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Abstract 34 

Prior research points to a positive concurrent relationship between reasoning ability and both fronto-35 
parietal structural connectivity, as measured by diffusion tensor imaging (e.g. Tamnes et al., 2010), and 36 
fronto-parietal functional connectivity, as measured by fMRI (e.g. Cocchi et al., 2014). Further, recent 37 
research demonstrates a link between reasoning ability and functional connectivity of two brain regions 38 
in particular: rostrolateral prefrontal cortex (RLPFC) and the inferior parietal lobe (IPL) (Wendelken et al., 39 
2016). Here, we sought to investigate the concurrent and dynamic, lead-lag relationships between 40 
fronto-parietal structural connectivity, functional connectivity, and reasoning ability in humans. To this 41 
end, we combined three longitudinal developmental datasets with behavioral and neuroimaging data 42 
from 523 male and female participants between 6 and 22 years old. Cross-sectionally, reasoning ability 43 
was most strongly related to functional connectivity between RLPFC and IPL in adolescents and adults, 44 
but to fronto-parietal structural connectivity in children. Longitudinal analysis revealed that RLPFC-IPL 45 
structural connectivity, but not functional connectivity, was a positive predictor of future changes in 46 
reasoning ability. Moreover, we found that RLPFC-IPL structural connectivity at one time point positively 47 
predicted future changes in RLPFC-IPL functional connectivity, while in contrast, functional connectivity 48 
did not predict future changes in structural connectivity. Our results demonstrate the importance of 49 
strong white matter connectivity between RLPFC and IPL during middle childhood for the subsequent 50 
development of both robust functional connectivity and good reasoning ability.  51 

 52 

Significance Statement 53 

The human capacity for reasoning develops substantially during childhood and has a profound impact on 54 
achievement in school and in cognitively challenging careers. Reasoning ability depends on 55 
communication between lateral prefrontal and parietal cortices. Thus, to understand how this capacity 56 
develops, we examined the dynamic relationships over time between white matter tracts connecting 57 
fronto-parietal cortices (i.e., structural connectivity), coordinated fronto-parietal activation (functional 58 
connectivity) and reasoning ability in a large longitudinal sample of 6-22-year-olds.  We found that 59 
greater fronto-parietal structural connectivity in childhood predicts future increases in both functional 60 
connectivity and reasoning ability, demonstrating the importance of white matter development during 61 
childhood for subsequent brain and cognitive functioning.  62 

 63 
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 65 
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Introduction 70 

Reasoning, or the capacity to solve problems in novel situations, is a form of high-level cognition that 71 
improves dramatically over childhood, and to a lesser extend during adolescence (McArdle et al., 2002; 72 
Ferrer et al., 2009). Much of the research on the neural underpinning of reasoning has focused on its 73 
localization to specific brain regions (Prado et al., 2011; Wendelken et al., 2011; Krawczyk et al., 2012). 74 
However, reasoning, like other higher cognitive operations, depends on the coordinated action of 75 
multiple regions. Thus, characterizing patterns of inter-regional communication, and how such 76 
communication changes over time, is critical for understanding developmental changes and individual 77 
differences in reasoning. Doing so requires insight into both structural connectivity, or the white matter 78 
tracts that connect disparate brain regions, and functional connectivity, or the coordinated activity of 79 
different regions.  80 

Considerable effort has been devoted to understanding the development of functional connectivity and 81 
how it relates to higher cognition. In particular, prior research has emphasized the importance of 82 
functional connectivity among components of the lateral fronto-parietal network (LFPN), which supports 83 
reasoning and other higher cognitive functions (Jung & Haier, 2007; Shokri-Kojiri et al., 2012; Cocchi et 84 
al., 2014). Prior studies have also examined links between structural connectivity and reasoning, 85 
reporting associations between reasoning and multiple white matter tracts (Tamnes et al., 2010; Peters 86 
et al., 2013), or between reasoning and global white matter during childhood (Ferrer et al., 2013).  87 

Our prior fMRI research in adults has emphasized the importance for reasoning of two brain regions in 88 
particular: rostrolateral prefrontal cortex (RLPFC) and the inferior parietal lobule (IPL) (e.g. Wendelken 89 
et al., 2010, 2011, 2012; for reviews, see Vendetti & Bunge 2016; Krawczyk et al., 2012). In a cross-90 
sectional fMRI study that focused on functional connectivity among key nodes of the LFPN, we 91 
demonstrated that RLPFC-IPL FC and a composite measure of reasoning ability were associated in 92 
adolescents, but not in children under 12 (Wendelken et al., 2016). The present study examines 93 
concurrent and longitudinal predictors of reasoning ability in a large, pooled dataset that includes the 94 
earlier sample.  95 

To understand how LFPN functional connectivity emerges as a contributor to reasoning ability, it is 96 
critical to also understand the relevant changes in structural connectivity and how these relate to 97 
changes in functional connectivity and reasoning ability. Prior work relating structural and functional 98 
connectivity has focused on the default mode network (Greicius et al., 2009; Horn et al., 2014; Khalsa et 99 
al., 2014) or on global patterns of connectivity (Honey et al., 2009), with little attention given to the 100 
LFPN connections that are critical for higher cognition. Moreover, while concurrent relationships 101 
between structural and functional connectivity have been explored for some networks, the dynamic, 102 
lead-lag relationships between these measures remain largely uncharted.  103 

Here we considered two, non-mutually exclusive, hypotheses about the lead-lag relations between 104 
structural and functional connectivity in the LFPN. First, structural connectivity could enable the 105 
development of functional connectivity such that increased structural connectivity would be associated 106 
with greater potential for future increases in functional connectivity. Second, functional interaction 107 
between regions could drive physiological changes in the white matter connections. In this case, higher 108 
functional connectivity would be associated with future increases in structural connectivity. We then 109 
sought to determine whether structural connectivity and/or functional connectivity relate to reasoning 110 
development. It is possible that any relationship between structural connectivity and behavior, whether 111 
concurrent or lagged, is mediated by functional connectivity. Alternatively, even where there is a 112 



 

 4 

concurrent relationship between functional connectivity and behavior, structural connectivity may still 113 
prove to be a better predictor of behavioral change. In this case, earlier maturation of white matter 114 
tracts may be associated with earlier improvements in reasoning performance. However, delayed 115 
maturation might be advantageous (c.f. Shaw et al., 2006). The present study tests these hypotheses 116 
regarding the lead-lag relationships between structural connectivity, functional connectivity, and 117 
reasoning ability over development.  118 

