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Abstract

Clinical studies show that chronic pain is accompanied by memory deficits and reduction
in hippocampal volume. Experimental studies show that spared nerve injury (SNI) of
sciatic nerve induces long-term potentiation (LTP) at C-fiber synapses in spinal dorsal
horn but impairs LTP in hippocampus. The opposite changes may contribute to
neuropathic pain and memory deficits, respectively. However, the cellular and molecular
mechanisms underlying the functional synaptic changes are unclear. Here we show that the
dendrite lengths and spine densities are significantly reduced in hippocampal CA1
pyramidal neurons but increased in spinal neurokinin-1-positive neurons in mice after SNI,
indicating that the excitatory synaptic connectivity is reduced in hippocampus but
enhanced in spinal dorsal horn in this neuropathic pain model. Mechanistically, tumor
necrosis factor-a (TNF-a) is up-regulated in bilateral hippocampus and in ipsilateral spinal
dorsal horn, while brain derived neurotrophic factor (BDNF) is decreased in the
hippocampus but increased in the ipsilateral spinal dorsal horn following SNI. Importantly,
the SNI-induced opposite changes in synaptic connectivity and BDNF expression are
prevented by genetic deletion of TNF receptor 1 in vivo and are mimicked by TNF-a in
cultured slices. Furthermore, SNI activated microglia in both spinal dorsal horn and
hippocampus; pharmacological inhibition or genetic ablation of microglia prevented the
region-dependent synaptic changes, neuropathic pain and memory deficits induced by SNI.

The data suggest that neuropathic pain involves different structural synaptic alterations in
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spinal and hippocampal neurons that are mediated by overproduction of TNF-a and

microglial activation, and may underlie chronic pain and memory deficits.

Significance Statement

Chronic pain is often accompanied by memory deficits. Previous studies show that
peripheral nerve injury, produces both neuropathic pain and memory deficits, induces LTP
at C-fiber synapses in spinal dorsal horn (SDH) but inhibits LTP in hippocampus. The
opposite changes in synaptic plasticity may contribute to chronic pain and memory
deficits, respectively. However, the structural and molecular bases of these alterations of
synaptic plasticity are unclear. Here, we show that the complexity of excitatory synaptic
connectivity and BDNF expression are enhanced in SDH but reduced in the hippocampus
in neuropathic pain and the opposite changes depend on TNF-a /TNFR1 signaling and
microglial activation. The region-dependent synaptic alterations may underlie chronic

neuropathic pain and memory deficits induced by peripheral nerve injury.
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Introduction

Chronic pain affects ~20% of the population and nearly 70% of those patients suffer from
working memory deficits (Hart et al., 2000; Dick and Rashiq, 2007). The mechanism
underlying the comorbidity of chronic pain and memory deficits is poorly understood. It
has been proposed that pain-related sensory inputs may affect memory by disrupting
attention, which is important for working memory formation (Eccleston, 1995; Awh et al.,
2006). However, recent clinical studies show that the hippocampal volume is reduced in
chronic pain patients, including those with chronic back pain, complex regional pain
syndrome (Mutso et al., 2012) and knee osteoarthritis (Mao et al., 2016), suggesting that
neuronal dystrophy in the hippocampus may contribute to memory deficits in chronic
pain disorders. Experimental studies show that peripheral nerve injury, which induces
chronic neuropathic pain (Decosterd and Woolf, 2000) and memory deficits in rodents
(Ren et al., 2011), induces LTP at C-fiber synapses in spinal dorsal horn (Zhang et al.,
2004), but impairs LTP at CA3-CA1 synapses in hippocampus (Ren et al., 2011). The
data suggest that the synaptic plasticity is reduced in hippocampus but enhanced in spinal
dorsal horn in neuropathic pain condition. The region-dependent synaptic plastic changes
may contribute the chronic pain and memory deficits, respectively. However, the cellular
and molecular mechanisms underlying the changes are still unclear.

It has been well established that microglial activation and elevated tumor necrosis
factor-a (TNF-a) critically involved in both hippocampus-dependent cognitive deficit
(Griffin et al., 2006; Rowan et al., 2007) and neuropathic pain induced by nerve injury
(Xu et al., 2006; Ji and Suter, 2007). Similar to peripheral nerve injury, microglial

activation and TNF-a overproduction inhibits LTP in hippocampus (Pickering et al., 2005;
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Griffin et al., 2006) but is essential for the induction of spinal LTP at C-fiber synapses
(Zhong et al., 2010; Wu et al., 2014). However, how can microglial activation and
overproduction of TNF-a oppositely regulate the synaptic plasticity in hippocampus and
spinal dorsal horn remains elusive.

Furthermore, chronic pain and memory deficits in human patients and in animals are
long-lasing, which cannot be explained by the functional change in synaptic transmission.
In the present work, we tested the hypothesis that the functional changes in synaptic
plasticity initiated by peripheral nerve injury may transfer to structural synaptic
alterations in the two regions. Indeed, we found that the structural and functional synaptic
connections were enhanced in spinal dorsal horn but reduced in hippocampus in 7-10d
after SNI in mouse. These opposite structural changes were prevented by deletion of
TNFRI1 and by inhibtion or ablation of microglia. The region-dependent structural
synaptic alterations may underlie the chronic neuropathic pain and associated cognitive

disorders.
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Materials and Methods

Animals

Adult male C57BL/6 mice, CX3CRI““*®* mice were used as wild type controls. Adult
male TNFR1-knockout (TNFR1 KO, RRID:IMSR _JAX:003242) C57BL/6 and
CX3CRI1-EGFP mice were purchased from the Jackson Laboratories. CY3CR! CreER/+
mice were obtained from Dr. Wen-Biao Gan at New York University. The mice were
crossed with R26°™" (purchased from Jackson’s laboratory) to obtain CX3CR1“"“*®'" .
R26™™* mice. Sprague Dawley rats (8-10 day-old) were used for hippocampus or spinal
slice culture. The animals were housed in separated cages with access to food and water
ad libitum. The room was kept at 23 &+ 1°C and 50—60% humidity, under a light cycle
(6:00 to 18:00 hours). All experimental procedures were approved by the Local Animal
Care Committee and conformed to Chinese guidelines and Rutgers University on the
ethical use of animals and all efforts were made to minimize the number of animals used

and their suffering.

Spared nerve injury (SNI) and behavioral tests
The SNI was carried out following the procedures described previously(Decosterd and
Woolf, 2000). Briefly, under anesthesia with chloral hydrate (0.4 g/kg, i.p.) the common
peroneal and the tibial nerves were explored and tightly ligated with 5-0 silk and
transected distal to the ligation, removing a 2—4 mm length of each nerve. Great care was
taken to avoid any contact with or stretching of the intact sural nerve. The wound was
closed in two layers.

