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Abstract 1 
Although traditional economic and psychological theories imply that individual choice 2 
best scales to aggregate choice, primary components of choice reflected in neural activity 3 
may support even more generalizable forecasts. Crowdfunding represents a significant 4 
and growing platform for funding new and unique projects, causes, and products. To test 5 
whether neural activity could forecast market-level crowdfunding outcomes weeks later, 6 
30 human subjects (14 female) decided whether to fund proposed projects described on 7 
an internet crowdfunding website while undergoing scanning with functional magnetic 8 
resonance imaging (FMRI). Although activity in both the nucleus accumbens (NAcc) and 9 
medial prefrontal cortex (MPFC) predicted individual choices to fund on a trial-to-trial 10 
basis in the neuroimaging sample, only NAcc activity generalized to forecast market 11 
funding outcomes weeks later on the internet. Behavioral measures from the 12 
neuroimaging sample, however, did not forecast market funding outcomes. This pattern 13 
of associations replicated in a second study.  These findings demonstrate that a subset of 14 
the neural predictors of individual choice can generalize to forecast market-level 15 
crowdfunding outcomes – even better than choice itself. 16 17 
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Significance Statement: 18 
Forecasting aggregate behavior with individual neural data has proven elusive -- even 19 
when successful, neural forecasts have not historically supplanted behavioral forecasts. In 20 
the current research, we find that neural responses can forecast market-level choice and 21 
outperform behavioral measures in a novel internet crowdfunding context. Targeted as 22 
well as model-free analyses convergently indicated that nucleus accumbens activity can 23 
support aggregate forecasts. Beyond providing initial evidence for neuropsychological 24 
processes implicated in crowdfunding choices, these findings highlight the ability of 25 
neural features to forecast aggregate choice, which could inform applications relevant to 26 
business and policy.   27 
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Introduction 28 
Traditional economic and psychological theories (such as revealed preferences and 29 
behaviorism) imply that an individual’s previous choices should provide the best index of 30 
their future choices (Bernheim, 2008). Recent research using techniques capable of 31 
resolving deep brain activity at second-to-second resolution (i.e., functional magnetic 32 
resonance imaging or fMRI) suggest, however, that neural activity might complement 33 
behavioral predictions of future choice (Tusche et al., 2010; Genevsky and Knutson, 34 
2015). Although brain activity collected with these methods can predict individual 35 
choice, its added value in forecasting choice at the aggregate level of markets remains 36 
less clear (Ariely and Berns, 2010). The growing availability of internet market-level 37 
choice data, however, opens new opportunities for researchers to test whether brain 38 
activity in an experimental sample can be used to forecast aggregate choice (Berns and 39 
Moore, 2012; Dmochowski et al., 2014; Genevsky and Knutson, 2015). 40 
  41 
Some components of individual choice might provide more general information about 42 
aggregate choice than others. For example, according to an “Affect Integration 43 
Motivation” (or AIM) framework, ascending neural circuits first affectively evaluate 44 
objects, then integrate these evaluations, and then translate evaluations into motivated 45 
approach or avoidance (Samanez-Larkin and Knutson, 2015). Even if affective reactions 46 
generalize across individuals, value integration may incorporate more specific 47 
multidimensional considerations (e.g., probability, risk, time), which may enhance choice 48 
consistency within an individual (i.e., thus “rationalizing” choice) (Camille et al., 2011), 49 
but paradoxically decrease generalizability across individuals (Kim et al., 2007). Thus, 50 
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whereas both affective evaluation and value integration might predict individual choice, 51 
affective evaluation might more broadly generalize to forecast aggregate choice.  52 

 53 
Although neural activity reliably predicts a broad range of individual choices including 54 
purchasing (Knutson et al., 2007; Levy et al., 2011) and financial risk taking (Kuhnen 55 
and Knutson, 2005), only a few studies have used neural activity from groups of 56 
individuals to forecast aggregate market-level behavior (Falk et al., 2011; Berns and 57 
Moore, 2012; Genevsky and Knutson, 2015; Venkatraman et al., 2015) (henceforth, 58 
“predict” refers to individual choice, while “forecast” refers to aggregate choice). For 59 
instance, researchers have used nucleus accumbens (NAcc) activity to forecast aggregate 60 
song downloads (Berns and Moore, 2012), but medial prefrontal cortex (MPFC) activity 61 
to forecast call volume in response to health-related advertisements (Falk et al., 2011). In 62 
these studies, however, researchers did not elicit or compare choice at both individual and 63 
aggregate levels of analysis. Thus, researchers have yet to explicitly identify which neural 64 
predictors of individual choice generalize to forecast aggregate choice. Here, we sought 65 
to use neural activity to both predict individual choice as well as forecast aggregate 66 
choice in an internet crowdfunding market. 67 
 68 
The global crowdfunding market is extensive (e.g., having raised over $34.4 billion in 69 
2015 (Massolution, 2015)), and expanding. Some researchers have begun to explore 70 
aspects of crowdfunding transactions, including the influence of personal networks 71 
(Mollick, 2014), motivations of project creators (Gerber and Hui, 2013; Belleflamme et 72 
al., 2014), and dynamics of project funding cycles (Agrawal et al., 2013; Kuppuswamy 73 
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and Bayus, 2015), but researchers have not yet examined individual funders’ motives or 74 
whether their behavior can be used to forecast aggregate funding success.  75 
 76 
Our preliminary goal was to determine whether brain activity in affective circuits predicts 77 
individual choices to fund novel crowdfunding projects. Consistent with previous work, 78 
we predicted that neural activity in circuits associated with positive arousal (i.e., the 79 
NAcc) and value integration (the MPFC) would predict individual choices to fund. Our 80 
critical goal, however, was to determine whether neural activity could also forecast 81 
crowdfunding outcomes at the aggregate level in an internet market. Unlike individual 82 
choice prediction, but consistent with the AIM framework, we hypothesized that circuits 83 
implicated in anticipatory affect (e.g., the NAcc) might forecast market outcomes better 84 
