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Responses to Pattern-Violating Visual Stimuli Evolve
Differently Over Days in Somata and Distal Apical Dendrites
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Scientists have long conjectured that the neocortex learns patterns in sensory data to generate top-down predictions of upcoming
stimuli. In line with this conjecture, different responses to pattern-matching vs pattern-violating visual stimuli have been observed in
both spiking and somatic calcium imaging data. However, it remains unknown whether these pattern-violation signals are different
between the distal apical dendrites, which are heavily targeted by top-down signals, and the somata, where bottom-up information is
primarily integrated. Furthermore, it is unknown how responses to pattern-violating stimuli evolve over time as an animal gains
more experience with them. Here, we address these unanswered questions by analyzing responses of individual somata and dendritic
branches of layer 2/3 and layer 5 pyramidal neurons tracked over multiple days in primary visual cortex of awake, behaving female
and male mice. We use sequences of Gabor patches with patterns in their orientations to create pattern-matching and pattern-vio-
lating stimuli, and two-photon calcium imaging to record neuronal responses. Many neurons in both layers show large differences
between their responses to pattern-matching and pattern-violating stimuli. Interestingly, these responses evolve in opposite direc-
tions in the somata and distal apical dendrites, with somata becoming less sensitive to pattern-violating stimuli and distal apical
dendrites more sensitive. These differences between the somata and distal apical dendrites may be important for hierarchical com-
putation of sensory predictions and learning, since these two compartments tend to receive bottom-up and top-down information,
respectively.
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Significance Statement

Hierarchical predictive computation is believed to be a major function of the neocortex. However, it is unknown whether
stimuli that violate previously-experienced sensory patterns induce different responses in the compartments of neurons
where bottom-up and top-down signals are predominantly integrated. Here, we track the responses of different compart-
ments of neurons in mouse visual cortex as we present animals with pattern-violating and pattern-matching visual stimuli.
In the neuronal compartments that receive bottom-up and top-down signals, we find that the responses to pattern-violating
compared to pattern-matching stimuli evolve differently over time. This may provide critical insight into hierarchical sensory
computation and predictive learning in the brain.

Introduction
A long-standing hypothesis in computational and systems neuro-
science is that the neocortex learns a hierarchical, predictive model
of the world (Dayan et al., 1995; Rao and Ballard, 1999; Friston and
Kiebel, 2009; Larochelle and Hinton, 2010; Spratling, 2017;
Whittington and Bogacz, 2017; Press et al., 2020). This hypothesis
postulates that top-down predictions (i.e., signals from associative
regions to sensory regions) are compared to bottom-up signals
(i.e., signals from sensory regions to associative regions). Stimuli
that violate patterns of past sensory experiences should then induce
differences between these two signals.

In line with this postulate, previous experimental work in
multiple species and brain regions shows distinct responses to
stimuli that either match or violate patterns from past experience
(Kumaran and Maguire, 2006; Garrido et al., 2009; Keller et al.,
2012; Fiser et al., 2016; Zmarz and Keller, 2016; Orlova et al.,
2020; Homann et al., 2022). However, there are still significant
unknowns. First, do such responses differ in the distal apical den-
drites, where many top-down signals arrive, and the somata,
where bottom-up information is likely integrated (Budd, 1998;
Jiang et al., 2013; Larkum, 2013; Marques et al., 2018)? There
are a few studies that have shown that top-down projections
carry distinct, and potentially predictive, information to sensory
areas (Fiser et al., 2016; Jordan and Keller, 2020; Orlova et al.,
2020), but none have explicitly contrasted the distal apical
dendrites and somatic compartments. Second, how do such
responses evolve as an animal gains exposure to stimuli that ini-
tially violate patterns of past experience, but which become a
part of their past experience over increased exposure?

To address these questions, we performed chronic two-
photon calcium imaging at the cell bodies and the distal apical
dendrites of layer 2/3 and layer 5 pyramidal neurons in the pri-
mary visual cortex of awake, behaving mice over multiple days
(Fig. 1A–C). During the recordings, the animals were exposed
to randomly oriented visual stimuli that either matched or vio-
lated patterns to which the animals had been habituated. This
approach allowed us to track the responses of individual cell bod-
ies and individual distal apical dendritic branches over multiple
days (Fig. 1D), during which the animals were provided with
additional exposure to the pattern-violating stimuli (Fig. 1E).
We observed interesting differences between the distal apical
dendrites and somata. Whereas somatic compartments showed
a decrease over days in their differential sensitivity to visual
stimuli that either matched or violated the habituated patterns,
distal apical dendrites showed an increase in differential sensitiv-
ity. This suggests that there may be important differences in the
functional roles of the somatic and distal apical dendritic com-
partments with respect to hierarchical predictive computation
or learning stimulus statistics.

Materials and Methods
The dataset used in this paper was collected as part of the Allen Institute
for Brain Science’s OpenScope initiative. We have publicly released the
full dataset (Gillon et al., 2023b), and have previously published a dataset
descriptor paper without any scientific analysis (Gillon et al., 2023a).
In this study, we analyze those data to address questions about neural
responses to pattern-violating stimuli. Here, we provide a description
of the methods, but additional details can be found within the dataset
descriptor paper.

Imaging and data pre-processing
All animal procedures were approved by the Institutional Animal Care
and Use Committee (IACUC) at the Allen Institute for Brain Science,
under protocol 1801. To monitor the integration of top-down and
bottom-up signals by supra- and sub-granular pyramidal neurons over
multiple days, we performed two-photon calcium imaging in awake
Cux2-CreERT2 mice or Rbp4-Cre_KL100 mice that expressed GCaMP6f
in layer 2/3 or layer 5 pyramidal neurons, respectively (Fig. 1A). We
performed this imaging either at layer 1 of cortex (50–75μm depth
for layer 2/3 and 20 μm depth for layer 5), thereby observing the
distal apical dendrites, or at the layer in which the cell bodies were located
(175 μm depth for layer 2/3 and 375 μm depth for layer 5) (Fig. 1B–C).
This gave us four different imaging conditions: layer 2/3 distal apical
dendrites (L2/3-D), layer 2/3 somata (L2/3-S), layer 5 distal apical den-
drites (L5-D), and layer 5 somata (L5-S). As noted in Gillon et al. (2023a),
the L5-S depths are shallower than might otherwise be expected for
mouse cortex, as the cranial window pushed gently against the surface
of the brain to reduce Z-drift during imaging sessions. GCaMP6f fluor-
escence tracks calcium influx into cells, but it should be noted that the
cause of calcium influx in the somatic and distal apical dendritic com-
partments may be different, with somatic signals largely reflecting
closely-spaced groups of action potentials (Huang et al., 2021) and den-
dritic signals reflecting a combination of back-propagating action poten-
tials and non-linear dendritic events like NMDA spikes (Murayama et
al., 2009). Thus, in both cases we were tracking a proxy for neural activ-
ity, but it is important to be aware that the underlying physiological
causes of the signal may differ between the two compartments.

Imaging was performed in primary visual cortex (VisP). During the
experiments, the animal’s head was fixed in place under the microscope
objective, ensuring the stability of our recordings. We extracted regions
of interest (ROIs) in each imaging plane (Inan et al., 2017; de Vries et al.,
2020; Inan et al., 2021), corresponding to individual distal apical dendrite
segments or to individual cell bodies, depending on the imaging plane.
Each animal went through three imaging sessions, each performed on
a different day, and we used a matching algorithm to identify the same
ROIs across sessions (Fig. 1D).

Thanks to a conservative quality-control pipeline (de Vries et al.,
2020), signal-to-noise ratio (SNR), ΔF/F magnitudes, and number of
ROIs were stable over all three sessions in both layer 2/3 and layer 5
cell bodies and dendrites (Gillon et al., 2023a). Importantly, the ROI
extraction algorithm for the dendritic recordings enabled the identifica-
tion of spatially discontinuous ROIs (Inan et al., 2017, 2021), reducing
the risk that single dendritic compartments were split into multiple
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ROIs. This is supported by the observation that in both the somatic and
the dendritic compartments, very few pairs of ROIs showed very high
correlations in their responses (see Gillon et al., 2023a). Moreover, while
differences in background fluorescence levels were observable between
imaging planes (Fig. 1B), these did not confound our analyses for two
reasons. First, we only compared ΔF/F levels over days within each imag-
ing plane, not between imaging planes. Second, our analysis pipeline esti-
mated ΔF/F using a rolling baseline, so that changes in overall
fluorescence would not impact our analyses (de Vries et al., 2020).

During these imaging sessions, we tracked the mouse’s movements
on a running disc, as well as its pupil diameter with an infrared camera.
We obtained calcium imaging data for 11 mice that passed quality con-
trol (L2/3-D: n= 2, L2/3-S: n= 3, L5-D: n= 3, L5-S: n= 3). The dataset
was well-split between female (n= 5) and male (n= 6) mice, with at least
one animal of each sex included in each imaging plane (Gillon et al.,
2023a). We tracked ROIs across days using a custom-modified version
of the ROI-matching package developed by the Allen Institute for
Brain Science (de Vries et al., 2020). The full dataset is freely available
online in the DANDI Archive (Gillon et al., 2023b).