Mechanical allodynia was assessed using von Frey hairs with the up-down method.

7
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Briefly, the animals were placed under separate transparent Plexiglas chambers
positioned on a wire mesh floor. 10~15 minutes were allowed for habituation. Each
stimulus consisted of a 68 s application of a von Frey hair to the lateral surface of the
foot with 5 min interval between stimuli. Quick withdrawal or licking of the paw in

response to the stimulus was considered as a positive response.

Short-term memory (STM) was accessed by novel object recognition test (NORT).
The apparatus consisted of a round arena (diameter: 50 cm) with white walls and floor.
The box and objects were cleaned between trials to stop the build-up of olfactory cues.
Animals received two sessions of 10 min each in the empty box to habituate them to the
apparatus and test room. Twenty-four hours later, each mouse was first placed in the box
and exposed to two identical objects for 10 min (sample phase). And then one object was
replaced by a new novel one and the mouse was placed back in the box and exposed to
the familiar object and to a novel test object for a further 10-min (acquisition phase). The
STM was tested 10 min after “sample phase” (10-min retention). The experimenters
measured the time spent exploring each object. The recognition index was calculated as
the percentage ratio of time spent exploring the novel object over total exploration time
during acquisition phase. All the behavior tests were performed by at least two

researchers who were blinded to genotype and treatment conditions of the mice.

Acute slice preparation
Under anesthesia with urethane (1.5 g/kg, i.p.) mice were sacrificed for
electrophysiological and morphological studies at 7-10 days post-peripheral nerve injury.

Either hippocampus or lumbar segments (L4-L6) of spinal cord was isolated. Coronal

8
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hippocampal slices (300 um) or parasagittal spinal cord slices (500 um) were cut using a
vibratome (D.S.K DTK-1000) and superfused with an ice-cold dissection solution
containing (in mM): 125 NacCl, 2.5 KCl, 1 CaCl,, 6 MgCl,, 26 NaHCO3, 1.2 NaH,POy,
and 25 D-glucose. Then slices were incubated in recording solution containing (in mM):
125 NaCl, 2.5 KCI, 2 CaCl,, 1.2 MgCl,, 26 NaHCOs3, 1.2 NaH,POy4, and 25 D-glucose for
1h at 34°C before transferring to the recording chamber. Both dissection and recording
solutions were saturated with 95% O, and 5% CO,. The hippocampal and spinal slices
were recovered for 1h at 34°C before recording or incubation of

tetramethylrhodamine-conjugated substance P (TMR-SP, 20 nM) at room temperature.

Organotypic slice culture

Sprague Dawley rats (8-10 old) were rapidly sacrificed under anesthesia with urethane
(1.5 g/kg, i.p.) and the brains or L4-L6 segments of spinal cord were dissected. Under
aseptic conditions, 400 pm coronal hippocampal slices or transverse spinal cord slices
were cut using a vibroslice (WPI NSLM1) in cutting solution (Earle’s balance salt
solution, 25 mM HEPES) and collected in sterile culture medium containing 50% MEM,
25% heat inactivated horse serum, 25% EBSS, 6.5 mg/ml D-Glucose, 50 U/ml penicillin,
50 pg /ml streptomycin, pH 7.3. The organotypic slices were carefully placed into a

0.4 um membrane insert (Millipore PICM03050) within a 6-well plate at 37°C and 5%
CO; with 1 ml culture medium each well. Slices were incubated for at least 6 days before
experiments and the medium was changed twice a week. For electrophysiological

recording, culture slices were incubated in recording solution containing (in mM): 125
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NaCl, 2.5 KCl, 2 CaCl,, 1.2 MgCl,, 26 NaHCO;3, 1.2 NaH,POy4, and 25 D-glucose for 1h

at 34°C before transfer to the recording chamber.

Conditional ablation of microglia

Microglia were selectively killed using a method described previously in which mice
genetically engineered to express the diphtheria toxin receptor only in microglia
(CXCRI1*¥" mice) were treated with diphtheria toxin (Parkhurst et al., 2013; Peng et
al., 2016). Briefly, CX3CR1““*®* (control) mice or CX3CR1**": R26"°™* (M-Abl)
mice (over 6 weeks old) were given both tamoxifen (TM) and diphtheria toxin (DT). TM
(Sigma T5648, 150 mg/kg, 20 mg/ml in corn oil with ultrasound) was intraperitoneally
(i.p.) injected every other day from 10 days before surgery. DT (Sigma C8267, 50 png/kg,
2.5 ng/ml in PBS) was given for twice at the day before and after surgery (4 days after
last TM treatment). To confirm the effectiveness of general microglial ablation in central
nervous system, the hippocampus and spinal cord were harvested at 31 day after surgery

to do immunostaining of microglia.

Electrophysiology

Whole-cell recordings were performed at room temperature using an EPC-9 amplifier
with Pulse v8.65 software (HEKA Elek., Lambrecht, Germany). For visualizing recorded
neurons under microscope (Eclipse FN1, Nikon) infrared DIC optics (IR1000,
DAGE-MTTI) was used for recording in hippocampal slices. TMR-SP-positive neurons in
spinal cord slices were identified under epifluorescence using a CCD camera. The

excitatory postsynaptic currents (EPSCs) in hippocampal CA1 pyramidal neurons were

10



210 recorded following electrical stimulation of Schaffer collateral-commissural pathway at
211 0.066 Hz with a bipolar tungsten stimulating electrode. The EPSCs in spinal TMR-SP-
212 positive neurons were evoked by stimulation of the dorsal root entry zone at 0.066 Hz at
213 intensities sufficient to activate C-fibers (0.5ms, 200-500 pA); only the EPSCs evoked by
214 the high intensities were used for further analysis (Nakatsuka et al., 2000). The

215  extracellular solution contained picrotoxin (100 uM, Sigma) to block fast GABAergic
216  inhibition. The recording pipettes (3—5 MQ) were filled with solution containing (mM):
217 130 Cs-gluconate, 4 NaCl, 0.5 MgCl,, 5 EGTA, 10 HEPES, 5 MgATP, 0.5 Na;GTP, 5
218 QX-314 and 1.3 biocytin (pH 7.3 and osm. 290-295). The AMPAR- and

219  NMDAR-mediated components were distinguished by their differential activation and
220  inactivation kinetics. EPSCs were recorded at different membrane potentials from -70 to
221 450 mV (10-mV per step). N-methyl-D-aspartate (NMDA) /

222 o-amino-3-hydroxy-5-methyl- 4-isoxazolepropionic acid (AMPA) current ratio

223 NMDA/AMPA ratio is defined as the amplitude of the NMDAR component 80 ms after
224 stimulation at +50 mV divided by the peak of the AMPAR component at -70 mV.