than those implicated in value integration (e.g., the MPFC) -- and possibly even better 85 
than individual choice itself. We tested these predictions in a study using fMRI, followed 86 
by a replication study designed to verify the findings’ generality. 87 
  88 
Materials & Methods 89 
Experimental design and statistical analysis. In the main and replication studies, pictures 90 
and text associated with 36 crowdfunding appeals were presented to 30 subjects, who 91 
chose whether or not to fund each project as they were scanned with FMRI (described in 92 
Subjects, Crowdfunding tasks, and Project selection sections). Subjective ratings of each 93 
appeal were then collected immediately after scanning (described in the Liking, success, 94 
and affect ratings section). For individual choice prediction analyses, FMRI data were 95 
preprocessed and extracted from volumes of interest (or VOIs) for comparison with 96 
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behavioral choice and subjective rating predictors (described in FMRI acquisition and 97 
analysis, Functional connectivity analyses, and Classification analyses sections). For 98 
aggregate forecasting analyses, group averaged choice, rating, and FMRI VOI data were 99 
submitted to classification analyses forecasting eventual internet funding (or not) of each 100 
appeal (described in the Classification analyses section).  101 
 102 
Subjects. Thirty healthy right-handed human adults participated (14 female, mean 103 
age=23.32). Along with typical magnetic resonance exclusions (e.g., metal in the body), 104 
subjects were screened for psychotropic drug use and substance abuse in the past month 105 
and for a history of neurological disorders prior to collecting informed consent.  None 106 
were excluded for excessive head motion (i.e., greater than 2 mm from one scan 107 
acquisition to the next). Subjects received $20.00 per hour for participating, plus an 108 
endowment of $5.00 cash prior to scanning for use in the crowdfunding task. All 109 
procedures were approved by the institutional review board of the Stanford Medical 110 
School. The sample in the replication study was similar, but thirty-five subjects were 111 
recruited and three were excluded for excessive head motion, leaving a total of 32 112 
subjects’ data for analysis (17 female, mean age=23.57). 113 
 114 
Crowdfunding task. Subjects were informed that during scanning, they would make 115 
funding decisions regarding a number of actual projects which had been posted online on 116 
a crowdfunding website (www.kickstarter.com), one of which would be randomly 117 
selected and actualized after the session. This funding task was therefore incentive 118 
compatible and designed to simulate the experience of making online crowdfunding 119 
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choices as closely as possible, while controlling for potential confounds (e.g., related to 120 
others’ choices and progress towards a funding criterion) and simultaneously facilitating 121 
measurement of neural responses to different elements of each funding appeal prior to 122 
choice (Genevsky and Knutson, 2015) (Figure 1a). During each funding task trial, 123 
subjects first viewed a photographic image from the project page (2 secs), followed by a 124 
screen depicting the remainder of the project’s text description (6 secs). Subjects were 125 
then asked to indicate whether or not they would like to fund the project using spatially 126 
counterbalanced (i.e., left or right) ‘Yes’ or ‘No’ prompts by pressing one of two 127 
corresponding buttons (4 secs). After indicating their choice, a colored border highlighted 128 
the choice until the choice period ended.  Finally, subjects viewed a centrally presented 129 
fixation cross (variable 2–6 secs) until the beginning of the next trial. Total trial duration 130 
(including inter-trial interval) thus averaged 16 sec (range = 14–18 secs).  131 
 132 
Subjects encountered a total of 36 funding requests, each of which presented a unique 133 
project selected from the crowdfunding website. After scanning, one trial in the funding 134 
task was selected at random. If subjects had agreed to fund the randomly selected appeal, 135 
that amount was removed from their payment and contributed online to the appropriate 136 
project – otherwise, subjects retained their full endowment. Subjects were also informed 137 
that if their selected project was subsequently funded on the internet, they would be able 138 
to view the associated film once it had been completed. The procedure in the replication 139 
study followed the same format.  140 
 141 
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Project selection. Projects were selected from the most recently posted documentary film 142 
projects on the Kickstarter website (www.kickstarter.com) to control for variation 143 
between different project categories. The actual internet outcomes of these projects had 144 
not yet occurred at the time of stimulus identification and data collection – only after the 145 
funding windows for all projects had elapsed were funding outcomes available for 146 
collection. Of the 36 selected projects, 18 were eventually funded by groups of internet 147 
contributors, while the remaining 18 did not reach their funding threshold, and so expired 148 
at the end of the funding period. Of the 36 selected projects in the replication study, 14 149 
were eventually funded, whereas the remaining 22 were not. 150 
 151 
Project stimuli were derived from appeals presented on the kickstarter.com website. Each 152 
stimulus included the project’s title, creator’s name, a static image designed by the 153 
creator, and a text description of the associated film’s content. Based upon the depicted 154 
images, projects were evenly sampled from three content categories (i.e. face, places, and 155 
text). Thus, the focal points of ‘face’ images included an individual or group of people, 156 
‘place’ images featured either an inanimate object or landscapes, and ‘text’ images were 157 
primarily composed of text titles. Selected appeals therefore included one of three types 158 
of evenly distributed project images (i.e., face, place, or text). Selected appeals in the 159 
replication study contained only two types of evenly distributed project images (i.e., 160 
‘face’ or ‘place’).  161 
 162 
Liking, success, and affect ratings. After scanning, subjects rated how much they liked 163 
each project and their predicted likelihood that each project would reach its funding 164 
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threshold (i.e., project campaign success) on 7-point scales (Genevsky and Knutson, 165 
2015). After scanning, subjects also rated their own affective responses to each project 166 
proposal using two 7-point scales (one indexing valence from positive to negative and the 167 
other indexing arousal from highly arousing to not arousing). Written instructions and 168 