 119 

Materials and Methods 120 

Experimental Design 121 

To begin to answer these questions about the lead-lag relationships between structural connectivity, 122 
functional connectivity, and reasoning ability, we conducted an analysis of longitudinal DTI, fMRI, and 123 
behavioral data from over 520 participants enrolled in longitudinal brain imaging research. We focused 124 
our analyses on the LFPN connections that have been implicated previously in studies of reasoning, and 125 
in particular on the RLPFC-IPL connection that our own prior research has highlighted as a key 126 
contributor to reasoning ability. The present study extends this prior work by examining how functional 127 
connectivity among frontal and parietal ROIs relates to structural connectivity, and by examining 128 
longitudinal relationships among these brain variables and behavior.  129 

 130 

Participants & Measures 131 

This study incorporated data from three different sources: 1) the “Neurodevelopment of Reasoning 132 
Ability” study (NORA; UC Berkeley, PIs: S. Bunge & E. Ferrer), 2) the “Hippocampal Investigation of 133 
Pediatric Populations over Time” study (HippoTime; UC Davis; PIs: S. Ghetti & S. Bunge), and 3) the 134 
“Predicting Late-Emerging Reading Disability” study (LERD; Vanderbilt University; PI: L. Cutting). 135 
Altogether, the current study included data from 523 participants (254 females), including 193 from the 136 
NORA dataset, 211 from the HippoTime (HIPPO) dataset, and 119 from the LERD dataset. Longitudinal 137 
data from two (NORA), three (HIPPO), or four (LERD) timepoints were available for 345 of these 138 
participants. Participants ranged in age from 6 up to 21.7 years old, with a mean age of 10.74 years (SD = 139 
3.29 years). A more detailed breakdown of participant demographics is given in Table 1. 140 

The NORA and HIPPO studies both involved a cohort-sequential longitudinal design, wherein T1 samples 141 
were collected from a broad initial age range, and follow-up scans were collected at different intervals. 142 
For NORA, T2 data collection was conducted on average 1.5 years after T1 data collection (ranging from 143 
0.9 to 2.2 years). For HIPPO, longitudinal visits were separated by an average of 1.3 years (ranging from 144 
0.73 to 2.9 years). LERD employed a traditional longitudinal design in which all T1 data were collected 145 
from participants at age 7, and subsequently at 1-year intervals. 146 

We considered three principal measures for each participant: reasoning ability, indexed via raw scores 147 
from the WASI Matrix Reasoning test (Wechsler 1974); structural connectivity, indicated by fractional 148 
anisotropy (FA) of selected white-matter tracts; and functional connectivity, calculated as task-149 
independent inter-regional correlations in fMRI timeseries data. Structural connectivity data were 150 
available for all timepoints, in all three studies. However, HIPPO participants had Matrix reasoning 151 
scores from only T1 and T3, and LERD participants had Matrix Reasoning scores only at T1, and 152 
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functional connectivity only at T1 and T4. While the LERD dataset included resting-state fMRI data, both 153 
NORA and HIPPO contributed task data. NORA fMRI data were collected while subjects performed a 154 
visual analogy task (Whitaker et al., in preparation; task described in Wright et al., 2008). HIPPO fMRI 155 
data were collected while subjects performed a source memory task (Sastre et al., 2016).  156 

In our prior investigations of reasoning ability with the NORA dataset, we had computed a reasoning 157 
ability factor score on the basis of multiple reasoning measures, including Concept Formation and 158 
Analysis-Synthesis from Woodcock-Johnson III (Woodcock et al., 2001) as well as Block Design and 159 
Matrix Reasoning from WASI (Ferrer et al., 2013; Wendelken et al., 2016). Matrix Reasoning, the only 160 
measure that was available across the three studies that we consider here, loaded strongly onto the 161 
reasoning factor score in NORA in previous analyses (Ferrer et al., 2013).  162 

 163 

MRI Data Collection and Preprocessing 164 

NORA data were collected at the University of California at Berkeley Brain Imaging Center and the 165 
University of California at San Francisco Neuroimaging Center, on 3T Siemens TIM MR scanners with 12-166 
channel head coils. HIPPO data were collected at the UC Davis Imaging Research Center on a 3T Siemens 167 
Trio Tim scanner with a 32-channel head coil. LERD data were collected at Vanderbilt University Institute 168 
of Imaging Science on a 3T Philips Achieva MRS scanner. Details of each scan type are included in Table 169 
2.  170 

DTI data were analyzed using the FMRIB Diffusion Toolbox (FDT) software tool (Behrens et al., 2003). 171 
First, eddy correction was run on the DTI images to correct for eddy current distortions, and brain 172 
extraction was performed to exclude non-brain voxels from further analysis. Following these preliminary 173 
steps, a diffusion tensor model was fit to each voxel to calculate directions and magnitude of diffusion. 174 
This procedure produces an FA image for each participant.  175 

All fMRI data were preprocessed in SPM8 (Wellcome Trust Center for Neuroimaging, London). 176 
Functional images were corrected for differences in slice acquisition timing and were realigned to the 177 
first volume by means of a 6-parameter rigid-body transformation. Each participant’s T1 structural 178 
image was coregistered to his/her mean realigned functional image and then spatially normalized to 179 
SPM’s T1 template. Normalization parameters obtained from this process were then applied to the 180 
functional images to produce a set of functional images in SPM standard space (MNI152), with 3x3x3mm 181 
voxels. Functional images were then smoothed with an 8-mm FWHM isotropic Gaussian kernel. Finally, 182 
volumes associated with a high degree of motion (> 1mm scan-to-scan translation) or signal spiking (> 183 
2% signal change) were corrected (interpolated) using the ArtRepair volume correction tool (ArtRepair, 184 
Stanford Psychiatric Neuroimaging Laboratory). Scans with more 25% corrected volumes were excluded 185 
from further analysis, resulting in exclusion of 346 separate scans, or 11% of the total number available. 186 

 187 

Functional Connectivity Analysis 188 

We sought to understand the relationships between reasoning ability, structural connectivity, and 189 
intrinsic patterns of functional connectivity – correlations in regional activation that are relatively stable 190 
across task demands and that are thought to reflect the long-term history of coordination between 191 
regions (Seely et al., 2007; Cole et al., 2014). Thus, we adopted the methods of intrinsic functional 192 
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connectivity analysis. This approach contrasts with analyses of task-related functional connectivity that 193 
focus on higher frequency correlations that differ as a function of task demands. Although our pooled 194 
dataset included data from several fMRI scans (NORA and HIPPO) in addition to resting-state scans 195 
(LERD), our analysis was designed to minimize the effect of task on the connectivity measure.  196 