225  Miniature excitatory postsynaptic currents (mEPSCs) were recorded at -70 mV, in the
226  presence of picrotoxin (100 uM) and tetrodotoxin (0.5 uM) in the same recording

227  solution and using same intracellular solution above. mEPSCs were analyzed using the
228  pClamp 9 (Axon Instruments). All the detected events were re-examined and accepted or
229  rejected on the basis of visual examination. Cells were recorded from for roughly 5 min
230  to obtain at least 100 events per cell. Data obtained from the indicated number (n) of cells

231  were expressed as the mean =+ s.e.m. and analyzed using Student’s ¢-test.
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Visualization of neurons and morphological analysis

To visualize recorded neurons, an intracellular marker biocytin (1.3 mM) was dissolved
in the intracellular solution/pipette solution described above. After least 15 min
whole-cell patch recording, the slices were fixed with 4% paraformaldehyde in PBS and
then processed using Alexa Fluor® 594 Streptavidin (Life Technologies) for
visualization. Neuronal dendrites and dendritic spines were imaged by confocal
microscope (Zeiss LSM 710) through 20X and 63X objectives, respectively. The images
were digitally reconstructed and the sum lengths and number of branch points of dendrite
were automatically analyzed with Imaris (Bitplane scientific software,

RRID:SCR _007370). This study focused on the hippocampal CA1 pyramidal neurons
and on the neurokinin-1-positive neurons (NK1-PNs) in spinal lamina I, which is critical
for the development of neuropathic pain (Mantyh et al., 1997). The hippocampal CA1
pyramidal neurons were identified by their location within the CA1 cell body layer and
by their classic pyramidal shaped soma, apical dendrites and basal dendrites. Spinal
NK1-PNs were identified by incubation of spinal cord slices with
tetramethylrhodamine-conjugated substance P with red fluorescence that binds to the
NK-1 receptor, and therefore labels NK1-PNs (Pagliardini et al., 2005). It has been
shown that ~ 80% of lamina I neurons express NK-1 receptor and virtually all (99%) of
the NK-1 receptor expressing neurons with soma areas >200 pm” are projection neurons
(Al Ghamdi et al., 2009). Accordingly, only the NK1-PNs with soma areas >200 pm’
were recorded from in the present study. The Sholl analysis of neuronal dendrites was
also performed with Imaris to provide a quantitative description of the dendritic tree by

evaluating the number of dendrites that crossed through virtual concentric circles at equal
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distances, centered in the soma of a neuron. The number of spines was manually counted
in Imaris, which can show clear spine and three-dimensional actual length, according to a
previous work. For each hippocampal CA1 pyramidal neuron, the spines in the principal
apical dendrite were counted in a 50 pm to 100 um segment, which was at least 50 pm
away from the center of the soma, and a 30 pm segment of secondary apical dendrite.
The spines in basal dendrite were counted in two 15 pm segments, which were at least 20
um from the soma. For each neurokinin-1-positive neuron in lamina I in spinal cord,
spine counting was performed on four 20 um to 50 um segments of the dendrite (the
proximal end of this segment was never closer than 50 pm from the center of the soma).
Spines were counted only if they had both a punctuate head and visible neck. A subset of
neurons was counted by two different investigators to ensure consistency of counting. No
significant differences were found when the same segment was counted by different

investigators.

Western blot

Frozen tissues of hippocampus and spinal dorsal horn were homogenized and equal
amounts of proteins were resolved on polyacrylamide gel, and then transferred to PVDF
membranes (BD). Membranes were blocked and then probed with primary antibodies:
mouse anti- TNF-a (AF-410, R&D System), rabbit anti-BDNF (AB1534, Millipore),
mouse anti-B-actin (#3700, Cell Signaling Technology) overnight at 4°C. Membranes
were then incubated with an HRP-conjugated secondary antibody (CST) at room
temperature. Protein bands were detected by ECL detection reagent (RPN2232; GE

Healthcare) and captured on an autoradiography film (Kodak). Integrated optical density
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was determined using Image-Pro Plus software 6.0 (Media Cybernetics). Standard curves
were constructed to establish that we operated within the linear range of the detection

method.

Immunohistochemistry

Mice were deeply anesthetized with isoflurane (5% in O,) and perfused transcardially
with 20 ml PBS followed by 20 ml of cold 4% paraformaldehyde (PFA) in PBS
containing 1.5% picric acid. The brain and spinal cord were removed and post-fixed with
the same 4% PFA for overnight (brain) or 4-6 hours (spinal cord) at 4 ‘C. The samples
were then transferred to 30% sucrose in PBS overnight. Sample sections (14 pm in
thickness) were prepared on gelatin-coated glass slide with a cryostat (Leica). The
sections were blocked with 5% goat serum and 0.3% Triton X-100 (Sigma) in TBS buffer
for 60 min, and then incubated overnight at 4°C with primary antibody for
rabbit-anti-Ibal (1:1000, Wako). The sections were then incubated for 60 min at RT with
secondary antibodies (goat anti-rabbit Alexa Fluor®594, Life Technologies). The stained
sections were examined with a Leica DFC350 FX (Leica Camera AG, Solms, Germany)
fluorescence microscope and images were captured with a CCD spot camera.

The number of GFP" cells or the percentage of GFP" area was countered or detected
using Imagel software (National Institutes of Health, Bethesda, MD). To quantify
immunoreactivity profiles in the spinal cord and hippocampus, three to five L4—5 spinal

cord or hippocampal sections per mouse from 3 mice were randomly selected for each

group.
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Quantification of microglia

All fluorescence images were captured on an EVOS FL (Thermofisher) imaging station
with a 20 objective lens, and the qualitative and quantitative analyses of images were
performed in a blinded fashion. The number of GFP" cells or the percentage of GFP" area
within hippocampus CAl or the medial two thirds of the spinal dorsal horn on the
ipsilateral side after SNI were counted/measured using Image J software (National
Institutes of Health, Bethesda, MD). When GFP" cell number counting, image contrast
was adjusted to eliminated background fluorescence, and the same cutoff level was used
for all images. For GFP" area, the images were digitally converted into a grey scale
image before commencing the analysis. Only the GFP" cell bodies with Dapi-stained
nuclei were included in the analysis. To quantify immunoreactivity profiles, three to five
L4-5 spinal cord or hippocampal sections per mouse from 3 mice were randomly

selected for each group.