spoken clarifications delivered by the experimenter first described the nature of each 169 
scale and provided detailed examples (as described in Knutson et al., 2005). While rating 170 
projects, subjects indicated their affective responses based on how they previously felt 171 
“when presented with this project”. Since positively and negatively aroused affect most 172 
closely align with approach and avoidance motivational states (Knutson et al., 2014) as 173 
well as activity in relevant neural circuits (Knutson and Greer, 2008; Knutson et al., 174 
2014), valence and arousal ratings were then transformed into positive-arousal and 175 
negative-arousal scores by projecting within-subjects mean-deviated valence and arousal 176 
scores onto axes rotated 45° (i.e., positive-arousal = (arousal/√2) + (valence/√2); 177 
negative-arousal = (arousal/√2) – (valence/√2); (Watson et al., 1999; Knutson et al., 178 
2005). The rating procedure for the replication study was similar, but since many ratings 179 
were highly correlated in the main experiment, subjects only rated their affective 180 
responses to each of the stimuli (i.e., with respect to valence and arousal).  181 
 182 
FMRI acquisition and analyses. Images were acquired with a 3.0 T General Electric MRI 183 
scanner using a thirty-two channel head coil. Forty-six 2.9 mm thick slices (in-plane 184 
resolution 2.9 mm cubic, no gap, interleaved acquisition) extended axially from the mid-185 
pons to the crown of the skull, providing whole-brain coverage and good spatial 186 
resolution of sub-cortical regions of interest (e.g., midbrain, NAcc, orbitofrontal cortex). 187 
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Whole-brain functional scans were acquired with a T2*-weighted gradient echo pulse 188 
sequence (TR = 2 s, TE = 24 ms, flip = 77º).  High-resolution structural scans were 189 
acquired with a T1-weighted pulse sequence (TR = 7.2 ms, TE = 2.8 ms, flip = 12º) after 190 
functional scans, to facilitate their localization and co-registration.  191 
 192 
Whole brain analyses were conducted using Analysis of Functional Neural Images 193 
(AFNI) software (Cox, 1996). For preprocessing, voxel time series were sinc interpolated 194 
to correct for non-simultaneous slice acquisition within each volume, concatenated across 195 
runs, corrected for motion, slightly spatially smoothed to minimize effects of anatomical 196 
variability (FWHM = 4 mm), high-pass filtered (admitting frequencies with period < 90 197 
s), and normalized to percent signal change with respect to each voxel’s average over the 198 
entire task. Visual inspection of motion correction estimates confirmed that no subject’s 199 
head moved more than 2.0 mm in any dimension from one volume acquisition to the 200 
next. 201 
 202 
For whole brain analyses, regression models included eight regressors of no interest (i.e., 203 
six indexed residual motion and two indexed activity associated with cerebrospinal fluid 204 
and white matter intensity) (Chang and Glover, 2009). For analysis of sensory input, 205 
regressors of interest orthogonally contrasted face versus place stimuli and text versus 206 
face and place stimuli.  For analysis of individual (i.e., laboratory sample) funding 207 
choices, the regressor of interest orthogonally contrasted trials in which subjects chose to 208 
fund the projects versus those in which they did not. For neural forecasting analysis of 209 
group funding choices on the internet, the regressor of interest orthogonally contrasted 210 
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trials in which subjects viewed projects that were later fully funded on the internet versus 211 
those that did not eventually receive funding. Prior to inclusion in the models, all 212 
regressors of interest were convolved with a single gamma-variate function that modeled 213 
a canonical hemodynamic response (Cohen, 1997). Maps of t-statistics for the regressor 214 
of interest were transformed into Z-scores, coregistered with structural maps, spatially 215 
normalized by warping to Talairach space, and resampled as 2 mm cubic voxels. Group 216 
maps were initially voxel-wise thresholded (at p < 0.005) and then cluster thresholded 217 
using a gray matter mask (cluster size > 17 contiguous 3 mm cubic voxels) to yield a 218 
corrected threshold for detecting whole brain activation (p < .05 corrected). Cluster size 219 
was derived via 15,000 Monte Carlo iterations using AFNI program 3dClustSim (version 220 
16.0.06). 221 
 222 
Regionally targeted analyses were conducted by specifying volumes of interest (VOIs) in 223 
regions associated with anticipatory affect (NAcc and AIns; Knutson & Greer, 2008) as 224 
well as value integration (MPFC; Knutson et al., 2007; Plassmann, O’Doherty, & Rangel, 225 
2007; Samanez-Larkin & Knutson, 2015) in previously published research. Specifically, 226 
spherical VOIs (8 mm diameter) were placed in foci in bilateral value processing targets 227 
in the NAcc (Talairach coordinates: ±10, 12, –2), AIns (±34, 24, –4), amygdala (±24, –5, 228 
–15), and MPFC (±4, 45, 0). We further identified VOIs associated with sensory input 229 
relevant to project images in regions implicated in processing faces (Kanwisher et al., 230 
1997), places (Epstein and Kanwisher, 1998), and text (Poldrack et al., 1999; Vigneau et 231 
al., 2006). Based on independent meta-analytic analyses from the Neurosynth database 232 
(http://www.neurosynth.org), foci for these sensory input VOIs were placed in the 233 



 

  

14 

14 

fusiform gyrus (FG; ±40, –50 –18), parahippocampal gyrus (PG; ±22, –42, –6), and left 234 
inferior frontal gyrus (left IFG; -46, –14, 28). FMRI activity (percent signal change) was 235 
first averaged within each VOI, then averaged across bilateral VOIs, and finally extracted 236 
to derive activity timecourses. 237 
 238 
Functional connectivity analyses. A psychophysiological interaction (PPI) analysis 239 
identified context-dependent modulation of functional connectivity between regions 240 
implicated in sensory input (i.e., the FG, PG, and IFG) and anticipatory affect (i.e., the 241 
NAcc) (Friston et al., 1997; McLaren et al., 2012; Cisler et al., 2014). Activity 242 
timecourses were first extracted and averaged from bilateral NAcc VOIs and 243 
deconvolved using a gamma-variate function modeling a canonical hemodynamic 244 
response (Cohen, 1997). An interaction timecourse was then created by multiplying the 245 
deconvolved NAcc timecourse with a vector indicating trial-by-trial funding choices 246 
(with +1 and -1, respectively) and then reconvolved with a gamma-variate function to 247 
account for the hemodynamic response before inclusion in the model (Gitelman et al., 248 
2003). The associated general linear model thus included eight regressors of no interest 249 
(six indexed residual motion, and two indexed activity associated with cerebrospinal fluid 250 
and white matter intensity (Chang and Glover, 2009)), in addition to the NAcc VOI 251 