Stimuli
We used two different stimuli for this study: one involving sequences,
and one involving visual flow. Ourmain focus in this paper was a sequen-
tial visual stimulus inspired by previous work (Homann et al., 2017,
2022). This stimulus had a predictable global pattern, but stochastic local
properties. Thanks to the predictable global pattern we could randomly

insert “pattern-violating” events, i.e., stimulus events that violated the
predictable global pattern. Mice were exposed to these stimuli over mul-
tiple sessions, each occurring on different days, enabling us to observe
changes in their neurons’ responses to pattern-matching and pattern-
violating sensory events.

Gabor sequence stimulus. To build a predictable global pattern with
some local stochasticity, we used images composed of randomly placed
Gabor patches, assembled into five-image sequences (A-B-C-D-G).
Other than G, which was uniformly gray, each image was defined by
the locations of its Gabor patches: e.g., the locations of the Gabor patches
were the same for all A images for a given session, but differed between A
and B images. These Gabor patch locations were redrawn for each ses-
sion, and sampled uniformly over the visual field. As a result, the loca-
tions were different in each session. Additionally, within each repeat of
the sequence (A-B-C-D-G), the orientation of each of the Gabor patches
was drawn randomly from the same distribution centered around the
same mean orientation, but the mean orientation varied from sequence
to sequence (Fig. 1E). This meant that the luminance patterns at each
spatial location were different for each repeat of the A-B-C-D-G
sequence. However, because all sequences shared a global pattern
wherein orientations were drawn from the same distribution across
images, a clear pattern is present in the orientations of the Gabors
from one image to the next within each sequence. Importantly, given
these stimulus design features, the same set of images was never repeated.
This reduced the risk of accommodation effects. Nonetheless, the
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Figure 1. Illustration of experimental methods. A, Experimental setup schematic. Awake, behaving mice were head-fixed under a two-photon microscope objective while passively viewing
the stimuli. The mice were able to run freely on a rotating disc. B, Example max-projection images from two-photon recordings for each of the four imaging planes: layer 2/3 distal apical
dendrites (L2/3-D), layer 5 distal apical dendrites (L5-D), layer 2/3 somata (L2/3-S), and layer 5 somata (L5-S) (two to three mice per plane, n= 11 mice in total; see Materials and Methods).
C, Schematic illustration displaying the four imaging planes from B within the cortical column. The coloring and style schemes of the horizontal lines depicting the imaging planes here are used
throughout all of the figures. D, Tracked region of interest (ROI) examples for both L5-D (top) and L5-S (bottom). Max-projection images for each imaging session (1, 2, or 3), each performed on a
different day, are overlaid with contours of the matched segmented ROI masks. Below the images, the matched ROI masks for all three sessions are superimposed. E, Example Gabor sequences.
Each image lasted 300 ms. The mean orientation θ of the Gabor patches in each sequence si was randomly chosen from {0◦ 45◦ 90◦ 135◦}. A pattern-violating image, U, with a mean
orientation rotated by 90◦ with respect to the other images in the sequence, is highlighted in red. See Materials and Methods and Gillon et al. (2023a) for details. F, Experimental timeline,
showing both habituation and imaging sessions. Note that each session occurred on a different day. Optical imaging of neuronal activity was not performed during H1–H11.
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sequences had a predictable global pattern that an observer could
identify.

To ensure sufficient exposure to the patterns, before the first calcium
imaging session, and after habituation to the rig, the mice were habitu-
ated to A-B-C-D-G sequences over six sessions, each on a different day,
without any violations of the pattern (Fig. 1F). After habituation, and
during calcium imaging, the stimuli were broken up into approximately
30 blocks of randomly determined durations, each composed of repeated
A-B-C-D-G sequences, as before. However, instead of comprising only
pattern-matching sequences, each block ended with pattern-violation
A-B-C-U-G sequences. In these sequences, the fourth image, D, was
replaced with an “un-matching” U image, which had different Gabor
locations and orientations. Specifically, the newly introduced U images
had unique random locations and the orientations of the Gabor patches
were resampled and shifted by 90◦ on average with respect to the preced-
ing A-B-C images. As such, the U images strongly violated the pattern
with regard to both Gabor patch locations and orientations. These
pattern-violating sequences comprised approximately 7% of the
sequences presented to the mice during the imaging sessions (Gillon et
al., 2023a).

Visual flow stimulus. The visual flow stimulus consisted of 105 white
squares moving uniformly across the screen at a velocity of 50 visual
degrees per second, with each square being 8 × 8 visual degrees in size.
The stimulus was split into two consecutive periods ordered randomly,
and each defined by themain direction in which the squares weremoving
(rightward or leftward, i.e., in the nasal-to-temporal direction or vice
versa, respectively). Flow violations were created by reversing the direc-
tion of flow of a randomly selected 25% of the squares for 2–4 s at a time,
following which they resumed their motion in the main direction of flow
(Fig. 6A). Similar to the Gabor sequence stimulus, the mice were habit-
uated to the visual flow stimulus without any violations (i.e., with no flow
reversals) for six days prior to the recording sessions. During the optical
recording sessions, the flow violations were introduced, and they
accounted for approximately 5% of the total duration of the visual flow
stimulus (Gillon et al., 2023a).

Analysis of locomotion and pupil diameter
Mice were head-fixed and placed on a disc on which they were free to run
for both habituation and imaging sessions. Running velocity was con-
verted from disc rotations per frame to cm/s. The velocities obtained
were then median-filtered using a kernel size of five frames. Any outliers,
which were identified using a single frame velocity change of >±50 cm/s,
were omitted from subsequent analysis.

Pupil diameter was tracked using an infrared LED on the ipsilateral
eye (relative to the monitor), allowing the recording of infrared video
(Allen Institute for Brain Science, 2017). Using DeepLabCut (Mathis et
al., 2018), we manually labeled ∼200 examples to train the algorithm
to automatically identify a constellation of points around the pupil.
We then estimated the pupil diameter (∼0.01mm per pixel conversion)
from these points (see code on GitHub: https://allensdk.readthedocs.io/
en/latest/allensdk.internal.brain_observatory.eye_calibration.html).
Again, outliers, defined here as single-frame diameter changes of at least
0.05mm, were omitted (as these appeared to be due to blinking). For
more details on the pre-processing of running velocity and pupil dia-
meter data, see Gillon et al. (2023a).

Each datapoint in Figure 8B corresponds to the difference in the
mean running velocity or pupil diameter for one block between the
pattern-violating and preceding pattern-matching Gabor sequences dur-
ing session 1, with all blocks being pooled across mice. We computed
p-values by comparing the mean difference over all blocks for each plane
to a distribution of mean differences obtained by pairwise shuffling the
pattern-violation and pattern-matching labels 104 times and calculating
the mean difference over all blocks for each shuffle.

Fluorescence trace analysis
For all results except those presented in Figures 5A, C, 10, and 11, ROIs
were pooled across all mice within an imaging plane for analyses.
To enable ROI pooling across mice within imaging planes, each ROI’s

ΔF/F trace was scaled using robust standardization, i.e., by subtracting
the median and then dividing by the inter-percentile range spanning
the 5th to 95th percentile. The only additional exceptions to this are
Figures 2C and 7a, where unscaled ΔF/F traces were used to ascertain
how the ΔF/F signal itself changed across sessions. We note that there
was no evidence for any changes over days as a result of bleaching or tis-
sue health as the overall signals did not change in magnitude or SNR over
days (Gillon et al., 2023a).

For Figure 2, A and B, ROI responses and differences in responses to
full pattern-matching (A-B-C-D-G) and pattern-violating (A-B-C-U-G)
sequences were obtained by first taking the meanΔF/F for each ROI across
Gabor sequences. Mean ΔF/F ± standard error of the mean (SEM) traces
were then computed across ROIs and plotted for each session and imaging
plane (Fig. 2A). The same analysis was run for Figure 3A, but in this case,
statistics were computed using only the responses to sequences from the
first third of each session (early part, left) or the last third (late part, right).
For Figure 2B, the differences in the traces plotted in Figure 2A were quan-
tified by integrating themeanΔF/F responses over time for each ROI.Mean
differences ± SEM between pattern-matching and pattern-violating
sequence responses were then calculated across ROIs and plotted for
each session and imaging plane. Similarly, for Figure 3B, differences were
computed separately for responses to sequences in the first third (early
part) and the last third (late part) of each session. To further compare
ROI responses to the pattern-matching vs pattern-violating stimuli, we
also considered the regular, always pattern-matching, component of the
Gabor sequences (A-B-C), and compared it to the pattern-violating
(U-G) stimuli. Specifically, for each ROI, a mean ΔF/F was calculated for
each set of Gabor images, and then across sequences (A-B-C vs U-G,
Fig. 2C). The mean ΔF/F values thus obtained for each ROI over a given
session were then normalized by dividing by the meanΔF/F for regular sti-
muli (A-B-C) across all ROIs from the samemouse in session 1. These nor-
malized means ± SEM over ROIs were then plotted for each session and
plane.