Flow cytometry

At 7 d after SNI, the bilateral hippocampus and lumbar 4-5 spinal dorsal horn were
harvested from CX3CR1-EGFP mice and digested using Neural Tissue Dissociation Kits
(Miltenyi Biotec) as well as proteolytic enzymes to obtain single-cell suspensions. Then
the microglia were isolated from the cell suspensions by discontinuous density gradient
centrifugation using 30% isotonic Percoll® (GE Healthcare) and stained with APC
anti-mouse/human CD11b Antibody (101212, biolegend) and its isotype control for 45
min. The percentage of CX3CR1-EGFP, CD11b+ microglia were compared between

sham and SNI groups (n = 3-4 mice /group). Data acquisition was performed on a flow
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cytometer (BD FACSCalibur™; BD Biosciences) and analyzed with FlowJo (TreeStar)

software blind to treatment group.

Statistics

The data for the Sholl analysis of dendrite distribution with repeated measures two-way
ANOVA, and post hoc tests were used for detailed statistical analysis, as appropriate. The
behavioral data were analyzed by one-way repeated measure ANOVA when compared
within the group and by two-way ANOVA when compared between groups. The results
of others were analyzed with Student’s #-test. All data are expressed as means = SEM.
Statistical tests were carried out with SPSS 16.0 (SPSS, Somers, NY, USA). p <0.05 was

considered significant.
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Results

SNI oppositely regulates structural synaptic connectivity in the hippocampus and in
spinal dorsal horn

This study focused on the neurokinin-1-positive neurons (NK1-PNs) in spinal lamina I,
which is critical for the development of neuropathic pain (Mantyh et al., 1997), and on
the hippocampal CA1 pyramidal neurons. There are three types of lamina I neurons based
on cell morphology, fusiform, multipolar and pyramidal. In the present study, the lamina I
NK1-PNs in each group used for morphological analysis included 53%=+0.053 fusiform,
42%+0.068 multipolar and 5%+0.037 pyramidal cells. This is consistent with previous
studies in rats (Yu et al., 2005) and monkeys (Yu et al., 1999) showing that NK-1
receptors are expressed mainly in fusiform and multipolar, but less in pyramidal lamina I
neurons.

Compared with sham-operated mice, the total dendrite length, the number of dendrite
branch points and spine densities in the basal and apical dendrites of CA1 pyramidal
neurons were significantly reduced (Figure 1A-C), whereas all of these measures of
dendritic complexity were enhanced in spinal NK1-PNs (Figure 1D-F) 7-10 d following
SNI in mice. Sholl analysis revealed that reduced dendritic branching (number of
crossings) in basal dendrites of CA 1 neurons was evident between 110 and 140 pm from
the soma, in apical dendrites between 230 and 300 um (Figure1B) and in spinal
NK1-positive PNs between 70 to 90 um (Figure 1E) in SNI mice, compared to sham
mice. The results indicate that SNI affects structural synaptic connectivity in a
region-dependent manner As most excitatory synapses are located in spines (Sorra and

Harris, 2000), these results demonstrated that the number of excitatory synapses is
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reduced in hippocampal pyramidal neurons, but enhanced in spinal NK1-PNs under

neuropathic pain conditions.

Synaptic efficacy is decreased in the hippocampus but increased in spinal dorsal
horn following SNI

Having shown that SNI increases dendritic complexity and spine density in spinal
NK1-PNS, but decreases dendritic complexity and spine density in hippocampal CA1
neurons, we next tested if the structural changes were associated with changes in synaptic
connectivity in the two regions 7-10 days after SNI. Indeed, we found that, compared
with sham mice, the frequency of miniature excitatory postsynaptic currents (mEPSCs)
was lower in CA1 pyramidal neurons but was higher in spinal NK1-PNs in SNI mice
(Figure 2A-B). The amplitudes of mEPSCs in both CA1 pyramidal neurons and spinal
NK1-PNs were not different between SNI and sham groups (Figure 2A-B). The results
indicate that the strength of synaptic connectivity is decreased in hippocampal neurons
but increased in spinal NK1-PNs, which may result from opposite changes in numbers of
excitatory synapses in the two regions in response to SNI.

To investigate if SNI also differentially affects the synaptic plasticity in the two
regions, we next tested the effect of SNI on NMDA/AMPA ratio, which reflects the
synaptic plasticity (Lau and Zukin, 2007), in the hippocampal and spinal slices with
whole-cell patch clamp recordings. We found that the NMDA/AMPA ratio was
significantly lower at CA3-CA1 synapses (Figure 2C), but was higher at synapses
between primary afferents and spinal NK1-PNs (Figure 2D) in SNI mice, compared to

sham mice. These suggest that the synaptic plasticity is decreased in hippocampus but
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increased in dorsal horn following peripheral nerve injury, which is in consistence with
previous works showing that SNI impairs LTP in hippocampus (Ren et al., 2011) but
facilities LTP in spinal dorsal horn (Liu et al., 2007).

The morphological and electrophysiological data demonstrated that SNI induced
opposite changes in structural synaptic connectivity, in excitatory synaptic transmission
and in synaptic plasticity in hippocampus and in spinal dorsal horn. The following
experiments were focused on the mechanisms by which SNI produces the structural

synaptic changes and behavioral abnormalities.

The effects of SNI on the expression of TNF-a and BDNF in hippocampus and in
spinal dorsal horn

Previous studies showed that elevation of TNF-a is involved in both chronic neuropathic
pain (Xu et al., 2006) and memory deficits (Ren et al., 2011) following peripheral nerve
injury. BDNF, which is critical for synapse formation, plays important roles in
hippocampus-dependent memory (Park and Poo, 2013) and chronic pain (Groth and
Aanonsen, 2002; Zhou et al., 2010). To explore the molecules that may contribute to the
opposite changes in the dendritic structural and synaptic connectivity changes occurring
in SNI, we measured TNF-o and BDNF protein levels in the hippocampus and spinal
dorsal horn 7-10 d following SNI. TNF-a levels increased in bilateral hippocampus and
in ipsilateral spinal dorsal horn, while BDNF protein decreased in both hippocampi, but
increased in the ipsilateral spinal dorsal horn, compared to sham groups (Figure 3A and
3B). These results suggest that overproduction of TNF-a may differentially regulate

BDNF expression in hippocampus and spinal dorsal horn.
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SNI-induced changes in synaptic connectivity are mediated by TNF-o/TNFR 1
signaling

To determine the role of TNF-a for the changes in structural synaptic change and BDNF
expression induced by SNI, we performed experiments with TNF receptor 1 (TNFR1)
knock out (KO) mice. There was no difference in the total dendrite lengths, the number of
dendrite branch points and spine densities in CA1 pyramidal neurons (Figure 4A-C) and
in spinal NK1-PNs (Figure 4D-F) in SNI compared to sham groups of TNFR1 KO mice.
Interestingly, just like the changes in synaptic connectivity described above, the opposite
regulation of BDNF expression by SNI was also prevented by genetic deletion of TNFR1
(Figure 3G). Thus, TNFR1 may be necessary for the morphological synaptic changes
induced by SNI.