timecourse, a convolved regressor representing individual choices to fund or not, and the 252 
psychophysiological interaction of the NAcc VOI timecourse and individual choices to 253 
fund. Voxel-wise regression fits were then submitted to group level t-test contrasts to 254 
identify correlated activity across individuals. Finally, normalized voxel-wise values 255 
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from these group fits were averaged across sensory input VOIs in the bilateral FG, the 256 
bilateral PG, and the left IFG.  257 
 258 
Classification analyses. For classification analyses, trial-level data were first randomly 259 
divided into training (80%) and testing (20%) sets. Classification models were 260 
implemented using logistic regression and the R caret package (Kuhn, 2008). Model 261 
selection and parameter optimization were conducted on the training set using repeated 262 
10-fold cross-validation with 3 repeats such that the training data set was further 263 
randomly subdivided into 10 blocks. Model feature selection and optimization were 264 
conducted by training the classifier on 9 of the 10 blocks and testing on the one held-out 265 
block. This process iterated over all 10 training blocks, and the entire procedure was 266 
repeated 3 times. Model accuracy was evaluated by applying the resulting final model on 267 
the remaining independent 20% of trials in the testing set that had not been used in any 268 
phase of model training. To assess model accuracy, 95% confidence intervals were 269 
constructed around derived estimates and compared to a no-information rate. Reported p-270 
values represented the proportion of these distributions that exceeded a null hypothetical 271 
value of chance prediction (50%).  272 
 273 
For classification of individual funding choices, trials involving “yes” and “no” choices 274 
were evenly downsampled (i.e., creating a 50%-50% split). After downsampling, subjects 275 
contributed an average of 25.10 (of 36 total) trials (SD = 8.76, range = [3, 36]) to the 276 
classification analysis. The number of data points that each subject contributed to the 277 
classification analyses was not significantly associated with their predictive accuracy (r = 278 
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.279, p = .142). Individual choice classification analyses were conducted on a trial-to-trial 279 
basis, and included subjects’ self-report ratings of liking, perceived likelihood of success, 280 
positive arousal, negative arousal, and brain activity in the VOIs. For the classification 281 
models that included brain activity, percent signal change was first averaged within each 282 
VOI, and then averaged bilaterally.  283 
 284 
For whole brain classification analyses, fMRI activity was extracted from each spatially 285 
normalized voxel for each of the four brain image volume acquisitions preceding choice 286 
on each trial in each subject. Features were selected using recursive feature elimination, 287 
such that 5% of remaining voxels with the lowest fits were removed on each iteration 288 
until 1% of the total voxels remained (a threshold which demonstrated the highest 289 
classification accuracy using the fewest features). Remaining voxel weights were then 290 
back-projected into normalized brain space over time to identify where and when features 291 
significantly classified funding choice. For whole-brain classification of individual 292 
funding choices, accuracy was assessed with leave-one-subject-out cross-validation. On 293 
each testing iteration, one subject’s data was held out and classified using the model 294 
derived from training on the remaining subjects. Accuracies in predicting trial-by-trial 295 
choices over thirty subjects were then averaged to predict accuracy in funding choices 296 
out-of-sample. Finally, for whole-brain classification of project-level funding outcomes 297 
on the internet, accuracy was assessed using leave-one-project-out cross-validation. On 298 
each testing iteration, one project’s data were held out and used to assess the accuracy of 299 
the model derived from training on the remaining projects. Accuracies in classifying 300 
project outcomes over thirty-six projects were then averaged to generate an overall 301 
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estimate of accuracy in classifying project outcomes. Forecasts therefore targeted project 302 
outcomes (which depended more on funders’ choices), rather than amount funded (which 303 
depended more on proposers’ initial goals). 304 
 305 
Results 306 
Predicting individual choice 307 
Behavioral correlates of individual funding choices. Individual subjects chose on average 308 
to fund 14.3 of the 36 presented projects (SD = 5.96, range = [3, 27]).  Similarly, in the 309 
replication study, individual subjects chose on average to fund 13.3 of the 36 presented 310 
projects (SD = 5.34, range = [2, 28]). Behavioral analyses first tested associations 311 
between individual self-report measures of project liking and funding choices. 312 
Independent hierarchical logistic regression models which included subject as a random 313 
effect and predicted trial-to-trial funding choices indicated that ratings of liking (z = 314 
14.57, p < .001) and perceived likelihood of success (z = 11.72, p < .001) were associated 315 
with individual choices to fund. Thus, subjects rated projects that they chose to fund as 316 
both more likeable (bootstrapped t-test difference est. = 2.64, 95% CI = [2.48, 2.79], t = 317 
33.04, p < .001) and more likely to successfully receive their full funding requests 318 
(bootstrapped t-test difference est. = 1.12, 95% CI = [.96, 1.28], t = 13.05, p < .001). 319 
Liking and perceived likelihood of success ratings were then separately averaged across 320 
subjects for each project. Bootstrapped correlations (5,000 iterations) indicated that 321 
ratings of both project liking (r = .91, 95% CI = [.83, .95]; p < .001) and perceived 322 
likelihood of success (r = .65, 95% CI = [.35, .84]; p < .001) correlated with individual 323 
choices to fund.  324 
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 325 
Similar analyses examined associations of self-reported affect ratings with choices to 326 
fund. Positive arousal ratings were strongly associated with individual choices to fund (z 327 
= 13.16, p < .001), but negative arousal ratings were not (z = .174, p = .861). 328 
Accordingly, subjects rated projects they chose to fund as evoking more positive arousal 329 
(t = 16.25, p < .001), but not differential negative arousal (t = 1.57, p = .115). Positive 330 
arousal and negative arousal ratings were then averaged across subjects for each project. 331 
A bootstrapped correlation (5,000 iterations) indicated that project positive arousal 332 
ratings correlated with individual funding choices (r = .61, 95% CI = [.34, .78]; p < .001). 333 
Individual funding choices did not significantly differ, however, as a function of project 334 