“Un-matching event” selectivity indices (USIs) (Fig. 4) were calcu-
lated for each ROI separately using Equation 1:

USI =
mviolating − mmatching�������������������������
1
2

s2
violating + s2

matching

( )√ (1)

where the means (mmatching and mviolating) and variances (s2
matching and

s2
violating) were calculated across integrated ΔF/F responses to the pattern-

matching and pattern-violating stimulus events, respectively. For the
Gabor sequences, pattern-matching event responses were defined as
those spanning D-G images, and pattern-violating events were defined
as those spanning U-G images, with each event therefore spanning
600ms. Indeed, G images were included in these events, as they did
not introduce any new stimuli, but did consistently show persisting
ROI responses toD orU images (Figs. 2A, 4A). For each ROI, in addition
to the true USI, a null distribution over USIs was obtained by randomly
reassigning the pattern-matching and pattern-violating event labels to
each response 104 times. USIs were deemed significantly low if they lay
below the 2.5th percentile, and significantly high if they lay above the
97.5th percentile of their null distribution (Fig. 4B).

Note that for Figure 4E, USIs were calculated using onlyD-G andU-G
stimuli for which the mean orientations were in {90◦ 135◦}, i.e., the ori-
entations shared by D and U images. For each imaging plane, the per-
centage of significant ROI USIs was then plotted with bootstrapped
standard deviations (SDs). Adjusted 95% CIs over chance levels were
estimated using the usual approximation method of the binomial CI,
with the sample size corresponding to the number of ROIs in the plane
(Fig. 4D–E).

Absolute fractional differences between sessions in the responses to
pattern-violating stimuli (Fig. 7B) or in USIs (Fig. 7E) were defined as:

mj − mi

mi

∣∣∣∣
∣∣∣∣ (2)
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where the subscripts {i, j}∈ {1, 2, 3} indicate the session over which the
mean μ is computed.

Pearson correlation coefficients, and the corresponding regression
slopes (Fig. 9) were calculated to compare ROI USIs in each imaging
plane between sessions. Bootstrapped SDs over these correlations for
each plane were then estimated, and adjusted 95% CIs were computed
by permuting the ROI labels, such that tracked ROIs were no longer
matched together. Here, one-tailed (lower tail) CIs were calculated to
identify correlations that were more negative than expected by chance.

For the orientation decoding analyses (Fig. 10), logistic regressions
were trained with an ℓ2 penalty on the multinomial task of classifying
the mean Gabor patch orientation for A, B, C, or D images
{0◦ 45◦ 90◦ 135◦} from pattern-matching sequences (A-B-C-D-G) or
for U images {90◦ 135◦ 180◦ 225◦} from pattern-violating sequences
(A-B-C-U-G). Balanced classifier accuracy was evaluated on the test
sets of 300 random cross-validation 75:25 train:test splits of the dataset
for each mouse. Importantly, since the A, B, C, andD image datasets nec-
essarily comprised many more examples than the U image datasets
(∼13x), they were first downsampled for each split to match the number
of examples in the corresponding U image datasets, thus enabling fairer
comparisons between the orientation classification results for the differ-
ent images. Input data consisted of the frame-concatenated ΔF/F
responses for all ROIs together from the onset of each image to 450ms
after. The input window was chosen to extend beyond the 300ms dura-
tion of each image in order to take into account the extended responses to
D and U images, as mentioned above in the USI definition. The traces
were standardized as described above, but using statistics drawn from
the training data only. Mean balanced accuracy across dataset splits
was calculated for each mouse, and the mean (± SEM) balanced accuracy
across mice was plotted for each session and plane. To estimate chance
accuracy, shuffled classifier performances were evaluated on 105 random
cross-validation dataset splits for each mouse. These classifiers were
trained as above, but for each split, the training set orientation targets
were shuffled randomly. Null distributions over mean performance
were obtained by averaging classifier accuracy for each split across
mice, from which adjusted one-tailed 95% CIs (upper tail) over accuracy
levels expected by chance were calculated for each session and plane.

A similar analysis was used for the timecourse orientation decoding
analyses (Fig. 11). The main difference was that, in this case, decoders
were trained on individual timepoints from either pattern-matching
(A-B-C-D-G) or pattern-violating (A-B-C-U-G) sequences. Thus, the
input data for the decoders consisted of single-frame ΔF/F responses
for all ROIs together, allowing an orientation prediction to be obtained
for each of the 45 timepoints in a sequence. Null CIs were obtained by
training 104 shuffled classifiers on each timepoint, and aggregated across
mice as described above. Other than these changes, the same decoder
training parameters were used as for Figure 10, including the downsam-
pling of the pattern-matching sequence timepoint examples to match the
number of pattern-violating sequence timepoint examples.

Statistical data analysis
For most analyses, mean ± SEM is reported. In cases where the error
could not be directly measured over the sample, e.g., the percentage of
significant ROI USIs reported in Figure 4D, a bootstrapped estimate of
the error was obtained by resampling the data with replacement 104

times. In these cases, the SD over the bootstrapped sample is plotted
instead, and this is visually signaled by the use of broader error caps
(Figs. 4D–E,H, 9C,F).

Significance tests, unless otherwise indicated, were computed non-
parametrically using permutation tests with 105 shuffles to construct
null distributions, based on which p-values could be estimated. Paired
permutations were used where appropriate, namely where data could
be shuffled between sessions for tracked ROIs (Figs. 4G,H, 5B, 7D,E),
between early and late session parts, for each ROI (Fig. 3B) or within
individual trials (Fig. 8B). Where p-values are reported, they are two-
tailed, with two exceptions. First, for Figure 9, one-tailed (lower) tests
were used to identify statistically significantly negative correlation values.
Second, for the decoder analyses (Figs. 10, 11), one-tailed (upper) tests
were used to assess whether decoding performance was statistically

significantly above chance. In addition, p-values were
Bonferroni-corrected for multiple comparisons to reduce the risk of
Type I errors (false positives). Where 95% confidence intervals (CIs)
are plotted, they are equivalently adjusted using a Bonferroni correction.
An exception was made for Figure 8B, which reports the relationship
between the stimuli and behavioral data. Here, Type II errors (false neg-
atives) were considered of greater concern, and thus we reported raw
two-tailed p-values in the panel itself. Similarly, to preserve statistical
power, timecourse orientation decoder p-values were not corrected for
the large number of timepoints decoded (45) (Fig. 11). Details of the sta-
tistical analyses for all figures, including number of comparisons and cor-
rected p-values, are presented in Table 1. (The same information is also
presented in Extended Table 1-1, in a spreadsheet format.)

Analysis software
Analyses were performed in Python 3.6 (Van Rossum and Drake, 2009)
with custom scripts that are freely available on GitHub (https://github.
com/colleenjg/OpenScope_CA_Analysis) to be redeployed by users
directly on the dataset. These scripts were developed using the following
packages: NumPy (Harris et al., 2020), SciPy (Virtanen et al., 2020),
Pandas (McKinney, 2010), Matplotlib (Hunter, 2007), Scikit-learn
0.21.1 (Pedregosa et al., 2011), and the AllenSDK 1.6.0 (https://github.
com/AllenInstitute/AllenSDK). Dendritic segmentation was run in
MATLAB 2019a (MATLAB, 2019) using the robust estimation algo-
rithm developed by (Inan et al., 2017, 2021). Pupil tracking was per-
formed using DeepLabCut 2.0.5 (Mathis et al., 2018). ROIs were
matched across sessions using a custom-modified version of the n-way
cell matching package developed by the Allen Institute (https://github.
com/AllenInstitute/ophys_nway_matching).

Results
Responses to pattern-matching and pattern-violating stimuli
evolve over days and differ between the somata and distal
apical dendrites
We wanted to determine whether the responses of somata and
apical dendrites to pattern-matching vs pattern-violating stimuli
differ, and how those responses evolve with increasing exposure
to the pattern-violating stimuli. To achieve this goal, we com-
pared the neural responses to the two different types of stimuli
over three sessions spread across multiple days. Recall that, prior
to these imaging sessions, the animals had been habituated to
A-B-C-D-G sequences with clear, repeating patterns, and that
starting with the first imaging session, they were exposed to these
same stimuli, but with the occasional introduction of pattern-
violating A-B-C-U-G sequences (see Materials and Methods).