To test if TNF-a is sufficient to induce the differential changes in structural synaptic
connectivity and BDNF expression in hippocampus and in spinal dorsal horn, we
cultured rat hippocampal and spinal cord slices with recombinant rat TNF-o (rr'TNF-a) at
different concentrations (Figure 5). A rr'TNF-a concentration of 10 ng/ml reduced the
basal dendrite lengths and the number of basal dendrite branch points in CA1 pyramidal
neurons, while the apical dendritic length, apical branch number and both basal and
apical spine densities were significantly reduced with 1 ng/ml and 10 ng/ml rrTNF-a
(Figure 5A-C). In spinal NK1-PNs, rr'TNF-a concentrations of 1 and 10 ng/ml
significantly increased total dendrite lengths and the number of dendrite branch points,
and dendritic spine density was significantly increased with 10 ng/ml rr'TNF-a (Figure

5D-F). Furthermore, rrTNF-a at concentrations of 1 and 10 ng/ml significantly
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down-regulated BDNF in hippocampal slices, but up-regulated BDNF in spinal slices
(Figure 5G). Thus, TNF-o/TNFRI1 signaling may be sufficient to induce CNS
region-dependent changes in both synaptic connectivity and BDNF expression under

neuropathic pain conditions.

The region-dependent synaptic alterations and BDNF expression induced by
SNI are abolished by inhibition or ablation of microglia
We pursued the mechanism by which SNI and resultant elevation of TNF-a oppositely
regulate BDNF expression and synaptic connectivity in the spinal dorsal horn and
hippocampus. Previous studies showed that activation of microglia impairs LTP in
hippocampus (Griffin et al., 2006) but is essential for LTP induction in spinal dorsal horn
(Zhong et al., 2010), indicating that microglia have differential effects on synaptic
plasticity in the two regions. In the present study, we found that microglia were activated
and proliferated in ipsilateral spinal dorsal horn and bilateral hippocampus following SNI
in the mice that express GFP in microglial cells (Figure 6A and B). To determine whether
microglial activation is responsible for the opposite cellular and molecular changes
induced by SNI, we first inhibited microglia using a tetracycline derivative, minocycline.
Injection of minocycline (i. p.) prevented memory deficits and mechanical allodynia
(Figure 6C), and abolished the upregulation of TNF-o. and the opposite changes in BDNF
expression (Figure 6D) in the hippocampus and in spinal dorsal horn produced by SNI in
wild type mice.

To determine whether microglia mediated the SNI-induced CNS region-dependent
changes in synaptic connectivity and BDNF expression, as well as behavioral abnormities,
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we selectively ablated microglia using a mouse line genetically engineered to express the
diphtheria toxin receptor in microglia in CNS (Parkhurst et al., 2013; Peng et al., 2016).
Exposure to diphtheria toxin resulted in extensive depletion of microglia throughout the
CNS, including the hippocampus and spinal cord (M-Abl, Figure 7A and B). We found
that microglial depletion prevented SNI-induced reductions of dendrite complexity, spine
density and the synaptic NMDA/AMPA ratio in hippocampal CA1 pyramidal neurons
(Figure 7C and D), and the increases in those dendritic features in spinal dorsal horn
NK1-PNs (Figure 7E and F). Finally, the ablation of microglia also prevented the
SNI-induced short-term memory deficits and mechanical allodynia (Figure 7G) and
abolished the increase in TNF-o and the differential changes in BDNF in the
hippocampus and spinal dorsal horn (Figure 7H). These results suggest a pivotal role for
microglial activation in the neurochemical and cytoarchitectural consequences of SNI in

the spinal dorsal horn and hippocampus, and the associated behavioral manifestations.

Discussion

We found that dendritic structural complexity and functional synaptic connectivity and
BDNF expression were significantly enhanced in spinal NK1-PNs but reduced in
hippocampal CA1 neurons following SNI. SNI upregulated TNF-a in both hippocampus
and spinal dorsal horn and the SNI-induced region-dependent changes in structural
synaptic connectivity and BDNF expression were blocked by genetic deletion of TNFR1
in vivo, mimicked by rr'TNF-a in cultured hippocampal and spinal slices. SNI also
activated microglia in the two regions while the pharmacological inhibition or selective

deletion of microglia blocked the SNI-induced changes in synaptic connectivity and
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BDNF expression and substantially prevented the neuropathic pain and short-term
memory deficits. Altogether, our findings suggest that CNS region-dependent changes in
synaptic connectivity are responsible for behavioral manifestations of chronic pain
including impaired hippocampus-dependent learning and memory. Microglial activation
and TNF-a signaling via TNFR1 are required for the opposite changes in the structural

synaptic connectivity in region CA1 of the hippocampus and spinal cord dorsal horn.

The CNS region-specific effects of SNI on synaptic connectivity are mediated by
microglial activation and TNF-a signaling.

Previous studies showed that activation of microglia impairs LTP in hippocampus
(Griffin et al., 2006) but is essential for LTP induction in spinal dorsal horn (Zhong et al.,
2010), indicating that microglial activation also affect synaptic plasticity in a
region-dependent manner. Microglia release numerous gliotransmitters, including
cytokines, neurotrophic factors and neurotransmitters (Ransohoff and Perry, 2009; Eyo
and Wu, 2013) and these chemical substances may create and maintain a
microenvironment that modulates the structure and function of the cells. Under
neuropathic pain conditions, it is well known that spinal microglia are strongly activated
at both molecular and cellular level, thereby regulating neuronal activities in the spinal
dorsal horn (Zhuo et al., 2011; Gu et al., 2016; Jeong et al., 2016). However, the
peripheral nerve injury-induced microglia activation in the brain is less conclusive. For
example, a previous study showed that ligation of common peroneal nerve fails to
activate cortical or hippocampal microglia (Zhang et al., 2008), which is different from

the current study. We believe that the different pain models used in the studies may

23



500  underlie the discrepancy. Indeed, Takeda (Takeda et al., 2009) reported that the

501  expression of CD11b, a microglial marker, was increased in the hypothalamus and

502  periaqueductal gray in the chronic constriction injury rats. In addition, it has been shown
503  that peripheral inflammation induces microglia activation in the hippocampus (Riazi et al.,
504  2008). A recent genome-wide analysis study shows that microglia have distinct brain

505  region-dependent transcriptional identities (Grabert et al., 2016). Accordingly, the

506  gliotransmitters released by activated microglia in hippocampus and in spinal dorsal horn
507  may be different under neuropathic pain conditions. If this is true, the opposite changes in
508  the synaptic connectivity in the two regions may result from the different

509  microenvironment mediated by microglia. Indeed, our data showing that SNI-induced

510  opposite changes in synaptic connectivity and BDNF expression were prevented by either
511  pharmacological inhibition or genetic ablation of microglia demonstrate directly that the

512 region-dependent changes induced by SNI are mediated by microglial activation.