image type (face = 40%, place = 44%, text = 32%; F = 1.09, p = .35; replication study: 335 
face = 42%, place 36%; F = .979, p = .329). 336 
 337 
Whole brain predictors of individual funding choices. Whole brain analyses contrasted 338 
brain activity during project presentation (i.e., 8 secs) in trials in which subjects 339 
subsequently chose to fund versus trials in which they did not. Averaged group brain 340 
activity revealed significant clusters that predicted individual choice in the bilateral NAcc 341 
and MPFC (Figure 1b).  342 
 343 
Volume of interest (VOI) predictors of individual funding choices. Consistent with whole 344 
brain findings, NAcc activity was greater prior to choices to fund versus not to fund. 345 
Activity timecourse plots (Figure 1c) indicated temporal specificity, with significant 346 
differences appearing during the initial part of the project presentation period before 347 
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subjects could manually indicate their choices. MPFC activity was also greater prior to 348 
choices to fund versus not to fund, but during the latter part of the presentation period. 349 
Consistent with these patterns, a logistic regression indicated that both NAcc (z = 2.73, p 350 
< .01) and MPFC (z = 2.49, p < .05) activity at these points significantly and 351 
independently predicted trial-by-trial individual choices to fund (Table 1). To address 352 
whether sensory processes might also directly contribute to funding choices, a second 353 
model incorporated activity from sensory regions (Figure 2a), including the fusiform 354 
gyrus (FG), parahippocampal gyrus (PG), and left inferior frontal gyrus (left IFG). 355 
Neither FG (z = .07, p = .94) nor PG (z = 1.10, p = .27) activity predicted choices to fund, 356 
but left IFG activity did (z = 3.23, p < .01; Figure 2b; Table 1). Thus, although a better fit 357 
and lower Akaike Information Criterion (AIC) suggested that adding left IFG activity 358 
improved predictions of individual choices to fund, this influence did not interact with 359 
activity observed in anatomically distinct affective circuits. This pattern of results did not 360 
change after controlling for project image type.  361 
 362 
Functional connectivity. Functional connectivity analysis contrasted correlated activity 363 
between the NAcc and the three input processing region (FG, PG, left IFG) VOIs 364 
independently for each of the three project image types (i.e., face, place, and text). A 365 
psychophysiological interaction (PPI) term assessed the degree to which connectivity 366 
between these project image regions and the NAcc was associated with individual 367 
choices whether or not to fund projects (Figure 2c). Correlated activity between the NAcc 368 
and FG was significantly associated with individual choices to fund only in the face 369 
condition (t = 2.136, p < .05), but not in the place (t = 1.547, p = .133) or text conditions 370 
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(t = 1.726, p = .100). Similarly, correlated activity between the NAcc and PG was 371 
significantly associated with individual choices to fund only in the place condition (t = 372 
2.310, p < .05), but not in the face (t = .711, p = .483) or text conditions (t = .460, p = 373 
.649). Correlated activity between the NAcc and left IFG, however, was not significantly 374 
associated with individual choices to fund in any condition (Figure 2c). 375 
 376 
Classification of individual funding choices. Classification analyses further tested 377 
whether different combinations of behavioral and neural data could predict individual 378 
funding choices. Logistic regression classifiers were trained on 80% of choice trials 379 
(randomly selected) across all subjects and tested on the remaining 20% of trials to 380 
classify funded versus unfunded individual choices. Consistent with logistic regression 381 
analyses, a first classifier including behavioral self-report ratings of liking, perceived 382 
likelihood of success, and affect classified individual funding choices (86.4% accuracy, p 383 
< .001; chance = 50%). A second classifier using neural VOI data alone also significantly 384 
predicted individual funding choices (57.8% accuracy, p < .05). A third classifier 385 
combining behavioral and neural data predicted individual funding choices with 85.7% 386 
prediction accuracy (p < .001). A fourth classifier using whole brain (rather than VOI) 387 
neural activity during the project presentation phase also significantly predicted 388 
individual funding choices (58.7%, p < .05). The amount of data that each individual 389 
contributed to classification analyses after even downsampling (see Methods) was not 390 
significantly associated with variation in predictive accuracy (r = .279, p = .142).  391 
 392 
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Whole brain maps were then reconstructed to visualize selected predictive features in 393 
space and time. Consistent with focused univariate predictions, the largest clusters of 394 
predictive voxels appeared in the NAcc and MPFC preceding choice (Figure 1d). These 395 
features both spatially overlapped with volumes of interest used in univariate analyses 396 
(Figure 1b), and temporally overlapped with periods of discrimination identified in 397 
timecourse activity analyses (Figure 1c). Thus, NAcc features appeared to predict choice 398 
before MPFC features, consistent with an account in which anticipatory affect precedes 399 
value integration (Samanez-Larkin and Knutson, 2015).  400 
 401 
Forecasting aggregate choice 402 
Behavioral forecasts of aggregate choice. Logistic regression analyses next tested 403 
whether behavioral and self-report measures from the laboratory sample could forecast 404 
aggregate funding outcomes on the internet, which occurred weeks after the experiment 405 
(Table 2). Neither average ratings of project likeability (z = –1.171, p = .242), nor of 406 
perceived likelihood of success were associated with internet funding outcomes (z = .249, 407 
p = .803). Similarly, average funding choices were also not significantly associated with 408 
internet funding outcomes (z = .645, p = .519). Point-biserial correlations specifically 409 
verified an absence of significant associations between average ratings of likeability (r = 410 
–.231, p = .879), perceived likelihood of success (r = –.061, p = .394), and funding 411 
choices (r = –.151, p = .932) with internet funding outcomes (Table 2). Further, average 412 
self-reported affect ratings also did not forecast internet funding outcomes (Table 2), 413 
since both positive arousal ratings (z = -1.254, p = .210) and negative arousal ratings (z = 414 
.279 p = .780) were not significantly associated with internet funding outcomes. Image 415 
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category, however, was associated with internet funding outcomes (F = 6.95, p < .001), 416 
