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Abstract: 49 
Discrete cues can gain powerful control over behavior in order to help an animal anticipate and 50 
cope with upcoming events.  This is important in conditions where understanding the 51 
relationship between complex stimuli provides a means to resolving situational ambiguity.  52 
However, it is unclear how cortical circuits generate and maintain these signals that 53 
conditionally regulate behavior.  To address this, we established a Pavlovian serial feature 54 
negative conditioning paradigm, where male mice are trained on a trial in which a conditioned 55 
stimulus (CS) is presented alone and followed by reward, or a feature negative trial in which the 56 
CS is preceded by a feature cue indicating there is no reward.  Mice learn to respond with 57 
anticipatory licking to a solitary CS, but significantly suppress their responding to the same cue 58 
during feature negative trials.  We show that the feature cue forms a selective association with 59 
its paired CS, because the ability of the feature to transfer its suppressive properties to a 60 
separately rewarded cue is limited.  Next, to examine the underlying neural dynamics, we 61 
conduct recordings in the orbitofrontal cortex (OFC).  We find that the feature cue significantly 62 
and selectively inhibits CS-evoked activity.  Finally, we find that the feature triggers a distinct 63 
OFC network state during the delay period between the feature and CS, establishing a potential 64 
link between the feature and future events.  Taken together, our findings suggest that OFC 65 
dynamics are modulated by the feature cue and its associated conditioned stimulus in a manner 66 
consistent with an occasion setting model.   67 
 68 
 69 
 70 
 71 
 72 
 73 
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Significance Statement: 74 
The ability of patterned cues to form an inhibitory relationship with ambiguously rewarded 75 
outcomes has been appreciated since early studies on learning and memory.  However, it was 76 
often assumed that these cues, despite their hierarchical nature, still made direct associative 77 
links with neural rewarding events.  This model was significantly challenged, largely by the work 78 
of Holland and colleagues, who demonstrated that under certain conditions cues can inherit 79 
occasion setting properties whereby they modulate the ability of a paired cue to elicit its 80 
conditioned response.  Here we provide some of the first evidence that the activity of a cortical 81 
circuit is selectively modulated by such cues, thereby providing insight into the mechanisms of 82 
higher order learning. 83 
 84 
 85 
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Introduction: 100 
Animals routinely learn to anticipate events by extracting information from their environments.  101 
However, this can be particularly challenging when individual cues only provide partial predictive 102 
information as is often the case in naturalistic scenarios.  In these situations, animals will 103 
attempt to use disambiguating ‘features’ in order to accurately predict outcomes (Schmajuk and 104 
Holland, 1998).  A good example of this type of learning is feature negative conditioning 105 
because behavioral success requires an animal to learn the pattern of cues that best predicts 106 
reward (Holland, 1984; Lamarre and Holland, 1987; Bueno and Holland, 2008).  In the serial 107 
version of this task, animals learn that a single conditioned stimulus (CS) predicts a reward but 108 
when this same cue is preceded (with a temporal delay) by a separate feature cue, the trial 109 
goes unrewarded (Holland, 1985; 1992).  Thus, the single cue elicits anticipatory behavior, but 110 
animals withhold their responses when the same cue is presented in feature negative trials.  111 
Studies have shown that the ability to conditionally discriminate between rewarded and 112 
unrewarded trials can occur in a wide range of species, from insects to humans (Pace et al., 113 
1980; Nallan et al., 1981; Pace and McCoy, 1981; Abramson et al., 2013), and under a variety 114 
of stimulus conditions (Holland, 1992; 1997).  In the mammalian brain there is evidence that 115 
these functions are mediated by specific circuits, including the retrosplenial cortex (Robinson et 116 
al., 2011), striatum, and orbitofrontal cortex (Meyer and Bucci, 2016).  Despite these studies, 117 
there is still a relatively poor understanding of the relationship between feature cues and their 118 
associated conditioned stimuli that function to bias behavioral decisions.   119 