513 Similar to peripheral nerve injury and microglial activation, TNF-o overproduction
514  also regulates synaptic plasticity region-dependently: induction of LTP in the spinal

515  dorsal horn (Liu et al., 2007; Zhong et al., 2010; Gruber-Schoftnegger et al., 2013) and
516  inhibition of LTP in the hippocampus (Pickering et al., 2005; Griffin et al., 2006; Ren et
517 al., 2011). The present work showed that SNI-induced opposite changes in structural
518  synaptic connectivity hippocampus and in spinal dorsal horn were abolished by genetic
519  deletion of TNFR1 and mimicked by rrTNF-a in slice cultures. The mechanisms

520  underlying the effects of TNF-a/ TNFRI1 signaling are still unclear. In neuropathic
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microglia via TNFR1 in vivo (Ishikawa et al., 2013) and in vitro (Neniskyte et al., 2014).
Therefore, TNF-a-induced CNS region-dependent changes may be at least partially

mediated by microglia TNFR1.

BDNF in SNI-induced structural and synaptic plasticity in the hippocampus and
spinal dorsal horn

It is well established that LTP and learning are associated with increases in dendritic
spines in hippocampal and cortical neurons (Holtmaat and Svoboda, 2009) and the
structural plasticity is believed to underlie long-term memory formation (Bailey and
Kandel, 1993). The change in spine number is associated with functional changes in
synaptic connectivity and behavioral changes. For example, animal studies have shown
that exercise and caloric restriction increase dendritic spine density in hippocampal
neurons and improve learning and memory, whereas diabetes and depression reduce spine
density and impair learning and memory (Stranahan et al., 2009; Mattson, 2012).
Previous findings show that peripheral nerve injury that leads to neuropathic pain
(Decosterd and Woolf, 2000) and short-term memory induces LTP at C-fiber synapses in
spinal dorsal horn (Zhang et al., 2004) but inhibits LTP at CA3-CA1 synapses in
hippocampus (Ren et al., 2011). We found that total dendrite length, the number of
dendrite branch points and spine densities were reduced in CA1 pyramidal neurons but
enhanced in spinal NK1-PNs 7-10d after SNI. As most excitatory synapses are located in
spines (Sorra and Harris, 2000), the opposite structural synaptic changes may contribute
to long-lasting memory deficits and chronic neuropathic pain by decreasing and

increasing excitatory synaptic transmission in hippocampus and in spinal dorsal horn,
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respectively. The reduction of the dendritic complexity in hippocampus may also
contribute to the hippocampal atrophy in chronic pain patients (Mutso et al., 2012; Mao
et al., 2016).

BDNEF is critical for dendritic growth, synapse formation and functional synaptic
plasticity in several CNS regions including the hippocampus and spinal dorsal horn
(Coull et al., 2005; Zhou et al., 2010). We found that BDNF levels were reduced in
hippocampus but increased in spinal dorsal horn following SNI, and that these changes in
BDNF were mediated by microglia activation and TNFR1. These findings are consistent
with a scenario in which microglia-derived TNF-a differentially regulates BDNF
expression in hippocampal CA1 and spinal dorsal horn neurons. Given that BDNF is
known to stimulate dendrite growth and synaptogenesis in both CNS regions (Lu et al.,
2013), it seems likely that changes in BDNF expression contribute to the differential
effects of SNI on dendritic architecture and synaptic connectivity in hippocampal CA1

pyramidal neurons and spinal NK-1 receptor-expressing neurons.

Altogether, our study demonstrates a differential regulation of synaptic plasticity in the
hippocampus and spinal cord by a TNFo.- and microglia-dependent mechanism after
peripheral nerve injury. These findings suggest that suppression of microglial activation
or inhibition of TNFR1 might ameliorate the adverse effects of chronic pain on mood and
learning and memory. They may also explain, in part, the fact that exercise is beneficial
for chronic pain patients because it reduces pain perception and also exhibits
antidepressant and cognition-enhancing effects (Ambrose and Golightly, 2015).
Interestingly, exercise increased BDNF expression in the hippocampus, but suppresses
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BDNF production in the spinal dorsal horn (Mattson, 2012; Almeida et al., 2015). It will
be of considerable interest to determine whether there are roles for microglia and TNF-o

in these beneficial effects of exercise on chronic pain.
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Figure 1. Synaptic connectivity is decreased in hippocampus but increased in spinal
dorsal horn after SNI.

(A, B) Representative images of biocytin-labeled CA1 pyramidal neurons and summary
data of dendritic length (n = 12, basal, p = 0.024; apical, p = 0.002), branch number (n =
12; basal, p = 0.024, apical, p = 0.002) and Sholl analysis in wild type (WT) from the
sham and SNI groups (n=12, p = 0.012). (C) Representative images and summary data of
dendritic spine densities of CA1 neurons in the indicated groups (n = 12, basal, p = 0.023;
apical, p =0.021). 12 neurons from 6 mice per group were analyzed. (D, E)
Representative images and the summary data of dendritic length (n = 14, p = 0.024),
branch number (n = 14, p = 0.016) and Sholl analysis of spinal NK1-PNs in sham and
SNI groups of WT mice (n=14, p = 0.014). (F) Representative images and summary data
of dendritic spine densities of spinal NK1-PNs in the indicated groups (n = 14, p = 0.023).
14 neurons from 6 mice per group. Values are the mean = SEM. *p < 0.05 versus sham
groups. Data for all bar graphs were analyzed using Student’s t-test. Data for graphs in
which Sholl analyses is plotted were analyzed using repeated measures two-way

ANOVA.

Figure 2. SNI induces differential changes in synaptic transmission

(A) Representative mEPSCs of CA1 pyramidal neurons, their amplitude, cumulative
probability and frequency in WT mice from the sham and SNI groups (n = 12, amplitude,
p = 0.659; frequency, p = 0.008; 12 neurons from 6 mice per group). (B) Representative

mEPSCs of spinal NK1-PNs, their amplitude, cumulative probability and frequency in
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WT mice from the sham and SNI groups (n = 10, amplitude, p = 0.819; frequency, p =
0.012; 10 neurons from 5 mice per group). (C) The NMDA/AMPA current ratios at
CA3-CA1 synapses in the indicated groups (n =15, p = 0.021; 15 neurons from 6 mice
per group). The evoked AMPA receptor EPSC (low traces) and the evoked NMDA
receptor EPSC (up traces) were recorded at membrane potentials of -70 and +50 mV,
respectively. The circles indicate the time at which the amplitudes of AMPA or NMDA
receptor currents were measured. (D) The NMDA/AMPA current ratio in spinal
NK1-PNs in the different groups (n = 16, p = 0.022; 16 neurons from 6 mice per group).
Values are the mean = SEM. *p < 0.05, **p < 0.01 versus sham groups. Data for all bar

graphs were analyzed using Student’s t-test.