such that appeals depicting face images received more funding (83%) than did those 417 
depicting place (17%; t = 4.20, p < .001) or text images (50%; t = 1.78, p = .091, trend). 418 
The pattern of reported results did not change, however, after controlling for image 419 
category in the models.  420 
 421 
Neural forecasts of aggregate choice. Activity timecourses were extracted from 422 
previously-identified VOIs (i.e., NAcc, MPFC; see Method), as well as VOIs identified 423 
in meta-analyses (i.e., left IFG) -- all based on published anatomical coordinates rather 424 
than current results of individual choice predictions (although coordinates overlapped 425 
with those identified in individual choice analyses). Activity in these VOIs were averaged 426 
across the laboratory sample for each project, and compared for projects that were either 427 
eventually funded or not funded on the internet (Figure 3a). Averaged time points with 428 
significant activation differences were entered into the model predicting funding on the 429 
internet (or all averaged time points, if none significantly differed). During the period 430 
preceding choice, only NAcc activity significantly differed for projects that were 431 
eventually funded on the internet versus those that were not. Logistic regression analysis 432 
verified that only NAcc activity could forecast internet funding outcomes (z = 2.19, p = 433 
.029; Table 2). Although MPFC and left IFG activity had predicted individual choice in 434 
the laboratory sample, activity in these regions did not forecast internet funding 435 
outcomes. Accordingly, the fit of the neural model (pseudo R2 = .236) exceeded that of 436 
either models including behavioral choice (pseudo R2 = .106) or affect ratings (pseudo R2 437 
= .089; Table 2). Direct model comparisons indicated that the neural model classified 438 
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aggregate choice outcomes better than the behavioral model ( 2 deviance = 6.49, p = 439 
.039). Similarly, in the replication study the neural model classified aggregate choice 440 
outcomes better than the behavioral model ( 2 deviance = 10.19, p = .037). 441 
 442 
A combined logistic regression model then aimed to forecast internet funding outcomes 443 
by combining behavioral, affective, and neural measures (Table 2). Of these variables, 444 
only NAcc activity was significantly associated with internet funding outcomes (z = 2.15, 445 
p = .032). The combined model, however, produced an AIC value greater than the neural 446 
model, suggesting that after imposing penalties for additional predictors, the neural 447 
model provided a more parsimonious forecast of internet funding outcomes. To verify 448 
that NAcc activity alone could explain significant variance in internet funding outcomes, 449 
we checked independent regression models for activity in each neural region. Consistent 450 
with the combined model, only NAcc activity was significantly associated with internet 451 
funding outcomes (z = 2.04, p = .041), whereas both MPFC (z = -0.34, p = .731) and left 452 
IFG (z = .412, p =.680) activity were not. A permutation test in which NAcc activity was 453 
randomly assigned to funded and unfunded trials (across 10,000 iterations) verified that 454 
the observed distribution of NAcc activity significantly differed from a randomly 455 
constructed null distribution (CI = [.034, .044], p = .039).  456 
 457 
A second set of logistic regressions applied to data from the replication study yielded 458 
similar results. Specifically, behavioral and affective models did not forecast internet 459 
funding outcomes. However, the neural model in general and NAcc activity in particular 460 
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did forecast internet funding outcomes, and this effect also trended towards significance 461 
in the combined model (Table 2).  462 
 463 
Classification of aggregate funding outcome. Classification analyses tested the 464 
generalizability of the internet funding forecasts. Logistic regression classifiers were 465 
trained on 80% of all projects (randomly selected) and tested on the remaining 20% of 466 
projects to classify funded versus unfunded projects. The behavioral model included 467 
average ratings of liking, perceived likelihood of success, affect, and funding choices. 468 
This behavioral model classified funding outcomes with only 52.9% accuracy, which did 469 
not significantly exceed chance (p = .259), suggesting that behavioral measures of 470 
individual choices from the laboratory sample could not forecast internet funding 471 
outcomes. A second targeted neural model then tested whether average VOI activity 472 
could classify internet funding outcomes. This targeted neural model classified internet 473 
funding outcomes with 59.1% accuracy, which exceeded chance (p = .008), consistent 474 
with the notion that neural activity in these regions alone could forecast internet funding 475 
outcomes. A third whole brain neural model included whole brain activity during the 476 
project presentation phase of each trial. Cross-validation was achieved by training the 477 
model on neural activity from all but one project and then testing on the held-out project. 478 
This model classified internet funding outcomes at 67% (for model comparisons see 479 
Figure 3b). Replication study classification models yielded similar accuracy rates for the 480 
behavioral (accuracy = 55.8%, p > .05) and neural (accuracy = 61.1%, p = .002) models 481 
(Figure 3b). 482 
 483 
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Models based only on single subject VOI data also consistently classified internet 484 
funding above chance (50%; range = 55.5% – 80.5%; SEM = 1.3%), suggesting that the 485 
predictive accuracy of whole brain classifiers was not driven by outliers, such as a small 486 
group of “superforecasters” (Mellers et al., 2015). Maps were reconstructed from the 487 
whole brain model to visualize predictive brain features in space and time. Consistent 488 
with regression analyses forecasting internet funding outcomes, the largest cluster of 489 
predictive voxels appeared in the NAcc during the period preceding choice. These 490 
features spatially overlapped with those identified in the whole brain analysis of the 491 
laboratory sample (Figure 1b), and temporally overlapped with discriminant activity in 492 
timecourse analyses of internet funding (Figure 3a). 493 
 494 
Discussion 495 
This research aimed to test whether neural activity could predict individual crowdfunding 496 
choices as well as forecast aggregate crowdfunding outcomes on the internet weeks later. 497 
Whereas neural activity in both the NAcc and MPFC predicted individual choices to fund 498 
in the laboratory sample, only NAcc activity generalized to forecast aggregate market 499 
funding. Further, neural forecasts of market-level outcomes outperformed models that 500 
included self-reported ratings of liking, perceived likelihood of success, affective 501 