First, we examined how population-wide responses to the sti-
muli changed over days. In the distal apical dendritic ROIs, the
difference in responses to pattern-violating (A-B-C-U-G) and
pattern-matching (A-B-C-D-G) sequences increased across
days, reaching statistical significance in both L2/3 and L5 by ses-
sion 3 (Fig. 2A,B, top). In contrast, by session 3, the response
differences in the somatic ROIs, which were statistically signifi-
cant in session 1 for L5-S, converged towards zero (Fig. 2A,B, bot-
tom). Indeed, specifically comparing the responses to the regular
sequence images (A-B-C) and the pattern-violating images
(U-G), we found that the average somatic ROI responses tended
to decrease for both pattern-matching and pattern-violating
images over time, though the effect was only statistically signifi-
cant in L2/3 (Fig. 2A–C, bottom). In contrast, in the distal apical
dendritic ROIs, we observed an increase in the average responses
to the pattern-violating images, but not to the regular sequence
images (Fig. 2A–C, top). We also examined whether some of
these between-session changes could be observed within a single
session (Fig. 3). We found that the difference in the responses to
D-G and U-G decreased or increased significantly within
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individual sessions in both L2/3 and L5 distal apical dendrites,
but not in the somatic planes. These results demonstrate that
the responses to the pattern-violating and pattern-matching
stimuli evolve differently in the somatic and apical dendritic
compartments.

One potential confound that must be considered is that the D
and the U images use different locations for the Gabor wavelets.
As a result, different neuronal responses to these images might be
driven simply by how they interact with each neuron’s receptive
field. However, although this explanation might have accounted

for differences in how individual neurons or dendritic segments
respond to these stimuli, it is statistically highly improbable that
this could account for the systematic differences observed in the
population-averaged apical and somatic compartments we
report here. This analysis averages over hundreds of ROIs and
hence over the variations in those ROIs’ receptive field proper-
ties. Moreover, the mice’s eyes were not fixed and could move
freely throughout the recording sessions, further reducing the
likelihood that any particular spatial pattern differences might
account for the observed ROI responses.
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Figure 2. ΔF/F responses to pattern-violating stimuli evolve over days. A, Mean (± SEM) across ROI mean ΔF/F responses to pattern-matching (gray, A-B-C-D-G) and pattern-violating (green
or blue, A-B-C-U-G) Gabor sequences. Dashed vertical lines mark onset of D/U images. B, Mean (± SEM) differences across ROIs in the mean integrated responses to pattern-matching vs
pattern-violating Gabor sequences, as defined in A. Gray bars show median (dark) and adjusted 95% CIs (light) over differences expected by chance. C, Mean (± SEM) across ROIs of the
mean ΔF/F responses across sequences for regular sequence images (gray diamonds: A-B-C) and pattern-violating images (green or blue circles: U-G). Responses are calculated relative to session
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The evolution of responses to pattern-matching and
pattern-violating stimuli in individual somata and apical
dendrite segments differ
Given our observations of changes in the responses to the Gabor
sequences at the population level, we wondered whether the same
effects would be observable for the tracked ROIs. This is impor-
tant because changes observed in the population-wide responses
could, in principle, be driven by only a few ROIs. To test this pos-
sibility, we examined the changes over days in the responses of

individual ROIs. For this analysis, we made use of our USI metric
(Eq. 1 in Materials and Methods) to quantify each ROI’s selectiv-
ity for the pattern-violating events. We then tracked how these
USIs changed over days, for each ROI.

On day 1—when the animals were first exposed to the
pattern-violating stimuli—many ROIs had clearly different
responses to the pattern-matching and pattern-violating images
(Fig. 4A, top and bottom traces). Specifically, we found that
many more ROIs had strongly negative or positive USIs than
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would be expected by chance, as has been previously observed
(Keller et al., 2012). To determine chance levels, we constructed
null distributions non-parametrically for each ROI by shuffling
the “pattern-matching” and “pattern-violating” labels for the sti-
mulus images 104 times, each time recomputing the USI on the
shuffled data (Fig. 4B; see Materials and Methods). These shuffles
yielded a null distribution over USI values for each ROI that
reflected the null hypothesis according to which there was no
difference in an ROI’s responses to pattern-matching vs pattern-
violating stimuli. We then identified the percentile of each ROI’s
real USI within its own null distribution: ROI USIs below the
2.5th percentile or above the 97.5th percentile were labeled as sta-
tistically significant (Fig. 4B). Across the population of ROIs, in
both L2/3 and L5 somata and dendrites, there were far more sign-
ificant USIs than would be predicted by chance (Fig. 4C,D). This
effect was consistent across individual mice, with 10 of the 11 ani-
mals showing a statistically significant effect (Fig. 5A). Notably,
when we restricted this analysis to sequences whose mean
Gabor patch orientations occurred for both D and U images,
namely 90◦ and 135◦, the USI percentages remained largely the
same, meaning that USI patterns did not reflect ROI preferences
for specific orientations of the Gabor patches (Fig. 4E). Thus, the
response differences we observed were unlikely to be a result of
differences in the responses to orientations of the Gabor patches
in the D and U images. Together, these data reinforce our aggre-
gate observations (Fig. 2), that the neurons respond differently to
the pattern-matching vs pattern-violating stimuli.

Next, we investigated how the USIs changed over days for
these tracked ROIs and found that in the somatic compartments,
the USIs converged towards zero over the three sessions (Fig. 4F–
H, bottom). In contrast, in the distal apical dendritic

compartments, the USIs increased significantly over the three
days. This effect was most prominent in L2/3-D (Fig. 4F,G,
top). These effects were generally consistent across mice
(Fig. 5C ). Thus, as with the population-level data, we saw evi-
dence for a difference in the evolution of responses in the somatic
and apical dendritic compartments: Whereas somatic compart-
ments became less sensitive to the distinction between pattern-
matching and pattern-violating stimuli over sessions, apical dendri-
tic compartments became more sensitive.

Note that, because the Gabor patch locations differ for the D
vs U images, each individual neuron’s USI can be influenced by
the manner in which its receptive field location overlaps with the
Gabor patch locations for the D vs U stimuli, in addition to the
pattern-violating vs pattern-matching nature of the stimuli.
Thus, caution is warranted when interpreting individual neu-
rons’ USI values. At the same time, the USI results are consistent
with the population-wide effects (e.g., those in Figs. 2, 4G,H )
which aggregate over many neurons (each with their own recep-
tive field structure) and hence are much less affected by this
potential confound.

Somata and apical dendrites respond similarly to the onset
of counter-flow
We next wondered whether the differences we observed between
the somatic and dendritic compartments reflected a general
difference in stimulus response properties. That is, could it be
that somata simply become less sensitive to stimulus differences
with exposure, whereas apical dendrites become more responsive
to stimulus differences? Or, is it really something about the
specifics of the pattern-matching and pattern-violation in the
stimuli?
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To address this question we examined the responses to a
visual flow stimulus, which presented the animals a set of drifting
squares, a subset of which would, at random times, start to drift
in the opposite direction to the main direction of flow
(counter-flow, Fig. 6A; see Materials andMethods). We reasoned
that this stimulus should induce responses in visual cortex, but
would not strongly deviate from previously experienced “pat-
terns,” per se, since animals will encounter objects that move in
a direction contrary to the direction of visual flow naturally in
their day-to-day lives. In examining the population responses
to the onset of counter-flow, we found that there was an interest-
ing difference between layers, with L2/3 somata and dendrites
responding to counter-flow onset, but not L5 somata and den-
drites (Fig. 6B) doing so. This was further confirmed by examin-
ing the difference in the integrated ΔF/F for population responses
to the onset of counter-flow and the preceding windows of time
with no counter-flow.We found that the responses to the onset of
counter-flow were statistically significantly larger than the
responses to uniform flow in L2/3 in both somatic and dendritic
compartments, and this tendency only increased slightly over
sessions (Fig. 6C, left). In contrast, in L5, we found that the differ-
ences were not statistically significant and remained so across
sessions (Fig. 6C, right). This is consistent with work by Jordan
and Keller (2020) showing that L2/3 neurons integrate visual
flow mismatch information, whereas L5 neurons do not appear
to do so.

We also did not observe any apparent differences between the
evolution of responses in the somatic and apical dendritic com-
partments in either L2/3 or L5 neurons (Fig. 6B,C ). Overall, we
observed fewer changes in the mean responses across sessions
to the visual flow stimuli than we had observed with the Gabor
stimuli (Fig. 7A,B). Similar results were obtained at the level of
individual ROIs when we calculated an equivalent to the USI
metric for the visual flow stimulus, with USIs that were consistent

across sessions and similar across compartments (Fig. 7C–E). As
such, these results do not support the hypothesis that there is a
general difference in the evolution of the stimulus sensitivity of
the somatic and apical dendritic compartments—either in gene-
ral, or in the presence of changes in the stimulus. Rather, it
suggests that the differences we observed in Figures 2 and 4
were due to the properties of our pattern-matching/violating
Gabor sequences.