Figure 3. The effects of SNI on TNF-a and BDNF expression in hippocampus and
spinal dorsal horn

(A) Western blots show the levels of TNF-a (26 kDa) and BDNF (18 kDa) in
contralateral (C) and ipsilateral (I) hippocampus of WT mice in sham and SNI groups
(n=5, TNF-a, p <0.001 (I), p = 0.009 (C); BDNF, p <0.001 (I), p = 0.021 (C)). (B) The
levels of TNF-a and BDNF in contralateral and ipsilateral spinal dorsal horn in the
indicated groups (n=5, TNF-a, p = 0.014 (I), p = 0.662 (C); BDNF, p =0.032 (I), p =
0.737 (C). RelOD: relative optical density. Values are the mean + SEM. *p < 0.05, **p <
0.01, ***p < (0.001 versus sham groups. Data for all bar graphs were analyzed using

Student’s t-test.

Figure 4. The effects of SNI on synaptic connectivity and BDNF expression are
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764  prevented by genetic deletion of TNFR 1.

765  (A) Representative images of biocytin-labeled CA1 pyramidal neurons and (B) their

766 indicated dendritic length (n = 12, basal, p = 0.361; apical, p = 0.335), branch number (n
767 =12, basal, p =0.395; apical, p = 0.605) and Sholl analysis (n=12, p = 0.231) in TNFR1
768 KO mice from the sham and SNI groups are shown. (C) Representative images and

769  summary data of dendritic spine densities of CA1 neurons in the indicated groups (n = 12,
770  basal, p = 0.406; apical, p = 0.369). 12 neurons from 6 mice per group were used for the
771 morphological analysis. (D, E) Representative images and the summary data of dendritic
772 length (n = 14, p = 0.234), branch number (n = 14, p = 0.394) and Sholl analysis of spinal
773 NKI1-PNs in sham and SNI groups of TNFR1 KO mice (n=14, p = 0.320). (F)

774  Representative images and summary data of dendritic spine densities of spinal NK1-PNs
775  in the indicated groups (n = 14, p = 0.234). 14 neurons from 6 mice per group. (G)

776 Western blots show the level of BDNF in contralateral (C) and ipsilateral (I)

777 hippocampus or spinal dorsal horn of TNFR1 KO mice in sham and SNI groups

778  (hippocampus, n =5, p = 0.422 (C), p = 0.485 (I); spinal dorsal horn, n =5, p = 0.298)
779 (C), p=0.372 (I). Data for all bar graphs were analyzed using Student’s t-test. Data for
780  graphs in which Sholl analyses is plotted were analyzed using repeated measures

781  two-way ANOVA.

782

783 Figure 5. TNF-a differentially modulates synaptic connectivity and BDNF

784  expression in cultured slices. (A, B) Representative images of biocytin-labeled CA1

785  pyramidal neurons and their indicated dendritic length (n = 12, basal, vehicle vs 1 ng, p =

786 0.368, vehicle vs 10 ng, p <0.001, 1 ng vs 10 ng, p = 0.007; apical, vehicle vs 1 ng, p =
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0.005, vehicle vs 10 ng, p =0.001, 1 ng vs 10 ng, p = 0.898), branch number (n = 12,
basal, vehicle vs 1 ng, p = 0.692, vehicle vs 10 ng, p = 0.003, 1 ng vs 10 ng, p =0.013;
apical, vehicle vs 1 ng, p = 0.044, vehicle vs 10 ng, p <0.001, 1 ng vs 10 ng, p = 0.208)
and Sholl analysis (n=14, p = 0.012) in the slices treated with vehicle and rf'TNF-a (TNF)
at indicated concentrations. (C) Representative images and summary data show dendritic
spine densities in CA1 pyramidal neurons in vehicle- and TNF-treated slices (n = 12,
basal, vehicle vs 1 ng, p <0.001, vehicle vs 10 ng, p <0.001, 1 ng vs 10 ng, p = 0.895;
apical, vehicle vs 1 ng, p = 0.026, vehicle vs 10 ng, p =0.02, 1 ng vs 10 ng, p = 0.914).
12 neurons in 12 slices from 6 rats per group. (D, E) Representative images and dendritic
measurements of spinal NK1-PNs in vehicle- and TNF-treated slices (n = 12, dendritic
length, vehicle vs 1 ng, p <0.001, vehicle vs 10 ng, p = 0.001, 1 ng vs 10 ng, p = 0.875;
branch number, vehicle vs 1 ng, p <0.001, vehicle vs 10 ng, p <0.001, 1 ng vs 10 ng, p =
0.126; Sholl analysis, n=12, p = 0.022). (F) The dendritic spines of NK1-PNs were
increased by TNF (n=12, vehicle vs 1 ng, p = 0.211, vehicle vs 10 ng, p = 0.004, 1 ng vs
10 ng, p = 0.218). 12 neurons in 12 slices from 6 rats per group. (G) Western blots show
BDNEF levels in the hippocampal and spinal slice cultures in the indicated groups (n =5,
vehicle vs 1 ng, p = 0.035, vehicle vs 10 ng, p <0.001, 1 ng vs 10 ng, p = 0.022). 30-35
slices from 5 rats per group. Values are the mean £ SEM. *p < 0.05, **p < 0.01, ¥**p <
0.001 versus vehicle; #<0.05, ##<0.01 versus 1 ng/ml. Data for all bar graphs were
analyzed using one-way ANOVA. Data for graphs in which Sholl analyses is plotted

were analyzed using repeated measures two-way ANOVA

Figure 6. Pharmacological inhibition of microglia prevents the opposite changes in