ROIs were 5-mm spheres that we have utilized previously in the examination of functional connectivity 197 
and reasoning (Wendelken et al., 2016; see Figure 1). Each ROI was centered on coordinates selected 198 
from a large set of ROIs that have been used previously to examine global connectivity properties 199 
(Power et al., 2011). Specifically, we selected coordinates that corresponded to the left and right RLPFC, 200 
DLPFC, IPL, and SPL regions that are typically engaged during reasoning tasks (Krawczyk et al., 2012; 201 
Vendetti et al., 2014).  202 

Intrinsic functional connectivity between these regions was assessed by measuring low-frequency 203 
correlations between BOLD activation time series extracted for each ROI and for each participant. 204 
Several steps were undertaken to minimize the effects of physiological noise and motion on the 205 
extracted time series. These steps included: 1) regressing out average signal from CSF and from white 206 
matter; 2) regressing out volume-to-volume motion for six dimensions (three translation directions and 207 
three rotation axes); 3) regressing out task-related signal where applicable (Fair et al., 2007); 4) band-208 
pass filtering (with a minimum frequency of .008 Hz and a maximum frequency of .09 Hz); and 5) 209 
scrubbing (Power et al., 2012) to remove time points associated with high motion and/or signal spikes 210 
(as determined by ArtRepair). Correlation values were transformed to Z-scores using Fisher’s R-to-Z 211 
transformation, prior to the main statistical analyses. 212 

 213 

Structural Connectivity Analysis 214 

White matter tracts were obtained via probabilistic tractography, using the FDT ProbtrackX tool. 215 
Tractography was conducted using T1 data from the NORA dataset, and these tracts were subsequently 216 
used for the analysis across all longitudinal timepoints and datasets. The same lateral prefrontal and 217 
parietal coordinates that were used in analyses of functional connectivity (as centers for the spherical 218 
ROIs) were also used as endpoints for tractography. Computed tracts included left and right fronto-219 
parietal, intra-frontal, and intra-parietal connections (Figure 2). For each participant and each target 220 
tract, 1000 attempts were made to find a streamline from one endpoint to the other. Specifically, each 221 
streamline was started randomly from a white matter voxel within a 12 mm radius of the start point, 222 
and terminated successfully if it reached a voxel within 12 mm of the end point. (The 12-mm radius was 223 
selected to ensure sufficient white matter voxels within the sphere). A voxel was considered to be part 224 
of a subject’s tract if at least two streamlines passed through that voxel. Group average tracts were 225 
obtained by registering binarized subject tracts to MNI space, summing these together, and then 226 
thresholding to include in the final group tract voxels that were present in at least 25% of the 227 
contributing subject tracts. For each participant, the group tracts were mapped to subject space and 228 
masked with segmented subject white matter, to produce subject-specific versions of each tract. For the 229 
resulting masks, average FA values were extracted from the participant’s FA map, and these FA values 230 
were submitted to statistical analyses. 231 

 232 

Statistical Analysis 233 
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All statistical analyses were conducted in R (R Core Team, 2013).  234 

To account for possible differences between the three datasets (e.g., due to scanner, testing conditions), 235 
all values were normalized to the NORA sample. Specifically, for each measure from the LERD or HIPPO 236 
dataset (e.g. left RLPFC-IPL fractional anisotropy), a mean value was calculated both for the LERD/HIPPO 237 
sample and for the equivalent age range from the NORA sample. The difference was then subtracted 238 
from the LERD/HIPPO sample values to produce a set of normalized values for that measure. For HIPPO 239 
Matrix Reasoning, due to the fact that different test versions were used at the two different time points, 240 
data from each time point were normalized separately to the relevant NORA sample mean. In addition 241 
to normalization, we also included study (NORA, HIPPO, or LERD) as a covariate of no interest in relevant 242 
analyses (as noted).  243 

We consider the combination of datasets, as described above, to be the best approach given the 244 
available data. First, although our full participant sample is large, no individual dataset contributed 245 
sufficient numbers of data points to fully support our planned longitudinal analyses. Second, individual 246 
datasets included narrower age ranges and/or gaps in coverage relative to the combined dataset. 247 
Nevertheless, our approach may not fully succeed at controlling for differences between datasets, and 248 
there is added value in also examining results from the separate datasets. Thus, for each of the main 249 
results that we present in the manuscript, we also report corresponding results from each individual 250 
dataset.  251 

Prior to normalization, we conducted outlier correction separately for each dataset and relevant 252 
measure. We removed data points that were more than three standard deviations from the mean for 253 
that dataset. In addition, after normalization, we removed data points that were more than three 254 
standard deviations from the mean of the entire sample. In total, 8 subject time points were excluded 255 
due to outlier Matrix Reasoning scores, another 5 due to outlier functional connectivity values, and 256 
another 10 due to outlier structural connectivity values. 257 

Concurrent relationships and age effects were examined using mixed model regression, which accounts 258 
for subject repetition, on the full longitudinal dataset (nlme package in R, Pinheiro et al., 2013). 259 
Longitudinal analyses involved modeling and regression of change scores, and were limited in all cases 260 
to data from two longitudinal time points.  261 

In order to test for age differences in the relationships between variables, we split the full age range into 262 
two separate age groups. Having previously shown a developmental shift in functional connectivity that 263 
occurs at around age 12 (Wendelken et al., 2016), we created a subdivision between children under 12 264 
(ages 6-11, here termed “younger participants”) and adolescents and young adults (ages 12-22, termed 265 
“older participants”). This procedure resulted in 423 individuals (209 females) in the former group, and 266 
99 individuals (48 females) in the latter.  267 

In addition to splitting the data by age group for a subset of analyses, we also examined nonlinear age-268 
related changes in our key variables using age as a continuous variable. For our key measures, including 269 
Matrix Reasoning, RLPFC-IPL functional connectivity, and RLPFC-IPL structural connectivity, trajectories 270 
of age-related change, computed across the entire age range, were fit using the cumulative normal 271 
distribution (“pnorm” function in R). This function includes two parameters: μ, the age of maximal 272 
change, and σ, the spread of change around that age. This model can fit a variety of different 273 
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trajectories, including linear, asymptotic, and s-shaped curves, and has the advantage of doing so with a 274 
single functional form that yields readily interpretable parameters (c.f. Wendelken et al., 2016). 275 