Responses to pattern-matching and pattern-violating stimuli
are unlikely to be driven by behavior
Given the well-documented impact of behavior on visual-
neuronal activity (Niell and Stryker, 2010; Stringer et al., 2019;
Salkoff et al., 2020), we wondered whether the differences in
the responses to pattern-matching vs pattern-violating images
could have been driven by differences in the animals’ behavior
during the presentations of these two types of images. If so, these
behavioral differences could be reflected in the neuronal
responses in visual cortex, confounding our interpretation that
the differences in neuronal response were due to the pattern-
matching versus pattern-violating nature of the stimulus. To
test this possibility, we compared the animals’ running velocities
and pupil dilation during the pattern-matchingD images and the
pattern-violating U images (Fig. 8A). We found no significant
difference in either running velocity or pupil dilation forD versus
U images (Fig. 8B), suggesting that behavioral changes are not a
major confound in our analyses. Altogether, these data support
our conclusion that pattern-matching and pattern-violating sti-
muli are represented differently within the neocortical microcir-
cuit. Moreover, our findings in layer 2/3 somata align with those
observed in previous studies using similar stimuli (Homann et
al., 2022), though we are not aware of prior work that has exam-
ined the other three compartments under similar stimulus
conditions.
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Dendritic, but not somatic, ROIs reverse their selectivity for
pattern-violating vs pattern-matching stimuli between
days 1 and 2
Our preceding analyses showed that neurons in mouse VisP
respond differently to pattern-matching and pattern-violating
stimuli, that these responses evolve over days, and that there
may be a difference in this evolution between compartments

receiving primarily bottom-up or top-down information
(Figs. 2, 4). We next sought to identify more clearly the nature
of the changes in selectivity and determine whether there was a
difference between the somatic and dendritic compartments.

To achieve this goal, we examined the correlation between
ROI USIs in one session and the next. If an ROI’s selectivity
remains largely the same over days (i.e., an ROI that prefers
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Figure 9. Pattern-violating Gabor sequences result in predictable ΔF/F changes in distal apical dendritic ROIs. A, Gabor USI scatterplots showing correlations between sessions 1 and 2. Each
point reflects a single-tracked ROI’s USIs on two sessions. Gray contour lines show null distributions, computed by shuffling ROI labels. The estimated regression slopes for each plane (blue
or green, dashed) are plotted against the identity line (gray, dashed). Opposite quadrants are shaded in gray. B, Same as in A, but for Gabor sequence USIs in sessions 2 and 3. C, USI correlations
(± bootstrapped SD) from A and B. Gray bars show median (dark) and adjusted 95% CIs (light), computed by shuffling ROI labels. D, Same as in A, but for visual flow USIs in sessions 1 and
2. E, Same as in A, but for visual flow USIs in sessions 2 and 3. F, Same as in C, but for visual flow USI correlations. *p< 0.05, **p< 0.01, ***p< 0.001 (one-tailed (lower), corrected). See Table 1
for details of statistical tests and precise p-values for all comparisons.

Gillon, Pina et al. • Responses to Pattern-Violating Visual Stimuli J. Neurosci., January 31, 2024 • 44(5):e1009232023 • 11



pattern-violating stimuli continues to prefer pattern-violating
stimuli), then the second day’s USI should resemble the first
day’s, plus some noise, and hence we should find positive corre-
lations between USIs across days. Conversely, negative correla-
tions between days are evidence of a reversal in preferred
stimuli, wherein ROIs switch from responding more strongly
to pattern-violating stimuli to responding more strongly to
pattern-matching stimuli (or vice-versa).

To determine whether correlations were significantly different
from what would be expected if there were no relationship
between an ROI’s USI in one session and the next, we computed
null distributions for each imaging plane and session pair by
shuffling the ROI labels 105 times within each session.
Correlation values below these null distributions were

interpreted as reflecting a statistically significant negative corre-
lation between USI values across sessions for individual ROIs.

In the somatic compartments, we found no statistically sign-
ificant correlations between ROI USIs in one session and the next
(Fig. 9A–C, bottom). This suggests that, since the overall popula-
tion tendency is for somatic ROI USIs to converge towards zero
over days (Fig. 4F–H, bottom), individual ROI USIs on one day
are not linearly predictive of their values on a subsequent day.
In contrast, ROI USIs in both distal apical dendritic compart-
ments were negatively correlated from session 1 to 2 (Fig. 9A–
C, top). As Figure 9, A and B, shows, this reflects a tendency
for the higher distal apical dendritic ROI USIs to decrease from
day 1 to day 2 (bottom right quadrants), and for the lower ones
to increase even more strongly (top left quadrants).
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Changes in responses to pattern-matching and
pattern-violating stimuli alter stimulus decodability
So far, our analyses have demonstrated that neural activity
in the somata and distal apical dendrites of L2/3 and L5 neu-
rons in VisP reflects whether or not stimuli match previous
patterns, and this property evolves across days differently in
the somatic and apical dendritic compartments. We next
aimed to determine whether the decodable information
about the orientations of the Gabors was altered as selectivity
for the pattern-matching and pattern-violating stimuli
changed.

To address this question, we trained logistic regression clas-
sifiers to identify the mean Gabor patch orientation from the
recorded neural responses. Using a cross-validation approach
with 300 random splits, we trained the classifiers for each animal
and session on 75% of the data, testing them on the remaining
(held-out) 25%. Specifically, we trained the classifiers on
responses to each Gabor image in order to see whether the activ-
ity associated with different images contained different amounts
of orientation information. Indeed, we found that there seemed
to be increasing amounts of information as the sequences pro-
gressed from A to D/U images. ROI responses to A images
encoded the least amount of orientation information, with only
L2/3-S having above-chance decoder performance (Fig. 10A).
ROI responses to B, C, D, and U images each contained progres-
sively greater numbers of sessions across planes with above-
chance decoder performance levels, with D- and U-image
responses each having only two sessions with chance-level deco-
der performance (Fig. 10A–E). L2/3-S was the only plane with

responses that did not yield appreciably different decoder perfor-
mance across the Gabor images, maintaining above-chance per-
formance for all sessions and images.

Focusing on the classification of U images, compared to D
images, when trained on pattern-matching D images, we found
that both the somatic and distal apical dendrite compartment
classifiers performed significantly above chance in all cases on
session 1 (Fig. 10D). Across sessions, decoder performances
remained above chance, in most cases, with no systematic
upward or downward trend. However, when trained on pattern-
violating U images, the decoding results for U images showed
trends paralleling the evolution of the USIs in the different com-
partments (Fig. 10E). Specifically, decoding performance in the
distal apical dendrites started near or at chance in session 1, clear-
ing the chance range by session 2, at ∼60% performance. In con-
trast, in the somatic compartments, decoding performance
started near 60%, but approached or reached chance level by ses-
sions 2 and 3. Further analyses with a larger dataset are needed to
confirm these trends. Nonetheless, these results show that both
the somata and distal apical dendrites of L2/3 and L5 neurons
carry detailed information about features relevant to determining
whether the stimulus being viewed matches or violates the habit-
uated pattern, and that this evolves differently over days in the
somatic and apical dendritic compartments. The same trends
can be seen in greater temporal detail in Figure 11. In particular,
the decoder performance for the apical dendrites remains quite
low during responses to images A, B, and C, but is generally
higher for D and U. In addition, the decodability of the U image
orientations generally increased over the sessions in the apical
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dendrites, but decreased in the somata, in line with the analysis
run on concatenated frames (Fig. 10E).

Discussion
In this study, we explored how responses to visual stimuli that
either matched or violated habituated patterns change with
increasing exposure. We studied this phenomenon in both somata
and distal apical dendrites of pyramidal cells in primary visual cor-
tex in order to examine potential differences between these com-
partments, which receive largely bottom-up and largely
top-down inputs, respectively (Budd, 1998; Jiang et al., 2013;
Larkum, 2013; Marques et al., 2018). First, we observed that neu-
rons responded differently to stimuli that were pattern-matching
vs pattern-violating, in line with other work (Keller et al., 2012;
Homann et al., 2022). Second, we found that neural responses to
the pattern-violating stimuli changed over days. In contrast, the
responses to the visual flow stimuli were more stable, suggesting
that the pattern-violating stimuli drove stimulus-specific changes.
Third, the evolution of these responses over days differed between
the distal apical dendrites versus the cell bodies. Fourth, we found
that the sensitivity of distal apical dendrites to pattern-violating sti-
muli on one day changed systematically by the next day, but this
was not observed in the somata. Finally, we found that our ability
to decode orientation information about pattern-violating stimuli
evolved differently in the somatic and dendritic ROIs. Importantly,
for several of the analyses, we obtained the same results in both L2/
3 and L5 pyramidal neurons, even though those recordings were
done in different animals, which increases our confidence in the
robustness of the findings.