responses, and even individual choices of the laboratory sample. These neural forecasts 502 
of aggregate choice replicated in a second study. Together, the results provide an initial 503 
demonstration that a subset of the neural features that predict individual choice can also 504 
scale to forecast market-level outcomes.  505 
 506 
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Predicting individual crowdfunding choices. This work makes several novel 507 
contributions. First, the findings demonstrate that neural affective measures can predict 508 
individual choice in a crowdfunding context, since greater activity in the NAcc and 509 
MPFC predicted individual choices to fund. Importantly, this activity occurred before the 510 
choice phase of each trial and preceded neural activity associated with the act of 511 
indicating a choice. Activity timecourse analyses also suggested that NAcc activity 512 
predicted individual choices to fund before MPFC activity, consistent with accounts like 513 
the Affect Integration Motivation (AIM) framework (Samanez-Larkin and Knutson, 514 
2015), which invoke sequential processes of affective evaluation (Knutson et al., 2014) 515 
and value integration (Knutson et al., 2007; Plassmann et al., 2007; Levy and Glimcher, 516 
2012). Convergent evidence verified the robustness of these neural predictions, since 517 
anatomically targeted regressions as well as model-free classifiers implicated both NAcc 518 
and MPFC activity in individual choices to fund. 519 
 520 
Forecasting aggregate crowdfunding outcomes. Second, the findings suggest that some – 521 
but not all – features associated with individual choice may scale to forecast aggregate 522 
choice at the market level. Sequentially assessing both neural activity and choice in the 523 
neuroimaging sample allowed direct comparison of variables that could forecast 524 
aggregate choice in an internet market. Both traditional psychological (i.e., behaviorist) 525 
and economic (i.e., revealed preferences) theories imply that behavior in a representative 526 
sample of individuals should provide the best forecast of that same behavior at the 527 
aggregate level. Thus, if sampled individuals’ behavior does not forecast aggregate 528 
behavior, then neither should processes that generate that behavior. In the present 529 
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findings, however, while individual choice in the laboratory could not forecast aggregate 530 
behavior, some neural components of choice could.  531 
 532 
Dissociation from sensory input and motor output. Third, the findings illustrate that 533 
decision processes can be distinguished from sensory input and motor output. 534 
Presentation of crowdfunding appeals with varying visual content and counterbalanced 535 
left versus right motor response requirements allowed dissociation of processes 536 
contributing to choice ranging from visual input, to affective evaluation and integration, 537 
to motor output. Although the appeals’ visual content increased activity in relevant 538 
sensory regions (i.e., fusiform gyrus for face stimuli, and parahippocampal gyrus for 539 
place stimuli), these increases did not forecast funding choices. Functional connectivity 540 
of activity in these distinct processing regions with NAcc activity, however, did vary as a 541 
function of funding choices. Thus, specific images associated with funding requests may 542 
have indirectly promoted funding decisions by evoking correlated NAcc activity. These 543 
findings suggest that affective activity can flexibly incorporate -- but cannot be reduced 544 
to -- diverse types of sensory input or motor output when supporting choice. 545 
 546 
Generality of neuroforecasting. While crowdfunding offers an increasingly popular 547 
platform for supporting new market ventures, the generalization of these findings to other 548 
types of aggregate choice remains unclear. Growing evidence, however, has begun to 549 
implicate affective neural activity not only in predicting individual choice, but also in 550 
forecasting market outcomes. For instance, research suggests that NAcc activity during 551 
passive exposure to novel songs can forecast internet downloads two years later (Berns 552 
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and Moore, 2012), that NAcc responses during passive exposure to advertisements can 553 
forecast advertising-induced increases in sales demand (Venkatraman et al., 2015), and 554 
that NAcc responses during exposure to microloan appeals can forecast the success of 555 
those appeals on the internet (Genevsky and Knutson, 2015). While these studies suggest 556 
that forecasts from NAcc activity may generalize across diverse market scenarios, only 557 
the last study directly compared individual and aggregate choice. Although findings from 558 
that study indicated that NAcc activity could add value to forecasts based on affective 559 
ratings, they did not demonstrate that brain activity could supplant forecasts based on 560 
behavioral data, as we do here. Since most of these internet markets lack strategic 561 
concerns found in traditional financial markets (e.g., auctions, stock trading), future 562 
research will need to determine which market conditions are most conducive for 563 
application of neuroforecasting (Smith et al., 2014). 564 
 565 
The present findings raise the question as to why both NAcc and MPFC activity predicted 566 
individual choice, while only NAcc activity forecasted aggregate choice. Other findings 567 
have suggested that MPFC activity can provide information about which antismoking 568 
advertisements increase calls to a help line (Falk et al., 2012). NAcc activity may play a 569 
more prominent role in choices primarily involving “goods,” but activity in other regions 570 
(like the MPFC) may also play roles in choices involving mixtures of “goods” and 571 
“bads,” or more complex self-relevant concerns (e.g., including considerations related to 572 
probability or time). Future research might systematically explore and manipulate choice 573 
scenarios to determine whether and when different neural components support 574 
neuroforecasting. The present results provide preliminary support for an account in which 575 
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affective neural responses generalize more broadly across individuals than processes 576 
implicated in value integration.  577 
 578 
Deconstructing choice to improve forecasts. Conceptually, these findings move beyond 579 
accounts that focus solely on choice behavior by seeking to deconstruct processes that 580 
underlie choice. The current pattern of results suggests that some choice components of 581 
individual choice might generalize more broadly to aggregate choice than others. This 582 
suggests a compromise between accounts in which no individual choices scale to the 583 
aggregate versus accounts in which all individual choices scale to the aggregate, by 584 