 276 

Results 277 

Developmental improvement in reasoning ability 278 

Reasoning ability, as indexed by scores on the Matrix Reasoning task, demonstrated robust 279 
developmental improvement. In cross-sectional analysis of the full age range, we observed a nonlinear 280 
pattern of age-related increase, with the greatest increases occurring amongst the youngest participants 281 
(b = 33.4, t(311) = 27.6, p < .001; Figure 3). We found that age-related increases were maximal at age 6 – 282 
i.e., at the beginning of the examined age range. There was no effect of gender on behavioral 283 
performance. Although younger participants demonstrated the larger increase in reasoning ability, in 284 
both linear cross-sectional and longitudinal analyses (cross: b = 2.4, t(149) = 19.1, p < .001; long. change 285 
in R: ∆ = 3.97, t(201) = 11.2, p < .001), older participants also showed significant improvement (cross: b = 286 
0.53, t(60) = 5.9, p < .001; long: ∆ = 1.8, t(45) = 3.0, p = .004). 287 

 288 

Test of potential confound for brain imaging analyses  289 

Recent research has suggested that many behavioral measures, including reasoning ability, might be 290 
related to in-scanner head motion (Siegel et al., 2016). Thus, we sought to test for this possibility in our 291 
own data by regressing Matrix Reasoning score against average volume-to-volume translational 292 
displacement. While increasing age was associated with decreasing head motion in our sample, as 293 
expected, the relationship between motion and reasoning ability was not significant after accounting for 294 
age (p = .34). Further, there was no interaction between motion and age group (younger vs older 295 
participants) in their effect on reasoning (p = .41). Despite the lack of a relation between head motion 296 
and reasoning ability in our sample of participants, we did, as described previously, employ methods 297 
designed to reduce the impact of head motion on computed functional connectivity measures 298 
(regression of motion parameters and scrubbing). 299 

 300 

Connectivity and reasoning ability: concurrent effects 301 

Before addressing the key question of the lead-lag relationships between structural connectivity, 302 
functional connectivity, and reasoning, we sought to extend, in this larger sample, prior results obtained 303 
with the NORA dataset that were focused on the separate cross-sectional relationships between 304 
reasoning ability and functional connectivity (Wendelken et al., 2016) and between reasoning ability and 305 
structural connectivity (Ferrer et al., 2013). The former study included 132 participants (76 males, age 6-306 
19), with T2 longitudinal data for 56. The latter study included cross-sectional data from 103 participants 307 
(55 males, age 6-18). All of these participants were included in the present analysis. 308 

As reported previously for a subset of the present dataset (Wendelken et al., 2016), there was an 309 
interaction between age group (6-11 vs 12-22) and RLPFC-IPL functional connectivity (b = 8.2, t(100) = 310 
2.6, p = .009), with the functional connectivity-reasoning relation present in older participants 311 
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(controlling for Age and Study: b = 5.44, t(18) = 3.1, p = .006), but not in younger participants (p = .24). 312 
The result in older participants was driven by a significant effect for left RLPFC-IPL (b = 4.2, t(19) = 2.8, p 313 
= .01) and a non-significant trend for right RLPFC-IPL (b = 2.1, t(19) = 1.5, p = .16). Separate analysis of 314 
older participants in the NORA and HIPPO datasets revealed similar positive effects: significant in the 315 
former and marginally significant in the latter (NORA: b = 8.2, p = .002; HIPPO: b = 4.2, p = .1). In contrast, 316 
there was no effect for younger participants in any of the three datasets examined separately (all ps 317 
> .2). There were no main effects or interactions involving gender (ps > .2). In summary, we found a 318 
relationship between RLPFC-IPL functional connectivity and reasoning only for adolescents and young 319 
adults.  320 

Next, we examined LFPN functional connectivity more generally. However, we found no significant 321 
relationship between reasoning ability and either average fronto-parietal connectivity (i.e. average 322 
across connectivity of all frontal to parietal connections) or average network connectivity (i.e. average 323 
across all fronto-parietal, intra-prefrontal, and intra-parietal connections), in either younger or older 324 
participants (ps > .21). Thus, reasoning ability among adolescents and young adults was related to 325 
functional connectivity of RLPFC-IPL, particularly in the left hemisphere, but not to connectivity among 326 
other nodes in the LFPN.  327 

In the next set of analyses, we focused on structural connectivity.  Having shown in cross-sectional 328 
analyses of a subset of the NORA dataset that structural connectivity averaged across all white matter in 329 
the brain was positively related to reasoning ability (Ferrer et al., 2013), we tested here whether 330 
structural connectivity within the LFPN and/or for fronto-parietal connections in particular would be 331 
related to reasoning ability. First, we computed average structural connectivity across all of our tracts: 332 
fronto-parietal tracts as well as intra-frontal and intra-parietal tracts. Mixed-model regression analyses 333 
conducted on the full sample revealed a marginally significant positive relation between average fronto-334 
parietal network structural connectivity and reasoning ability (controlling for Age and Study; b = 23.3, 335 
t(128) = 1.8, p = .06).  336 

To test whether this marginal relation was driven by a subset of connections within the network, we 337 
broke down LFPN structural connectivity into three separate components: fronto-parietal structural 338 
connectivity, intra-frontal structural connectivity, and intra-parietal structural connectivity. In a stepwise 339 
regression across the entire age range, only fronto-parietal structural connectivity survived as a 340 
predictor of reasoning ability. This overall relationship between fronto-parietal structural connectivity 341 
and reasoning was marginally significant when controlling for both Age and Study (b = 26.1, t(127) = 1.9, 342 
p = .06; Figure 4). There was no interaction between structural connectivity and gender (p > 0.2).  343 

Next, we asked whether this relationship between fronto-parietal structural connectivity and reasoning 344 
varied as a function of age. We included an Age x structural connectivity interaction term into the 345 
regression model and found a negative interaction between the effects of age and fronto-parietal 346 
structural connectivity on reasoning (b = -16.5, t(127) = -5.2, p < .001), such that there was a bigger 347 
effect of structural connectivity on reasoning among younger participants. Further, the main effect of 348 
structural connectivity on reasoning was significant in this model (b = 194.0, t(127) = 5.5, p < .001).  A 349 
similar analysis that incorporated age as a categorical group rather than as a continuous variable 350 
revealed a similar interaction (age group x structural connectivity: b = -13.5, t(127) = -3.8, p < .001), such 351 
that there was a strong positive relationship between fronto-parietal structural connectivity and 352 
reasoning in younger participants (b = 88.7, t(64) = 5.4, p < .001), but not in older participants (p = .54). 353 



 