Notably, our results do not immediately support a simple ver-
sion of predictive coding wherein excitatory neurons exclusively
encode prediction errors: this is because prediction errors associ-
ated with pattern-violating stimuli should decrease over time as
the animal gains exposure to those stimuli—and can thus incor-
porate those stimuli into their set of experiences—whereas we see
increasing sensitivity over days to the pattern-violating stimuli in
the neurons distal apical dendrites. The finding that the differ-
ence in distal apical dendritic signals grows at a population level
with exposure to the pattern-violating stimuli may thus be coun-
ter to proposals implementing predictive coding by using the dis-
tal apical dendrite as a site for prediction error calculations
(Sacramento et al., 2018; Whittington and Bogacz, 2019). At
the same time, the responses to pattern-violating stimuli in the
somata did decrease over time, which is more in line with an
encoding of prediction errors at the soma (but not throughout
the entire cell). This suggests that different types of information
are reflected in the different compartments of the neurons.

In fact, whereas the somata became less attuned to the
pattern-violating stimuli over sessions, the dendritic responses
became more attuned to them, as reflected by our increased abil-
ity to decode the orientations of the U images (Fig. 10E). This
may reflect changes in the brain's internal model, encoded in
higher-order associative regions, i.e., as an animal gains exposure
to the pattern violations, they are incorporated into its higher-
order models and subsequent predictions. As such, the increased
decodability could reflect learning to better predict the upcoming
U image orientations, and passing this information down
through the apical dendrites. Thus, although the increased
responses and decodability of the U images in the apical den-
drites were initially surprising to us, we do not believe that
they are at odds with the concept of predictive coding in visual
cortex, per se. Rather, our observations may constrain specific

predictive coding implementations and imply that models of cor-
tical computation should treat the somata and apical dendrites
differently.

Another apparent complication that our data present for a
predictive coding hypothesis is that, while the Gabor stimuli
evoked pattern-violation selectivity that developed over days,
the visual flow stimuli did not elicit strong pattern-violation
effects in the L5 somata or apical dendrites on any of the recording
days. Moreover, for both somata and apical dendrites, the L2/3
ROIs were sensitive to the differences between the D and U images
on session 1 and remained so over the three sessions. Why would
this visual flow stimulus produce different evolution over sessions
as compared to the Gabor sequences? One possible explanation is
that the onset of the counter-flow is itself never predictable (the
timing of that onset was randomized in our experiments), and, at
the same time, the animals have likely encountered objects moving
counter to the direction of visual flow during their everyday
activities. Hence, these stimuli may trigger a different form of pre-
diction error, i.e., for a commonly-encountered stimulus property
occurring at an unpredictable time. This is very different from
our Gabor stimulus, where the timing of the pattern violation is
more predictable, but the content of the pattern violation is initially
unpredictable. Our results thus imply that different forms of
pattern-violating stimuli may elicit different forms of prediction
error in the neocortical microcircuit. Future work should further
explore responses to different forms of pattern-violating stimuli.

There are a number of limitations to this work that must be
recognized. First, as noted, we were not recording somata and
distal apical dendrites in the same neurons. Thus, even though
we saw very different evolutions in the responses of the distal api-
cal dendrites and somata to the Gabor sequence stimulus, we
cannot say with certainty that these differences hold within indi-
vidual cells. Previous studies that have examined coupling
between somata and distal apical dendrites within individual
recording sessions have shown mixed results. Distal apical L2/3
dendrites in mouse VisP have been shown to have local bursting
events that have similar but qualitatively different orientation
selectivities compared to those from their simultaneously
recorded somata (Smith et al., 2013). Other studies have found
strong coupling between dendrites and somata (Beaulieu-
Laroche et al., 2019; Francioni et al., 2019). However, those stud-
ies recorded from locations in L5 pyramidal neurons that were
much closer together than in the present work, and data from
mouse motor cortex demonstrates that the coupling strengths
fall off exponentially with distance for L2/3 and L5 pyramidal
neurons (Kerlin et al., 2019). Moreover, this last study found
that task-associated events were clustered and compartmental-
ized within ∼10 μm inside dendritic-branch segments and not
widely spread throughout the dendritic tree. Research in rat cor-
tex has shown that inhibition can modulate the coupling of
somata and distal apical dendrites of L2/3 pyramidal cells, pro-
viding a potential mechanism for context-dependent coupling
(Larkum et al., 2007).

Together, this body of work supports the idea that the
strength of the coupling between somata and distal apical den-
drites in L2/3 and L5 neurons varies depending on context.
Consistent with this potential context dependence, we saw clear
differences in the evolution of selectivity for pattern-violating
Gabor sequences over time between the somatic and distal apical
dendritic compartments, but we did not see these differences in
response to the pattern-matching Gabor sequence images
(Figs. 2C, 5B) or the visual flow stimuli (Fig. 7). Since these obser-
vations were reasonably consistent across mice (Fig. 5C), it seems
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likely that these results would hold within individual neurons. At
the same time, future work using simultaneous multiplane imag-
ing will be critical to confirm and expand upon these findings. In
summary, our findings of differences between somata and distal
apical dendrites are consistent with previous reports of imperfect
and potentially context-dependent dendro-somatic coupling in
mouse cortical pyramidal cells.

A second relevant limitation is that, though we examined the
distal apical dendrites separately from the somata specifically in
order to identify potential differences in the processing of top-
down and bottom-up inputs, an ideal experiment would record
simultaneously from other higher-order brain regions and their
projections into visual cortex (Leinweber et al., 2017; Marques
et al., 2018). This would help determine whether the signals we
saw in the distal apical dendrites were being calculated locally
or in other regions.

A third limitation, given the nature of our visual stimuli, is
that we were unable to measure either the classical receptive
fields or the orientation tuning of the neurons. As such, we can-
not state with certainty whether these factors could explain the
differences in how individual cells responded to pattern-
matching vs pattern-violating stimuli. However, we observed
our results in aggregate across large populations of recorded neu-
rons, with likely diverse orientation tuning properties and recep-
tive fields. Moreover, the mice’s eyes could and did move
continuously throughout the sessions, so that the same places
on the screen fell onto different neurons’ receptive fields at differ-
ent times. Thus, it is unlikely that idiosyncracies of individual
neurons’ orientation selectivities or receptive field locations
could entirely account for the pattern-violating event responses.
This assertion is supported, in part, by our finding that even
when we only compared responses for pattern-matching and
pattern-violating images with the same mean orientation we still
observed significant differences in the responses (Fig. 4E).
Moreover, we observed significant changes in pattern-violating
event selectivity over days, whereas classical receptive fields
and orientation tuning of neurons in mouse VisP are known to
be relatively stable over these timescales (Montijn et al., 2016).

Fourth, these experiments were open-loop, and thus did not
incorporate any of the patterns of sensorimotor coupling that
the animal would have experienced for a lifetime. On one
hand, this is a limitation as it reduces our ability to directly com-
pare our results to the numerous reports of apparent sensorimo-
tor predictions and prediction error signals in visual cortex
(Keller et al., 2012; Zmarz and Keller, 2016; Leinweber et al.,
2017). On the other hand, the fact that we saw evidence for an
evolution of responses in the open-loop setting suggests that
these changes might be driven by pattern violations in sensory
data, even in the absence of sensorimotor feedback. Notably, the
open-loop nature of our experiments also makes our experimental
paradigmdifferent from the situationmodeled by Sacramento et al.
(2018) and Whittington and Bogacz (2019), wherein top-down
supervisory signals were assumed to be present. This could be
another reason why we observed prediction-error like activity in
the somata and not the apical dendrites.

Finally, it must be recognized that different sensory stimuli,
which can present different forms of pattern violation, and
recordings in different brain regions may produce different
results. To more fully assess hierarchical predictive processing,
future work should thoroughly explore the space of possible
pattern-matching and pattern-violating sensory stimuli, and
recordings of other regions of the neocortex.

A long-standing goal of neuroscience is to understand how
our brains process the sensory data that we receive from the
world around us. In this work, we monitored changes in the
responses of visual cortical neurons in mice that were exposed
to external stimuli violating habituated patterns, and found
that these changes were different in the somatic and distal apical
dendritic compartments of both supra-granular and sub-
granular pyramidal neurons. Looking forward, we anticipate
that these findings could help uncover models describing the
brain’s hierarchical predictive processing and mechanisms of
learning.
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Table 1. Summary of statistical tests and results. See Extended Table 1-1 for a spreadsheet version of this table.

Fig. Panel Comparison Bonferroni correction Corrected p-value Signif.

2 B L2/3-D sess. 1 to null 105 24 1.000 n.s.
sess. 2 to null permutations comparisons 1.000 n.s.
sess. 3 to null <0.001 p< 0.001
sess. 1 vs 2 <0.001 p< 0.001
sess. 1 vs 3 <0.001 p< 0.001
sess. 2 vs 3 <0.001 p< 0.001

L2/3-S sess. 1 to null 1.000 n.s.
sess. 2 to null 0.258 n.s.
sess. 3 to null 1.000 n.s.
sess. 1 vs 2 1.000 n.s.
sess. 1 vs 3 1.000 n.s.
sess. 2 vs 3 0.182 n.s.

