreys, 1989).
In the current experiment, we investigated the search for familiar
real-world objects that differed along multiple feature dimen-
sions (e.g., texture, shape). Interestingly, the association between
neural similarity and visual search was observed throughout the
visual cortex (fMRI), across a long time window (MEG), and at

different hierarchical levels of visual feature representation
(DNN). These findings therefore suggest that the similarity
that predicts visual search performance for familiar objects is
multidimensional, likely consisting of a combination of low-
and high-level features.

At the same time, our results show that the similarity dimen-
sion that determines search performance depends on the type of
search task, even for identical stimuli. Specifically, similarity at
higher levels of the visual cortex and in later layers of a neural
network predicted the unique component of cued visual search.
These unique associations may reflect features that are diagnostic
of the category (animate/inanimate) of the objects, in line with
previous behavioral and EEG studies that found that cued visual
search is influenced by categorical similarity (Moores et al., 2003,
Belke et al., 2008; Telling et al., 2010; Yeh and Peelen, 2022).
Furthermore, in a previous fMRI study (Proklova et al., 2016),
we showed that the categorical similarity of the object set was
represented in the high-level visual cortex regions that overlap
with the regions that predicted the unique cued visual search per-
formance in the current study. Finally, the representational sim-
ilarity in later layers of AlexNet has been shown to follow a
categorical organization (Khaligh-Razavi and Kriegeskorte,
2014).

One possibility is that the high-level component observed for
the cued visual search task reflects an additional template-
matching stage, comparing visual input to a target template
held in working memory (Eimer, 2014; Cohen et al, 2017;
Wolfe, 2021). In this scenario, the cued visual search task could
be equivalent to the oddball visual search task plus an additional
template-matching stage. Interestingly, however, our results also
revealed unique brain-behavior associations for the oddball task,
particularly in earlier stages of visual processing. These results
suggest that different stimulus dimensions can be flexibly empha-
sized to support different visual search tasks on the same stimulus
set. This is in line with a growing literature demonstrating the
flexible adjustment of top-down attentional templates, for exam-
ple, based on expected distractor characteristics (Boettcher et al.,
2020; Lee and Geng, 2020, Lerebourg et al., 2023).

The current MEG results showed that representational simi-
larity from 80 ms after stimulus onset reliably predicted visual
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search performance. In contrast, however, the unique compo-
nent of cued visual search performance was not reflected in the
representational structure of MEG at any time point, even
though unique associations were observed in comparable fMRI
and DNN analyses. These results indicate that while MEG sensor
patterns are highly sensitive to the low-/mid-level object features
that predict visual search performance in general, they are not
sensitive to the high-level (e.g., categorical) features that predict
the unique aspect of cued visual search performance. This finding
is in line with a previous study in which MEG patterns did not
discriminate between perceptually matched object categories,
while fMRI patterns did (Proklova et al., 2019). The absence of
categorical information in MEG patterns may appear in contrast
to studies that have successfully decoded object category using
MEG (e.g., animacy; Carlson et al., 2013; Cichy et al,, 2014).
However, these studies did not control for perceptual similarity,
such that decoding could reflect midlevel feature differences
between categories (e.g., curvature). Proklova et al. (2019) pro-
posed several explanations for the discrepancy between MEG
and fMRI decoding of object category, including differences in
spatial resolution and temporal averaging. Another possible rea-
son for the absence of categorical information in MEG patterns is
that MEG is not sensitive to deep sources. However, we similarly
observed no significant association between representational
similarity and the unique aspect of cued visual search perfor-
mance in an EEG dataset (data not shown), with EEG being
more sensitive to deep sources than MEG. The lack of sensitivity
of M/EEG to high-level object features means that it remains an
open question when during visual processing neural representa-
tional similarity predicts the unique aspect of cued visual search.

Our approach has several limitations. First, our analyses were
done across different groups of participants, focusing on com-
monalities across groups. This approach prevents analyses that
link representational structure to behavioral performance at the
individual-subject level (Charest et al., 2014). Second, we used
a stimulus set in which half the object pairs were matched for out-
line shape and that included a clear categorical distinction.
Higher-level dimensions may become particularly relevant in
the visual search for objects that are perceptually similar (Yeh
and Peelen, 2022). Therefore, future studies would need to repli-
cate our results with a larger and more diverse stimulus set.
Third, our search tasks were highly simplified, involving only
one distractor object, fixed presentation locations, and no scene
context. By contrast, real-world search typically includes many
distractors, variable locations, and meaningful context. Finally,
the approach of associating stable neural architecture to visual
search performance is, by definition, indirect, such that a positive
association between neural similarity and task performance in a
particular brain region (or time point) does not prove that that
brain region causally determines task performance.

Conclusion

In summary, our results reveal a strong association between neu-
ral representational similarity and visual search performance:
When the neural representation of a target object was relatively
dissimilar to the neural representation of a distractor object,
visual search was relatively fast. The finding that unique perfor-
mance on two superficially similar visual search tasks was pre-
dicted by neural similarity in different visual cortex regions
and in different DNN layers shows that neural constraints on
visual task performance are, to some extent, task specific.
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Capacity limitations in superficially similar visual search tasks
may thus reflect competition at different stages of visual
processing.
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