 10 

In summary, stronger structural connectivity within fronto-parietal tracts was associated with better 354 
reasoning ability in children but not in adolescents and adults.  355 

To better understand this key finding of a positive effect of fronto-parietal structural connectivity on 356 
reasoning in younger participants, we repeated the previous age interaction analysis separately in each 357 
of the three datasets. The negative interaction between age and structural connectivity was observed in 358 
all three datasets (NORA: b = -21.8, t(44) = -4.9, p < .001; HIPPO: b = -9.7, t(81) = -2.3, p = .03; LERD: b = -359 
256.9, t(84) = -1.7, p = .09). Further, in the presence of this interaction, the positive main effect of 360 
structural connectivity on reasoning was also apparent in all three datasets (NORA: b = 251.0, t(44) = 5.2, 361 
p < .001; HIPPO: b = 120.4, t(81) = 2.3, p = .03; LERD: b = 1919.1, t(84) = 1.7, p = .09).   362 

Next, we sought to determine whether the association between fronto-parietal structural connectivity 363 
and reasoning ability was present in particular in the RLPFC-IPL connection, for which the functional 364 
connectivity-reasoning relationship has been established. Further, we sought to determine if there were 365 
differences between left and right-side connections. Across the entire age range, there was a marginal 366 
positive relationship between RLPFC-IPL structural connectivity and Reasoning (controlling for age and 367 
study: b = 19.1, t(128) = 1.6, p = 0.1). This result was driven by a significant effect in the left hemisphere 368 
(controlling for age and study: b = 23.1, t(129) = 2.0, p = .04) with no effect in the right hemisphere (p = 369 
0.3).  Consistent with what we had observed for average fronto-parietal structural connectivity, we 370 
found a significant negative interaction between RLPFC-IPL structural connectivity and age (b = -14.4, t = 371 
-4.9, p < .001), as well as a significant main effect of structural connectivity on reasoning (b = 172.4, 372 
t(127) = 5.1, p < .001).  In this analysis, similar interaction effects were observed for left and right RLPFC-373 
IPL connections (left: b = -13.3, t(128) = -4.7, p < .001; right: b = -13.2, t(128) = -5.8, p < .001). Moreover, 374 
inclusion of the interaction term revealed a significant main effect of structural connectivity on 375 
reasoning for both the left and right RLPFC-IPL connections (left: b = 166.6, t(128) = 5.7, p < .001; right: b 376 
= 151.5, t(128) = 6.8, p < .001). Thus, as for average fronto-parietal structural connectivity, RLPFC-IPL 377 
structural connectivity demonstrated a positive association with reasoning ability that was stronger in 378 
younger than in older participants.  379 

Finally, we sought to determine whether the relationship between structural connectivity and reasoning 380 
ability was mediated at least in part by functional connectivity.  For this analysis, we focused on the left 381 
RLPFC-IPL connection that demonstrated the strongest relationship between functional connectivity and 382 
reasoning. Because the functional connectivity effect was limited to older participants, and the 383 
structural connectivity effect was driven by younger participants, we did not expect to find a mediating 384 
relationship. Indeed, comparison of two models, one that included functional connectivity as a mediator 385 
of the structural connectivity-reasoning relationship, and the other that did not, revealed a clear 386 
preference for the model without mediation (AIC: 4734 vs 3966, p < .001). 387 

 388 

Developmental changes in structural and functional connectivity 389 

To better understand the relationship between frontoparietal connectivity and reasoning, it is important 390 
to identify the developmental trajectory associated with each connectivity measure. We have previously 391 
reported a nonlinear pattern of age-related change for RLPFC-IPL functional connectivity, with the 392 
largest increases occurring during late childhood and early adolescence (Wendelken et al., 2016). Results 393 
from the current expanded sample are consistent with this finding: the optimal fit curve indicated a 394 
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maximal rate of increase in functional connectivity at age 13 (μ = 13, σ = 2, b = 0.15, t(1,583) = 10.8, p 395 
< .001; Figure 5a).  396 

For RLPFC-IPL structural connectivity, larger increases were observed in younger participants, with the 397 
maximal rate of increase at age 7 (μ = 7, σ = 6, b = 0.07, t(1,778) = 14.7, p < .001; Figure 5b). Average 398 
fronto-parietal structural connectivity demonstrated a similar pattern of age-related change. In 399 
summary, developmental increases in RLPFC-IPL structural connectivity are greatest in younger children, 400 
while developmental increases in RLPFC-IPL functional connectivity peak in early adolescence. 401 

 402 

Relationships between structural and functional connectivity  403 

Having observed age-related and longitudinal increases in both structural and functional fronto-parietal 404 
connectivity, we next sought to understand the relation between these two connectivity measures. 405 
Because both measures increased with age, it is unsurprising that they demonstrated a strong positive 406 
relationship, across our sample, before accounting for age (b = 1.6, t(206) = 5.6, p < .001). However, 407 
after accounting for age and study in a mixed-model regression, the relationship between average 408 
fronto-parietal structural connectivity and average fronto-parietal functional connectivity did not 409 
achieve statistical significance (b = .45, t(205) = 1.5, p = .14).  Further, there was no interaction with Age 410 
(p = .8) or Age Group (p = .6). Similar results were observed when the analysis was limited to the RLPFC-411 
IPL connection (controlling for Age and Study: b = 0.81, t(205) = 1.7, p = .08). In this case, there were 412 
trend-level positive interactions with Age (p = .13) and with age group (p = .17). Thus, we observed 413 
overall positive but weak concurrent relationships between fronto-parietal Structural and functional 414 
connectivity, over and above the common effect of increasing age. 415 