L5-D sess. 1 to null 1.000 n.s.
sess. 2 to null <0.001 p< 0.001
sess. 3 to null <0.001 p< 0.001
sess. 1 vs 2 <0.001 p< 0.001
sess. 1 vs 3 <0.001 p< 0.001
sess. 2 vs 3 0.020 p< 0.05

L5-S sess. 1 to null <0.001 p< 0.001
sess. 2 to null 1.000 n.s.
sess. 3 to null 1.000 n.s.
sess. 1 vs 2 0.755 n.s.
sess. 1 vs 3 0.011 p< 0.05
sess. 2 vs 3 1.000 n.s.

C L2/3-D sess. 1 vs 2 reg. 105 24 1.000 n.s.
patt.viol. permutations comparisons <0.001 p< 0.001

sess. 1 vs 3 reg. 1.000 n.s.
patt.viol. <0.001 p< 0.001

sess. 2 vs 3 reg. 1.000 n.s.
patt.viol. 1.000 n.s.

L2/3-S sess. 1 vs 2 reg. 1.000 n.s.
patt.viol. 1.000 n.s.

sess. 1 vs 3 reg. 1.000 n.s.
patt.viol. <0.001 p< 0.001

sess. 2 vs 3 reg. 0.018 p< 0.05
patt.viol. <0.001 p< 0.001

L5-D sess. 1 vs 2 reg. 1.000 n.s.
patt.viol. <0.001 p< 0.001

sess. 1 vs 3 reg. <0.001 p< 0.001
patt.viol. <0.001 p< 0.001

sess. 2 vs 3 reg. <0.001 p< 0.001
patt.viol. 1.000 n.s.

L5-S sess. 1 vs 2 reg. 1.000 n.s.
patt.viol. 0.814 n.s.

sess. 1 vs 3 reg. 0.118 n.s.
patt.viol. 1.000 n.s.

sess. 2 vs 3 reg. 1.000 n.s.
patt.viol. 1.000 n.s.

3 B L2/3-D sess. 1 105 12 <0.001 p< 0.001
sess. 2 permutations comparisons 1.000 n.s.
sess. 3 <0.001 p< 0.001

L2/3-S sess. 1 1.000 n.s.
sess. 2 1.000 n.s.
sess. 3 0.660 n.s.

L5-D sess. 1 <0.001 p< 0.001
(Table continues.)
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Table 1. Continued

Fig. Panel Comparison Bonferroni correction Corrected p-value Signif.

(3) (B) (L5-D) sess. 2 (105 (12 <0.001 p< 0.001
sess. 3 permutations) comparisons) 1.000 n.s.

L5-S sess. 1 1.000 n.s.
sess. 2 1.000 n.s.
sess. 3 0.297 n.s.

4 D L2/3-D to null binomial 8 <0.001 p< 0.001
left L2/3-S to null null CI comparisons <0.001 p< 0.001

L5-D to null <0.001 p< 0.001
L5-S to null 0.004 p< 0.01

D L2/3-D to null <0.001 p< 0.001
right L2/3-S to null <0.001 p< 0.001

L5-D to null <0.001 p< 0.001
L5-S to null <0.001 p< 0.001

E L2/3-D to null binomial 8 <0.001 p< 0.001
left L2/3-S to null null CI comparisons <0.001 p< 0.001

L5-D to null <0.001 p< 0.001
L5-S to null <0.001 p< 0.001

E L2/3-D to null <0.001 p< 0.001
right L2/3-S to null <0.001 p< 0.001

L5-D to null <0.001 p< 0.001
L5-S to null <0.001 p< 0.001

G L2/3-D sess. 1 vs 2 105 12 1.000 n.s.
sess. 1 vs 3 permutations comparisons <0.001 p< 0.001
sess. 2 vs 3 <0.001 p< 0.001

L2/3-S sess. 1 vs 2 0.374 n.s.
sess. 1 vs 3 <0.001 p< 0.001
sess. 2 vs 3 <0.001 p< 0.001

L5-D sess. 1 vs 2 <0.001 p< 0.001
sess. 1 vs 3 <0.001 p< 0.001
sess. 2 vs 3 1.000 n.s.

L5-S sess. 1 vs 2 <0.001 p< 0.001
sess. 1 vs 3 0.004 p< 0.01
sess. 2 vs 3 0.683 n.s.

H L2/3-D sess. 1 vs 2 105 12 1.000 n.s.
sess. 1 vs 3 permutations comparisons 1.000 n.s.
sess. 2 vs 3 0.647 n.s.

L2/3-S sess. 1 vs 2 1.000 n.s.
sess. 1 vs 3 <0.001 p< 0.001
sess. 2 vs 3 <0.001 p< 0.001

L5-D sess. 1 vs 2 0.077 n.s.
sess. 1 vs 3 0.008 p< 0.01
sess. 2 vs 3 1.000 n.s.

L5-S sess. 1 vs 2 <0.001 p< 0.001
sess. 1 vs 3 0.002 p< 0.01
sess. 2 vs 3 0.944 n.s.

5 A L2/3-D ∼6% binomial 22 <0.001 p< 0.001
left ∼24% null CI comparisons <0.001 p< 0.001

L2/3-S ∼5% 0.503 n.s.
∼6% 0.463 n.s.
∼45% <0.001 p< 0.001

L5-D ∼1% <0.001 p< 0.001
∼6% 0.095 n.s.
∼24% <0.001 p< 0.001

L5-S ∼6% 0.542 n.s.
∼7% 0.330 n.s.
∼13% 0.250 n.s.

(Table continues.)
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Table 1. Continued

Fig. Panel Comparison Bonferroni correction Corrected p-value Signif.

(5) A L2/3-D ∼2% (binomial (22 1.000 n.s.
right ∼9% null CI) comparisons) <0.001 p< 0.001

L2/3-S ∼3% 1.000 n.s.
∼9% <0.001 p< 0.001
∼51% <0.001 p< 0.001

L5-D ∼1% 0.202 n.s.
∼6% 0.032 p< 0.05
∼10% <0.001 p< 0.001

L5-S ∼7% 1.000 n.s.
∼32% <0.001 p< 0.001
∼34% <0.001 p< 0.001

B L2/3-D sess. 1 vs 2 reg. 105 24 1.000 n.s.
patt.viol. permutations comparisons 0.003 p< 0.01

sess. 1 vs 3 reg. 0.215 n.s.
patt.viol. <0.001 p< 0.001

sess. 2 vs 3 reg. 1.000 n.s.
patt.viol. 1.000 n.s.

L2/3-S sess. 1 vs 2 reg. 1.000 n.s.
patt.viol. 1.000 n.s.

sess. 1 vs 3 reg. 0.302 n.s.
patt.viol. <0.001 p< 0.001

sess. 2 vs 3 reg. <0.001 p< 0.001
patt.viol. <0.001 p< 0.001

L5-D sess. 1 vs 2 reg. 1.000 n.s.
patt.viol. <0.001 p< 0.001

sess. 1 vs 3 reg. 0.050 n.s.
patt.viol. <0.001 p< 0.001

sess. 2 vs 3 reg. 0.006 p< 0.01
patt.viol. 1.000 n.s.

L5-S sess. 1 vs 2 reg. 1.000 n.s.
patt.viol. 0.136 n.s.

sess. 1 vs 3 reg. <0.001 p< 0.001
patt.viol. <0.001 p< 0.001

sess. 2 vs 3 reg. 1.000 n.s.
patt.viol. 1.000 n.s.

6 C L2/3-D sess. 1 to null 105 24 <0.001 p< 0.001
sess. 2 to null permutations comparisons <0.001 p< 0.001
sess. 3 to null <0.001 p< 0.001
sess. 1 vs 2 1.000 n.s.
sess. 1 vs 3 <0.001 p< 0.001
sess. 2 vs 3 <0.001 p< 0.001

L2/3-S sess. 1 to null 0.002 p< 0.01
sess. 2 to null <0.001 p< 0.001
sess. 3 to null <0.001 p< 0.001
sess. 1 vs 2 1.000 n.s.
sess. 1 vs 3 0.132 n.s.
sess. 2 vs 3 1.000 n.s.

L5-D sess. 1 to null 1.000 n.s.
sess. 2 to null 1.000 n.s.
sess. 3 to null 1.000 n.s.
sess. 1 vs 2 <0.001 p< 0.001
sess. 1 vs 3 <0.001 p< 0.001
sess. 2 vs 3 <0.001 p< 0.001

L5-S sess. 1 to null 1.000 n.s.
sess. 2 to null 1.000 n.s.

(Table continues.)
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Table 1. Continued

Fig. Panel Comparison Bonferroni correction Corrected p-value Signif.

(6) (C) (L5-S) sess. 3 to null (105 (24 1.000 n.s.
sess. 1 vs 2 permutations) comparisons) 1.000 n.s.
sess. 1 vs 3 1.000 n.s.
sess. 2 vs 3 1.000 n.s.