BDNF expression and behavioral abnormalities induced by SNI. (A) Representative
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images show microglial cells (green) and Dapi (Blue) in ipsilateral hippocampal CA1 and
spinal dorsal horn in CX3CR1-EGFP mice from sham and SNI groups. Pooled results
show the number of GFP" cells and the percentage of GFP" area in the hippocampus (Hip,
n =23, p=0.021) and spinal dorsal horn (SDH, n =3, p <0.001) of SNI and sham mice 9
d after surgery (3 mice for each group). (B) Fluorescence-activated cell sorting (FACS)
analysis of microglia in the ipsilateral (ipsi) and contralateral (contr) hippocampus (n = 4,
sham vs SNI Ipsi, p < 0.001, sham vs SNI Contr, p <0.001) and spinal dorsal horn (n =4,
sham vs SNI Ipsi, p < 0.001, sham vs SNI Contr, p = 0.092) in sham and SNI-7d mice.
Dot plots show the total number of microglial cells expressing CX3;CR1-EGFP and
CD11b (4 mice for each group). (C) The short-term memory deficit (n = 8, Vehicle
+Sham vs Vehicle +SNI, p = 0.013, Mino +Sham vs Mino +SNI, p = 0.142) and
mechanical allodynia (sample size mentioned in figure, day 7, Vehicle +Sham vs Vehicle
+SNI, p < 0.001, Mino +Sham vs Mino +SNI, p = 0.362; day 13, Vehicle +Sham vs
Vehicle +SNI, p < 0.001, Mino +Sham vs Mino +SNI, p = 0.566) were prevented by
minocycline (i.p., 30 mg/kg, twice a day beginning one day prior to and continuing for 7
days after SNI). (D) Western blots show the expression of TNF-o. and BDNF in
hippocampus (n = 5, TNF-o, Vehicle +Sham vs Vehicle +SNI, p < 0.001, Mino +Sham vs
Mino +SNI, p = 0.361; BDNF, Vehicle +Sham vs Vehicle +SNI, p = 0.008, Mino +Sham
vs Mino +SNI, p = 0.225) and spinal dorsal horn (n = 5, TNF-c, Vehicle +Sham vs
Vehicle +SNI, p < 0.001, Mino +Sham vs Mino +SNI, p = 0.566; BDNF, Vehicle +Sham

vs Vehicle +SNI, p <0.001, Mino +Sham vs Mino +SNI, p = 0.306) tissues from the
36



831  mice that had been used for the above behavioral tests. Values are the mean + SEM. *p <
832 0.05, **p <0.01, ***p < 0.001 compared to the values for each of the other three groups.
833  Data for bar graphs in panel A were analyzed using Student’s t-test. Data for graphs in

834  panel C were analyzed using repeated measures two-way ANOVA. Data for other graphs
835  were analyzed using Student’s t-test.

836

837  Figure 7. Conditional ablation of microglia prevents the synaptic changes and the

838  behavioral abnormalities resulting from SNI. (A) The experimental diagram shows
839  the timeline of drug treatments (TM, tamoxifen, DT, diphtheria toxin), immunostaining,
840  western blots (WB) pain behavioral tests (Pain beha.), novel object recognition test

841  (NORT) and electrophysiology (EP) before and after SNI. (B) The photographs show

842  Ibal-positive microglia in the hippocampal CA1 area and spinal dorsal horn of

843 CX3CRI1““*®*(Control) and CX3CR1“*** R26™" mice (M-Abl) 3 day after SNI. (C)
844  Results of analyses of dendritic length (n = 12, basal, Control +Sham vs Control +SNI, p
845  =0.011, M-Abl +Sham vs M-Abl +SNI, p = 0.568; apical, Control +Sham vs Control

846  +SNI, p =0.035, M-Abl +Sham vs M-Abl +SNI, p = 0.399), branch number (n = 12,

847  basal, Control +Sham vs Control +SNI, p = 0.013, M-Abl +Sham vs M-Abl +SNI, p =

848  0.208; apical, Control +Sham vs Control +SNI, p = 0.022, M-Abl +Sham vs M-Abl +SNI,
849  p=0.451), and spine densities of CA1 neurons in sham and SNI groups of control and

850  M-Abl mice (n = 12, basal, Control +Sham vs Control +SNI, p = 0.039, M-Abl +Sham vs
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851  M-Abl +SNI, p = 0.602; apical, Control +Sham vs Control +SNI, p = 0.028, M-Abl
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+Sham vs M-Abl +SNI, p = 0.375; 12 neurons from 5 mice per group). (D) The
NMDA/AMPA current ratio at CA3-CA1 synapses in SNI group was lower in control
mice but not in M-Abl mice, compared to sham groups (n = 14, Control +Sham vs
Control +SNI, p = 0.022, M-Abl +Sham vs M-Abl +SNI, p = 0.412). (E) Results of
analyses of dendritic length (n = 12, Control +Sham vs Control +SNI, p = 0.021, M-Abl
+Sham vs M-Abl +SNI, p = 0.226), branch number (n = 12, Control +Sham vs Control
+SNI, p = 0.017, M-Abl +Sham vs M-Abl +SNI, p = 0.336), and spine densities of spinal
NK1-PN neurons in sham and SNI groups of control and M-Abl mice (n = 12, Control
+Sham vs Control +SNI, p = 0.014, M-Abl +Sham vs M-Abl +SNI, p = 0.433; 12
neurons from 5 mice per group). (F) The NMDA/AMPA current ratio in spinal NK1-PNs
in different groups (n = 12, Control +Sham vs Control +SNI, p = 0.031, M-Abl +Sham vs
M-ADbI +SNI, p = 0.522). 12 neurons from 5 mice per group. (G) The recognition index
for short-term memory (n = 10, Control +Sham vs Control +SNI, p = 0.026, M-Abl
+Sham vs M-Abl +SNI, p = 0.559) and mechanical allodynia (sample size mentioned in
figure, day 3, Control +Sham vs Control +SNI, p < 0.001, M-Abl +Sham vs M-Abl +SNI,
p =0.3006; day 5, Control +Sham vs Control +SNI, p <0.001, M-Abl +Sham vs M-Abl
+SNI, p = 0.528; day 7, Control +Sham vs Control +SNI, p < 0.001, M-Abl +Sham vs
M-Abl +SNI, p = 0.672) in sham and SNI groups of control and M-Abl mice. (H) The
expression of TNF-o. and BDNF in hippocampal (n = 5, TNF-a., Control +Sham vs
Control +SNI, p < 0.001, M-Abl +Sham vs M-Abl +SNI, p = 0.162; BDNF, Control

+Sham vs Control +SNI, p = 0.035, M-Abl +Sham vs M-Abl +SNI, p = 0.098) and spinal
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dorsal horn (n = 5, TNF-q, Control +Sham vs Control +SNI, p < 0.001, M-Abl +Sham vs
M-Abl +SNI, p = 0.377; BDNF, Control +Sham vs Control +SNI, p <0.001, M-Abl
+Sham vs M-Abl +SNI, p = 0.568) tissues from the mice that had been used for the above
behavioral tests. Values are the mean = SEM. *p < 0.05, **p < 0.01, ***p < 0.001
compared to the values for each of the other three groups. Data for graphs in panel G
were analyzed using repeated measures two-way ANOVA. Data for other graphs were

analyzed using Student’s t-test.
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