Next, we conducted longitudinal analyses to test whether stronger structural connectivity at one time-416 
point might drive future increases in functional connectivity. We focused our investigation of such lead-417 
lag dynamic relationships on the RLPFC-IPL connection. To test whether RLPFC-IPL structural 418 
connectivity would predict future increases in corresponding functional connectivity, we conducted a 419 
linear stepwise regression with longitudinal change in functional connectivity as the dependent variable, 420 
and with T1 values for functional connectivity, structural connectivity, and Age, and longitudinal change 421 
in Age and structural connectivity as independent variables. The resulting model included T1 functional 422 
connectivity, T1 structural connectivity, T1 Age, and change in structural connectivity as significant 423 
predictors of change in functional connectivity (Figure 7a). As expected, T1 functional connectivity was a 424 
negative predictor of functional connectivity change (b = -.62, t(134) = -8.9, p < .001), as individuals who 425 
already exhibit higher functional connectivity at T1 change less over time. Change in structural 426 
connectivity was a positive predictor of functional connectivity change, but this relationship was not 427 
significant after controlling for Study (p = .4). Critically, T1 structural connectivity was a positive 428 
predictor of functional connectivity change (controlling for Study; b = 1.7, t(134) = 2.6, p = .009), such 429 
that participants with higher RLPFC-IPL structural connectivity at T1 showed greater longitudinal 430 
increases in RLPFC-IPL functional connectivity. There was no effect of age group on this result (T1 431 
structural connectivity x Group: p = .31), nor was there an effect of gender (T1 structural connectivity x 432 
Gender: p = .94). Similar effects of T1 structural connectivity on functional connectivity change were 433 
observed in each of the three datasets considered separately, although they only reached significance in 434 
the combined analysis (NORA: b = 1.5, p = .18; HIPPO: b = 1.6, p = .07; LERD: b = 3.3, p = .16). 435 
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Having established that RLPFC-IPL structural connectivity predicts future changes in functional 436 
connectivity, we next sought to determine whether the converse relation was also present. To test 437 
whether RLPFC-IPL functional connectivity predicts future increases in corresponding structural 438 
connectivity, we conducted a linear stepwise regression analysis with longitudinal change in structural 439 
connectivity as the dependent variable and with T1 values for functional connectivity, structural 440 
connectivity, and Age, and longitudinal change in Age and functional connectivity as independent 441 
variables. The resulting model included T1 functional connectivity, T1 structural connectivity, T1 Age, 442 
and functional connectivity change as predictors of structural connectivity change (Figure 7b). After 443 
controlling for Study, T1 structural connectivity was a negative predictor of structural connectivity 444 
change (b = -1.8, t(135) = -3.9, p < .001), as expected. However, none of the other variables (i.e., T1 Age, 445 
T1 functional connectivity, and functional connectivity change) showed statistically significant values (p’s 446 
> .39). Aside from a marginal negative relation between structural connectivity change and T1 Age in the 447 
younger participants (b = -.001, p = .08), a similar pattern of results was obtained for both age groups. 448 
Adding gender to the model yielded no additional effects. Further, examination of each of the three 449 
datasets separately revealed a similar lack of effect in each (p’s > .2). Thus, we found no evidence of 450 
functional connectivity driving structural connectivity for the RLPFC-IPL connection. 451 

 452 

Connectivity and Longitudinal Changes in Reasoning Ability 453 

Finally, we sought to test whether structural and/or functional connectivity would predict longitudinal 454 
changes in reasoning ability. Because it was the left RLPFC-IPL functional connectivity that demonstrated 455 
the strongest cross-sectional association with reasoning ability, we narrowed our focus to this specific 456 
connection for all further analyses. We conducted a stepwise linear regression with change in Reasoning 457 
as the dependent variable, and T1 values for Age, Reasoning, structural connectivity for left RLPFC-IPL, 458 
and functional connectivity for left RLPFC-IPL, and longitudinal changes in Age, structural connectivity, 459 
and functional connectivity, as independent variables. The resulting linear model included T1 Reasoning, 460 
Age, and structural connectivity.  461 

As expected, T1 Reasoning was a negative predictor of Reasoning change (controlling for Study: b = -0.74, 462 
t(144) = -11.1, p < .001). Both T1 structural connectivity and T1 Age were positive predictors of 463 
Reasoning change, though these effects were only marginally significant after controlling for Study 464 
(structural connectivity: b = 28.6, t(144) = 1.8, p = .07; Age: b = 0.24, t(144) = 1.9, p = .06). Notably, 465 
dropping either Age or structural connectivity from the regression yielded a significant effect for the 466 
other factor (structural connectivity: b = 37.6, t(145) = 2.4, p = .02; Age: b = .31, t(145) = 2.6, p = .01). 467 
Numerically similar but non-significant effects were observed separately in both datasets that 468 
contributed to this pooled analysis in NORA (b = 37.5, p = .06) and in HIPPO (b = 38.0, p = .16). Adding 469 
gender to this model yielded no additional effects or interactions.  470 

Given the significant age effects that we had observed in our prior analyses relating Structural and 471 
functional connectivity to reasoning ability, we repeated this analysis separately for younger and older 472 
participant groups, even though we did not observe a significant interaction of T1 structural connectivity 473 
with either Age or Age Group in the stepwise linear regression (p’s > .2). For younger participants, only 474 
T1 structural connectivity survived the stepwise regression as a positive predictor of Reasoning change, 475 
and remained significant after controlling for Age and Study (b = 43.9, t(119) = 2.1, p = .04; Figure 8a). 476 
For older participants, by contrast, T1 Age was the only positive predictor (Age: b = .44, t(20) = 2.6, p 477 
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= .01; Figure 8b). T1 Reasoning was a negative predictor in both groups, as for the entire sample. Thus, 478 
the marginal relationship between left RLPFC-IPL structural connectivity and reasoning observed in the 479 
entire sample was driven by a significant positive relationship in children under age 12.  480 

 481 

Discussion 482 

This study represents, to our knowledge, the first to examine lead-lag relations between structural and 483 
functional connectivity within the fronto-parietal network, and the first to examine the dynamic lead-lag 484 
relationship between these measures and reasoning ability. Below, we discuss the developmental 485 
changes observed for each of our measures separately, and then discuss their dynamic interrelations.  486 

 487 

Age-related changes in structural connectivity, functional connectivity, and reasoning ability 488 

In all three of the measures that we examined, we found both cross-sectional age-related increases as 489 
well as within-person longitudinal increases. However, distinct developmental trajectories were 490 
apparent. Reasoning ability exhibited large increases in younger children and relatively smaller but 491 
continuing increases into adulthood. This result is consistent with prior reports that have pointed to the 492 
early school years as a period of peak improvement in reasoning ability (McArdle et al., 2002; Ferrer et 493 
al., 2009).  494 

Increases in fronto-parietal functional connectivity, by contrast, were relatively minimal in younger 495 
children, and were most pronounced at the point of transition between childhood and adolescence. This 496 
marked increase in fronto-parietal functional connectivity in late childhood is consistent with reports 497 
from prior investigations (e.g. Barber et al., 2013; Ernst et al., 2015; Smit et al., 2012).  498 

Fronto-parietal structural connectivity demonstrated substantial increases in younger children and 499 
continuing change into adolescence. This demonstration of fronto-parietal white matter development 500 
extended across a relatively broad age range is consistent with prior reports (e.g. Asato et al., 2010; 501 
Lebel et al., 2012). Notably, development of structural connectivity appears to both precede and follow 502 
the period of greatest change in functional connectivity.  503 