7 A L2/3-D sess. 1 vs 2 unif.flow 105 24 0.152 n.s.
count.flow permutations comparisons 1.000 n.s.

sess. 1 vs 3 unif.flow 0.095 n.s.
count.flow 0.185 n.s.

sess. 2 vs 3 unif.flow 1.000 n.s.
count.flow 0.003 p< 0.01

L2/3-S sess. 1 vs 2 unif.flow 1.000 n.s.
count.flow 1.000 n.s.

sess. 1 vs 3 unif.flow 1.000 n.s.
count.flow 1.000 n.s.

sess. 2 vs 3 unif.flow 1.000 n.s.
count.flow 1.000 n.s.

L5-D sess. 1 vs 2 unif.flow <0.001 p< 0.001
count.flow <0.001 p< 0.001

sess. 1 vs 3 unif.flow <0.001 p< 0.001
count.flow 0.057 n.s.

sess. 2 vs 3 unif.flow 1.000 n.s.
count.flow 0.344 n.s.

L5-S sess. 1 vs 2 unif.flow 0.072 n.s.
count.flow 0.067 n.s.

sess. 1 vs 3 unif.flow 1.000 n.s.
count.flow 1.000 n.s.

sess. 2 vs 3 unif.flow 1.000 n.s.
count.flow 0.621 n.s.

B L2/3-D gabors vs vis. flow 105 5 <0.001 p< 0.001
L2/3-S gabors vs vis. flow permutations comparisons <0.001 p< 0.001
L5-D gabors vs vis. flow <0.001 p< 0.001
L5-S gabors vs vis. flow 1.000 n.s.
all gabors vs vis. flow <0.001 p< 0.001

D L2/3-D sess. 1 vs 2 105 12 1.000 n.s.
sess. 1 vs 3 permutations comparisons 0.034 p< 0.05
sess. 2 vs 3 0.147 n.s.

L2/3-S sess. 1 vs 2 1.000 n.s.
sess. 1 vs 3 <0.001 p< 0.001
sess. 2 vs 3 0.026 p< 0.05

L5-D sess. 1 vs 2 1.000 n.s.
sess. 1 vs 3 1.000 n.s.
sess. 2 vs 3 0.588 n.s.

L5-S sess. 1 vs 2 1.000 n.s.
sess. 1 vs 3 1.000 n.s.
sess. 2 vs 3 1.000 n.s.

E L2/3-D gabors vs vis. flow 105 5 0.650 n.s.
L2/3-S gabors vs vis. flow permutations comparisons 1.000 n.s.
L5-D gabors vs vis. flow 0.005 p< 0.01
L5-S gabors vs vis. flow 0.243 n.s.
all gabors vs vis. flow <0.001 p< 0.001

(Table continues.)
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Table 1. Continued

Fig. Panel Comparison Bonferroni correction Corrected p-value Signif.

8 B L2/3-D to null 104 4 1.000 n.s.
left L2/3-S to null permutations comparisons 1.000 n.s.

L5-D to null 1.000 n.s.
L5-S to null 1.000 n.s.

B L2/3-D to null 104 4 1.000 n.s.
right L2/3-S to null permutations comparisons 0.782 n.s.

L5-D to null 1.000 n.s.
L5-S to null 1.000 n.s.

9 C L2/3-D sess. 1 vs 2 to null 105 8 <0.001 p< 0.001
sess. 2 vs 3 to null permutations comparisons 1.000 n.s.

L2/3-S sess. 1 vs 2 to null (lower tail) 0.843 n.s.
sess. 2 vs 3 to null 1.000 n.s.

L5-D sess. 1 vs 2 to null <0.001 p< 0.001
sess. 2 vs 3 to null 1.000 n.s.

L5-S sess. 1 vs 2 to null 1.000 n.s.
sess. 2 vs 3 to null 1.000 n.s.

F L2/3-D sess. 1 vs 2 to null 105 8 1.000 n.s.
sess. 2 vs 3 to null permutations comparisons 1.000 n.s.

L2/3-S sess. 1 vs 2 to null (lower tail) 1.000 n.s.
sess. 2 vs 3 to null 1.000 n.s.

L5-D sess. 1 vs 2 to null 1.000 n.s.
sess. 2 vs 3 to null 1.000 n.s.

L5-S sess. 1 vs 2 to null 1.000 n.s.
sess. 2 vs 3 to null 1.000 n.s.

10 A L2/3-D sess. 1 to null 105 60 1.000 n.s.
sess. 2 to null permutations comparisons 1.000 n.s.
sess. 3 to null (upper tail) 1.000 n.s.

L2/3-S sess. 1 to null <0.001 p< 0.001
sess. 2 to null 0.005 p< 0.01
sess. 3 to null 0.017 p< 0.05

L5-D sess. 1 to null 0.337 n.s.
sess. 2 to null 1.000 n.s.
sess. 3 to null 1.000 n.s.

L5-S sess. 1 to null 0.706 n.s.
sess. 2 to null 1.000 n.s.
sess. 3 to null 1.000 n.s.

B L2/3-D sess. 1 to null 1.000 n.s.
sess. 2 to null 0.232 n.s.
sess. 3 to null 0.127 n.s.

L2/3-S sess. 1 to null <0.001 p< 0.001
sess. 2 to null <0.001 p< 0.001
sess. 3 to null <0.001 p< 0.001

L5-D sess. 1 to null 0.008 p< 0.01
sess. 2 to null 0.020 p< 0.05
sess. 3 to null 0.063 n.s.

L5-S sess. 1 to null 0.032 p< 0.05
sess. 2 to null 0.509 n.s.
sess. 3 to null 0.085 n.s.

C L2/3-D sess. 1 to null 0.471 n.s.
sess. 2 to null 0.002 p< 0.01
sess. 3 to null 0.116 n.s.

L2/3-S sess. 1 to null <0.001 p< 0.001
sess. 2 to null <0.001 p< 0.001
sess. 3 to null <0.001 p< 0.001

(Table continues.)
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Table 1. Continued

Fig. Panel Comparison Bonferroni correction Corrected p-value Signif.

(10) (C) L5-D sess. 1 to null (105 (60 0.029 p< 0.05
sess. 2 to null permutations comparisons) <0.001 p< 0.001
sess. 3 to null (upper tail)) 0.004 p< 0.01

L5-S sess. 1 to null 0.092 n.s.
sess. 2 to null 0.159 n.s.
sess. 3 to null <0.001 p< 0.001

D L2/3-D sess. 1 to null <0.001 p< 0.001
sess. 2 to null 0.002 p< 0.01
sess. 3 to null 0.114 n.s.

L2/3-S sess. 1 to null <0.001 p< 0.001
sess. 2 to null <0.001 p< 0.001
sess. 3 to null <0.001 p< 0.001

L5-D sess. 1 to null 0.001 p< 0.01
sess. 2 to null 0.012 p< 0.05
sess. 3 to null 0.011 p< 0.05

L5-S sess. 1 to null 0.001 p< 0.01
sess. 2 to null 1.000 n.s.
sess. 3 to null <0.001 p< 0.001

E L2/3-D sess. 1 to null 0.439 n.s.
sess. 2 to null <0.001 p< 0.001
sess. 3 to null 0.002 p< 0.01

L2/3-S sess. 1 to null <0.001 p< 0.001
sess. 2 to null <0.001 p< 0.001
sess. 3 to null 0.004 p< 0.01

L5-D sess. 1 to null 0.037 p< 0.05
sess. 2 to null <0.001 p< 0.001
sess. 3 to null <0.001 p< 0.001

L5-S sess. 1 to null <0.001 p< 0.001
sess. 2 to null 0.473 n.s.
sess. 3 to null 0.047 p< 0.05

11 A L2/3-D D sequences 104 8 2/45 pts p< 0.05
U sequences permutations comparisons 0/45 pts p< 0.05

L2/3-S D sequences (upper tail) 40/45 pts p< 0.05
U sequences 36/45 pts p< 0.05

L5-D D sequences 0/45 pts p< 0.05
U sequences 4/45 pts p< 0.05

L5-S D sequences 5/45 pts p< 0.05
U sequences 11/45 pts p< 0.05

B L2/3-D D sequences 104 8 0/45 pts p< 0.05
U sequences permutations comparisons 2/45 pts p< 0.05

L2/3-S D sequences (upper tail) 20/45 pts p< 0.05
U sequences 19/45 pts p< 0.05

L5-D D sequences 3/45 pts p< 0.05
U sequences 6/45 pts p< 0.05

L5-S D sequences 0/45 pts p< 0.05
U sequences 0/45 pts p< 0.05

C L2/3-D D sequences 104 8 0/45 pts p< 0.05
U sequences permutations comparisons 2/45 pts p< 0.05

L2/3-S D sequences (upper tail) 20/45 pts p< 0.05
U sequences 18/45 pts p< 0.05

L5-D D sequences 0/45 pts p< 0.05
U sequences 13/45 pts p< 0.05

L5-S D sequences 6/45 pts p< 0.05
U sequences 1/45 pts p< 0.05
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