 There are two contrasting models that attempt to account for how neural circuits solve this 120 
problem.  One model views the animal’s ability to discriminate rewarded and unrewarded trials 121 
as a basic function of elemental conditioning, where a CS acquires a positive associative 122 
relationship to the reward to promote conditioned responding, and the feature acquires a 123 
negative relationship to suppress responding (Rescorla, 1969; Rescorla and Wagner, 1972; 124 
Rescorla and Holland, 1977).  On trials in which both cues are present, the feature cue’s 125 
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inhibitory influence simply overrides the CS’s excitatory influence, due to the feature cue’s direct 126 
negative association with the reward representation (conditioned inhibition model).  In the 127 
opposing model, the feature cue functions as a negative occasion setter that does not make a 128 
direct association with the reward representation (Lamarre and Holland, 1987; Holland, 1984, 129 
1989; 1995a).  Instead it modulates the ability of the CS to retrieve the reward association by 130 
acting as a kind of inhibitory gate (Holland, 1989; 1995a). 131 
 To gain mechanistic insight into these opposing models at the level of single-neuron spiking 132 
activity, we establish a Pavlovian feature negative conditioning paradigm in head-restrained 133 
mice, which is compatible with large-scale neural recordings using silicon-based microprobes.  134 
In our task, a CS predicts the delivery of reward, but there is no reward when this CS is 135 
preceded by a feature cue (Holland, 1995b; 1995a).  We find that mice predominantly solve this 136 
task by using a strategy consistent with the second model (negative occasion setting), because 137 
the feature acquires the ability to specifically inhibit the reward association of its paired CS 138 
(Holland, 1984; 2008).  Moreover, we find that neural activity within the OFC is consistent with 139 
this model because the feature appears to selectively modulate cue-evoked firing in a manner 140 
that correlates with behavioral performance.  Finally, we also observe an ‘activity silent’ state 141 
(Stokes, 2015) in OFC network dynamics that could function to relay information during the time 142 
gap between the feature and CS cue.  To our knowledge this is the first demonstration of a 143 
modulatory cortical circuit mechanism that specifically supports the occasion setting model.  144 
 145 
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Materials and Methods: 146 
Animals and surgical procedures 147 
All procedures were approved by the University of California, Los Angeles Chancellor’s Animal 148 
Research Committee.  Singly housed male C57Bl/6J mice (n = 8, 15-22 weeks old at the time of 149 
recording, The Jackson Laboratory) were used in the experiments.  Animals underwent an initial 150 
head bar implantation surgery under isoflurane anesthesia in a stereotaxic apparatus to 151 
bilaterally fix, with dental cement, stainless steel head bars on the skull.  After training, animals 152 
underwent a second surgery under isoflurane anesthesia on the recording day to make a single 153 
craniotomy for acute silicon microprobe recordings.  An additional craniotomy was made over 154 
the posterior cerebellum for placement of an electrical reference wire.  All behavioral training 155 
and recording sessions were carried out in fully awake head-restrained animals. 156 
 157 
Behavioral task 158 
We started food restriction one week after the initial head bar implantation surgery.  Mice were 159 
fed daily after each training session to maintain ~90% of their baseline weight whereas water 160 
remained freely accessible in the home cage.  To begin each training session, we mounted 161 
animals on the head bar restraint bracket and placed them on a polystyrene treadmill ball (200 162 
mm diameter, Graham Sweet Studios) that freely rotated in a forward/backward direction.  163 
Behavioral training consisted of four successive phases: 1) habituation, 2) odor and air puff 164 
conditioning, 3) feature negative conditioning, and 4) behavioral testing and electrophysiology.  165 
In the first phase, mice were initially habituated to the head restraint system and trained to 166 
consume a liquid reward (5 μL, 10% sweetened condensed milk) delivered by actuation of an 167 
audible solenoid valve (Neptune Research).  Licking was continuously monitored via an infrared 168 
lick meter placed in front of the reward delivery tube (Island Motion).  During these sessions, 169 
animals were given rewards and exposed to a constant stream of pure air through a tube with a 170 