implying that some – but not all – choice components might improve aggregate forecasts. 585 
Theory may help to guide further research, since a multistage, hierarchical, neurally-586 
situated account of choice (like the AIM framework) counterintuitively but accurately 587 
implies that affective components might generalize more broadly than more precise but 588 
also more idiosyncratic value integration components. Such evidence may eventually 589 
inform applications by indicating that neural activity can not only add value to behavior 590 
in aggregate choice forecasts, but also in some cases may reveal “hidden information” 591 
(Ariely and Berns, 2010). After demonstrating that brain activity can improve aggregate 592 
forecasts, investigators’ focus may shift towards understanding both the potential and 593 
limits of neuroforecasting.   594 
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Table 1: Logistic regressions predicting individuals’ trial-by-trial funding choices.  698 
 699 
 Main Study Replication Study 

 Decision VOIs  With Input VOIs  Decision VOIs With Input VOIs  

NAcc .787** (.261) .723** (.265) .963** (.260) 1.050** (.266) 
MPFC .333* (.133) .321* (.135) .476** (.129) .496** (.131) 
Insula -.178 (.354) -.492 (.369) -.556 (.362) -.557 (.387) 
Amygdala -.923* (.358) -1.209* (.380) -.318 (.402) -.045 (.433) 
FG  .025 (.097)  -.555* (.215) 
PG  .202 (.180)  -.612 (.408) 
IFG (left)  .554** (.164)  .845** (.252) 
Pseudo R2 .142 .163 .140 .158 
Akaike Inf. Crit. 1338.0 1323.5 1405.5 1394.4 

 700 
Statistics are standardized coefficients and standard error. Models include fixed effect of 701 
stimulus image category. Bold indicates predicted associations. 702 
Significance: **p < 0.01; *p < 0.05. 703 
NAcc: nucleus accumbens; MPFC: medial prefrontal cortex; FG: fusiform gyrus; PG: 704 
parahippocampal gyrus; IFG: inferior frontal gyrus.  705 
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Table 2: Logistic regressions forecasting aggregate funding outcomes on the internet for main and replication studies. 706 
 707 

 Main Study Replication Study 
 Behavioral Affective Neural Combined Behavioral Affective Neural Combined 

Funding Choice .572 (886)   .761 (1.302) .515 (1.632)   1.826 (1.421) 
Liking  -1.154 (.985)   -1.090 (1.564) --   -- 
Success likelihood  .131 (.528)   .068 (1.127) --   -- 
Positive arousal  -.489 (.390)  .045 (.749)  -.729 (.439)  -3.026† (1.657) 
Negative arousal  .110 (.392)  .087 (.523)  -.536 (.405)  -1.337† (.689) 
NAcc   1.691* (.774) 1.751* (.816)   2.098* (.940) 3.872† (2.199) 
MPFC   -.991 (.723) -.673 (.830)   -.593 (.509) -.557 (.747) 
IFG (left)   -.729 (.667) -.616 (.778)   -.687 (.457) -1.217 (.789) 
Amygdala   1.068 (.702) .973 (.817)   .126 (.527) -.049 (.646) 
Insula   -.601 (.828) -.733 (.932)   -.665 (.609) -.188 (.998) 
Pseudo R2 .106 .089 .236 .257 .092 .183 .304 .517 
Akaike Inf. Crit. 54.63 53.46 52.14 59.07 49.70 47.28 47.51 43.22 
Classification Acc. 52.9 51.8 59.1* 56.5* 55.8 55.2 61.1* 59.3* 

 708 
Statistics are standardized coefficients and standard error. Models include fixed effect of stimulus image category. Bold indicates 709 
predicted association.  Significance: †p < 0.10, *p < 0.05. 710 
 711 
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Figure 1. Neural predictors of individual funding choices.  712 
A) Neuroimaging task trial design. Subjects saw a project image (2 secs), project 713 
description (6 secs), and spatially counterbalanced prompts to indicate their choice to 714 
fund or not (4 secs), followed by a variable intertrial fixation interval (2–6 secs).  715 
B) Whole brain maps indicating neural activity associated with subjects’ choices to fund 716 
projects. Warm-colored voxels are positively associated with choices to fund (versus not 717 
fund; p <.05, corrected). Significant clusters of voxels were observed in the bilateral 718 
striatum, including the nucleus accumbens (NAcc), as well as in the medial prefrontal 719 
cortex (MPFC). 720 
C) Timecourses of neural activity extracted from bilateral NAcc (left panel) and MPFC 721 
(right panel) VOIs during the intertrial interval preceding each trial (TR 1–2, 4 secs), 722 
project presentation (TR 3–6, 8 secs), and choice period (TR 7, 2 secs). Separate lines 723 
indicate trials in which subjects chose to fund (black, solid) versus not to fund (gray, 724 
dashed). Both regions show increased activity while viewing the project associated with 725 
subsequent choices to fund.   726 
D) Classification of individual funding choices. Whole brain maps illustrate the top 1% 727 
of voxels that predicted individual choices to fund (highlighted in yellow). As with whole 728 
brain univariate analyses, this model-free classifier identified predictive voxel clusters in 729 
the NAcc and MPFC. 730 
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Figure 2. Association of neural activity elicited by project images with individual 732 
choices to fund. 733 
A) Whole brain activation maps indicating regions associated with processing project 734 
images including face (vs. place), place (vs. face), and text (vs. face + place; p < .05) 735 
stimuli (p < .05, corrected). Superimposed black circles indicate predefined volumes of 736 
interest based on foci drawn from Neurosynth meta-analyses. 737 
B) Activity timecourses extracted and averaged over predicted volumes of interest 738 
(shown in Panel A). Fusiform gyrus (FG; left panel) and parahippocampal gyrus (PG; 739 
middle panel) activity did not predict eventual choices to fund. Left inferior frontal gyrus 740 
(left IFG; right panel) activity, however, did predict eventual choices to fund. 741 
C) Psychophysiological interactions between activity from FG, PG, IFG, and NAcc VOIs 742 
differentially predict choice for stimuli with different image content. Functional 743 
connectivity between the FG and NAcc was associated with choice for face stimuli only, 744 
while functional connectivity between the PG and NAcc was associated with choice for 745 
place stimuli only. Functional connectivity between the left IFG and NAcc, however, was 746 
not associated with funding choices in any condition. 747 
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40 
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41 

41 

Figure 3. Neural features that forecast internet funding outcomes. 749
A) Volume of interest activity timecourses show that NAcc activity in the laboratory 750
sample significantly classified between projects which were funded (solid black) or not 751
(dashed grey) on the internet weeks later. MPFC activity, however, did not classify 752
funding outcomes.  753
B) Classification of internet funding outcomes. Accuracy rates for classification models 754
on main and replication study measures, including behavior and self-report data, neural 755
volume of interest activity (NAcc) data, and neural whole brain data. 756757
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