 504 

Fronto-parietal functional connectivity supports reasoning in adolescents and adults 505 

As reported previously with the NORA dataset (Wendelken et al., 2016), we observed a positive 506 
concurrent relationship between RLPFC-IPL functional connectivity and reasoning ability in adolescents 507 
in the expanded sample. Among HIPPO study participants, who were not included in the previous report, 508 
this effect was marginally significant. Notably, the HIPPO sample did not include older adolescents, who 509 
made up a significant share of the NORA sample. Thus, it is possible that the somewhat weaker effect 510 
for the HIPPO dataset was due to the different age distribution.   511 

Although we and others have demonstrated development of a concurrent relationship between fronto-512 
parietal functional connectivity and reasoning (Bazargani et al., 2014; Wendelken et al., 2016), we did 513 
not observe here any lead-lag developmental relationship between these two measures. Specifically, 514 
while RLPFC-IPL functional connectivity was associated with reasoning ability in adolescents and adults, 515 
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the level of RLPFC-IPL functional connectivity did not predict future changes in reasoning ability. This 516 
outcome suggests that communication between RLPFC and IPL is characteristic of a mature reasoning 517 
system, but that robust communication between these regions may not be a prerequisite for the 518 
development of reasoning.  By contrast, the maturation of fronto-parietal white matter tracts during 519 
childhood may well be a prerequisite for the emergence in early adolescence of both advanced 520 
reasoning ability and the robust RLPFC-IPL functional connectivity on which this depends. 521 

It is entirely possible that functional connectivity of different connections, or involving other functional 522 
brain networks, might predict future change in reasoning or other higher cognitive abilities. In addition 523 
to the fronto-parietal network, the cingulo-opercular network – most frequently linked to cognitive 524 
control – has also been implicated in reasoning (Cocchi et al., 2014). Future investigations should assess 525 
whether cingulo-opercular and/or other connections also contribute to reasoning development. 526 

 527 

Fronto-parietal structural connectivity supports the development of reasoning ability  528 

Structural connectivity, as well as functional connectivity, had an impact on reasoning development.  529 
First, we observed a strong positive relationship between fronto-parietal structural connectivity and 530 
reasoning ability in children. Although this relationship was not specific to the RLPFC-IPL connection, it 531 
does appear to be specific to fronto-parietal connectivity and not to interhemispheric connections 532 
within the prefrontal or parietal cortices. This effect was not mediated by functional connectivity. 533 

Second, we observed a lead-lag relationship between RLPFC-IPL structural connectivity and reasoning 534 
ability, whereby higher structural connectivity led to subsequent increases in reasoning ability. Thus, the 535 
state of white matter connection between RLPFC and IPL in childhood appears to be important for 536 
developmental improvements in reasoning ability.  537 

Several prior studies have linked structural connectivity, and particularly fronto-parietal structural 538 
connectivity, to reasoning ability and to other higher cognitive operations. For example, Tamnes et al 539 
(2010) reported a concurrent positive relationship between reasoning ability and FA within the cingulum 540 
bundle and inferior longitudinal fasciculus in children and young adults. Further, Peters et al (2013) 541 
reported a concurrent association in children and young adults between FA in both cingulum bundle and 542 
inferior fronto-occipital fasciculus and average performance across a range of cognitively demanding 543 
tasks. Using the NORA dataset that contributed to our current larger sample, we observed a positive 544 
relationship between global (average whole-brain) FA and reasoning ability in children and adolescents, 545 
mediated by processing speed (Ferrer et al., 2013). While we did not have a common measure of 546 
processing speed in our pooled dataset, we were able to extend our prior results by demonstrating a 547 
specific link between reasoning ability and fronto-parietal connectivity – but not intra-frontal or intra-548 
parietal connectivity – that we had not detected previously. These results build on our prior work by 549 
demonstrating that not all white matter pathways contribute equally to the development of reasoning.  550 

 551 

Fronto-parietal structural connectivity supports emerging functional connectivity 552 

Since both structural and functional connectivity are seen to affect reasoning development, but at 553 
different points along the developmental trajectory, we considered it essential to our understanding of 554 
reasoning development to also understand the relationship between these two measures. For both the 555 
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fronto-parietal network generally, and more specifically for the RLPFC-IPL connection, structural and 556 
functional connectivity were not significantly related at a single timepoint after accounting for age and 557 
study site (despite a positive relation before accounting for these variables). This result is broadly 558 
consistent with prior investigations that have found overall positive concurrent relations between these 559 
measures but have also demonstrated functional connectivity in the absence of structural connectivity, 560 
consistent with the notion that functional connectivity reflects indirect (polysynaptic) as well direct 561 
(monosynaptic) communication between brain regions (Skudlarski et al., 2008; Honey et al., 2009). 562 

Prior studies have told us something about the concurrent relationship between structural and 563 
functional connectivity, but they have not revealed the dynamic, lead-lag nature of this relationship. 564 
Here, focusing on the RLPFC-IPL connection, we found that structural connectivity was a predictor of 565 
future changes in functional connectivity. This result demonstrates that, at least for this connection, 566 
white matter connectivity enables the coordination between regions that is indexed by functional 567 
connectivity – and, moreover, that strong white matter connectivity allows for the emergence over time 568 
of increased coordination between regions. On the grounds that increased coordination between 569 
regions would promote the development of white matter tracts via mechanisms of experience-570 
dependent brain plasticity, we had hypothesized that robust functional connectivity should also lead to 571 
future increases in structural connectivity. However, at least for the RLPFC-IPL connection that was 572 
examined here, we found no evidence for this relationship. 573 

 574 

Limitations 575 

A virtue of the present study is the large number of subjects afforded by the combination of three 576 
separate and independent longitudinal datasets. However, this combination of datasets, which reused 577 
existing data collected for other purposes, is also the source or several important limitations. First, the 578 
fact that the data come from multiple sites, with different research protocols and different scanning 579 
hardware, means that nominally equivalent measurements may not be directly comparable. This 580 
problem was compounded by the fact that each dataset covered a different age distribution. We 581 
addressed this problem in two ways: first, we normalized data from the HIPPO and LERD datasets to 582 
age-matched samples from the NORA dataset; second, we included study as a covariate of no interest in 583 
relevant analyses. In additional to potential differences in nominally equivalent measures, there was 584 
even greater potential for differences across datasets in our measure of functional connectivity, due to 585 
the fact that fMRI data came from different fMRI tasks, or in the case of LERD, from resting-state fMRI. 586 
Our functional connectivity data analysis, which involved low-pass filtering that excluded likely task 587 
frequencies, as well as explicitly regressing out task vectors, was designed to minimize these differences. 588 
Moreover, where the functional connectivity results demonstrate similar patterns in the separate 589 
datasets, this diversity may be seen as an asset. Nevertheless, the possibility that this difference 590 
between the datasets may have impacted the functional connectivity results remains a key limitation of 591 
the current study. Finally, interpretation of relative effects in younger versus older participants is 592 
somewhat limited by the fact that the older group was considerably smaller that the younger group, and 593 
in some cases by the fact that reasoning change was much greater among younger participants. In 594 
particular, either of these factors might contribute to the lack of relationship between structural 595 
connectivity and reasoning ability in older participants. It is important to note that the split at age 12 596 
was motivated in part by the fact of this difference in reasoning trajectories, and also by previously 597 
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observed differences in the functional connectivity-reasoning relationship (Wendelken et al., 2016). 598 
Thus, we consider this to be the best choice for an age group split despite the size imbalance between 599 
the resulting subsamples. Analyses that incorporated age as a continuous variable, rather than 600 
categorical age groups, did not suffer from this limitation. 601 

 602 

Conclusion 603 

The present study is, to our knowledge, the first to examine the dynamic, lead-lag relationships between 604 
structural and functional connectivity and reasoning ability. We found that, while fronto-parietal, and 605 
specifically RLPFC-IPL, functional connectivity is a key correlate of reasoning ability in adolescents and 606 
adults, it is the underlying fronto-parietal structural connectivity that was more closely associated with 607 
reasoning ability in children, both cross-sectionally and longitudinally. These results establish the 608 
importance of fronto-parietal white matter development during childhood as a foundation for good 609 
cognitive functioning in adolescence. It will be important in future work to test the effects of 610 
demographic variables on the neurocognitive development of reasoning ability, and also to determine 611 
whether childhood is a sensitive period for plasticity in the lateral fronto-parietal network. 612 

 613 

 614 

 615 

 616 

  617 
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Tables 720 

Table 1. Number of participants with data for each measure, from each contributing dataset. Np = 721 
number of unique participants, Nl = number of participants with longitudinal data, Nt = total number of 722 
participant visits. 723 

Study Age Range Matrix Reasoning DTI fMRI 
Np Nl Nt Np Nl Nt Np Nl Nt 

NORA 6-20 191 118 311 137 48 187 141 54 198 
HIPPO 7-15, 18-21 211 105 314 181 131 392 164 97 322 
LERD 7-11 119 0 119 116 78 244 91 9 100 
 724 

 725 

 726 

 727 

Table 2. Scan parameters for the DTI and fMRI scans for each contributing dataset. 728 

Study DTI fMRI 
NORA One 9.45 min EPI scan 

64 dir, TR=7900ms, TE=102ms 
2.2 mm3 isotropic voxels 
B1=0, B2=2000 s/mm2 

Four 4.06 min EPI scans 
TR=2000ms, TE=25ms 
33 slices, 2.0 x 1.8 x 3.0 mm3 voxels 
Visual analogy task 

HIPPO One 8.32 min EPI scan 
64 dir, TR=7400ms, TE=81ms  
2.5 x 2.2 x 2.2 mm3 voxels 
B1=0, B2=1000 s/mm2 

Six EPI scans (3 @ 5min & 3 @ 6.3min) 
TR=2000ms, TE=23ms 
37 slices, 3 mm3 isotropic voxels 
Source memory task 

LERD One 9.32 min EPI scan (HARDI) 
60 dir, TR=8600ms, TE=66ms 
2.5 mm3 isotropic voxels 
B1=0, B2=2000 s/mm2 

One 5.87 or 7.32 min EPI scan (T1/T4) 
TR=2200ms, TE=30ms 
35 slices, 3 mm3 isotropic voxels 
Resting-state 
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Figures 738 

 739 

Figure 1. Regions of interest, including RLPFC, DLPFC, IPL, and SPL. Smaller circles indicate the extent of 740 
the 5-mm spheres uses for functional connectivity analysis, while larger circles indicate the extent of the 741 
12-mm spheres used as targets for probabilistic tractography. 742 

Figure 2. White-matter tracts, obtained via probabilistic tractography, including A) fronto-parietal tracts 743 
from RLPFC or DLPFC to IPL (red) or SPL (blue); B) bilateral prefrontal tracts between left and right DLPFC 744 
(blue) and between left and right RLPFC (yellow); C) bilateral parietal tracts between left and right IPL 745 
(blue) and between left and right SPL (yellow). Endpoint masks (12-mm spheres) are indicated with 746 
white circles. Purple (part A) and green (parts B and C) indicate overlap between tracts. 747 

Figure 3. Scatter-plot of the relationship between Age and Matrix Reasoning. Gray lines indicate 748 
longitudinal data. The fit line was calculated using the cumulative distribution function (pnorm in R). 749 
Optimal parameters μ = 6 and σ = 3.5, extracted from the data, indicate maximal change at age 6 (i.e., at 750 
the beginning of the examined age range).  751 

Figure 4. Scatter-plot of the relationship between average fronto-parietal structural connectivity 752 
(fractional anisotropy) and reasoning ability (Matrix Reasoning score). Lines between data points 753 
indicate longitudinal data. The fit line is linear.  754 

Figure 5. A) Scatter-plot of RLPFC-IPL structural connectivity (fractional anisotropy) versus age, with 755 
nonlinear (pnorm) fit line. B) Scatter-plot of RLPFC-IPL functional connectivity versus age, with nonlinear 756 
(pnorm) fit line.  757 

Figure 6. Scatter-plot of the relationship between Structural and functional connectivity for the RLPFC-758 
IPL connection, with linear fit line. Lines between data points indicate longitudinal data.  759 

Figure 7. A) Predictors of RLPFC-IPL functional connectivity change. B) Predictors of RLPFC-IPL structural 760 
connectivity change. Shaded boxes indicate factors that survived stepwise regression. Solid lines indicate 761 
factors that survived both stepwise regression and correction for study site (with at least marginal 762 
significance).  763 

Figure 8. Predictors of change in reasoning ability (R), in A) younger participants (6-11 years old), and B) 764 
older participants (12-22 years old). Shaded boxes indicate factors that survived stepwise regression. 765 
Solid lines indicate factors that survived both stepwise regression and correction for study site (with at 766 
least marginal significance).  767 
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