hole positioned in front of the nose (50 rewards per session, 13-21 s inter-trial interval (ITI), 1.5 171 
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L/min air flow).  After mice learned to lick to at least 90% of the delivered rewards for two 172 
consecutive days, we began the second training phase.  Mice received trials containing one of 173 
either two types of olfactory conditioned stimuli (CS1 or CS2, 1 s duration, 17-29 s ITI), or a mild 174 
air puff to the vibrissal pad.  The air puff was odorless and thus provided a distinct (from the 175 
CS1 and CS2) but highly salient form of stimulus, which has been effectively used in head-fixed 176 
mouse behavioral paradigms (Guo et al., 2014).  Aromatic compounds (isoamyl acetate in CS1, 177 
citral in CS2, Sigma-Aldrich) were diluted 1:100 in mineral oil (Sigma-Aldrich).  Air (0.15 L/min) 178 
was bubbled through this liquid and combined with the 1.5 L/min stream of pure air.  An 179 
additional air puff tube (which was separate from the odor delivery tubing system to prevent 180 
odors being mixed with the air puff) delivered a pulse of pure air to the vibrissal pad (0.5 s at 0.8 181 
L/min) on the side contralateral to the recording hemisphere.  This intensity level did not evoke 182 
any noticeable startle response such as blinking.  CS1 and CS2 were always associated with 183 
reward, which was delivered 2.5 s after odor onset.  The 1.5 s gap between the offset of the 184 
odor and the reward allows cue-evoked behavior and neural activity to be examined in the 185 
absence of potentially confounding reward stimulus signals.  The air puff was not followed by 186 
any explicit outcome.  Animals received 30 presentations of each trial type (CS1, CS2, air puff) 187 
in pseudorandom order during daily sessions in the second phase of training.  The solenoid 188 
valves controlling the olfactory cues were sound-isolated and thus inaudible to the animal.  189 
Typically, within two days of training, animals began predicting the delivery of reward following 190 
CS1 or CS2 cues by exhibiting anticipatory licking during the interval between the cue and 191 
reward.  After mice demonstrated anticipatory licking on at least 90% of both CS1 and CS2 192 
trials, we began the third phase of training, in which the air puff was now set to serve as the 193 
feature cue.  On unrewarded trials the air puff was presented starting 2.5 s before CS onset.  194 
The third training phase contained an equal proportion (33%) of CS1+, CS1-, and CS2+ trials 195 
presented in pseudorandom order (approximately 100 trials per session; Figure 1B, left).  The 196 
superscript ‘+’ denotes that a CS was not preceded by a feature cue and was followed by 197 
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reward, while the superscript ‘-’ denotes that a CS was preceded by a feature cue and was not 198 
followed by reward.  The minimum reaction time for animals to initiate anticipatory licking was 199 
found to be around 0.5 s.  Throughout the manuscript we define correct CS+ trials as those 200 
containing anticipatory licking (when licking occurred between 0.5 and 2.5 s following odor 201 
onset), correct CS- trials as those in which animals withheld licking during this time period, and 202 
incorrect CS- trials as those when animals licked during this time period.  When mice achieved 203 
at least 90% correct CS+ trials and less than 10% incorrect CS- trials, we began the last training 204 
phase, comprised of a single session which coincided with electrophysiological recordings.  205 
Here we introduced transfer trials (TT) in which the CS2 cue was preceded by an air puff feature 206 
cue (a novel pairing) and followed by reward (Figure 1B, right).  This last phase consisted of 207 
28% CS1+, CS1-, CS2+ trials, and 15% transfer trials.  Since the feature had never been 208 
previously associated with CS2, we used these transfer trials to determine which of two models 209 
(see Introduction) are implemented by the animals.  To calculate the behavioral discrimination 210 
score, we subtracted the percentage of incorrect CS1- trials from the percentage of correct CS1+ 211 
trials.  212 
 213 
Electrophysiological recordings 214 
One recording was performed per animal with a microprobe containing a total of 256 electrodes 215 
divided across 4 prongs that were spaced 0.2 mm apart.  An array of 64 electrodes on each 216 
prong spanned 1 mm along the dorsal-ventral axis.  We recorded from the orbitofrontal region of 217 
the prefrontal cortex (2.3 to 2.5 mm anterior, 0.5 to 1.5 mm lateral, -2.0 to -3.0 mm ventral, 218 
relative to bregma).  The silicon prongs were coated with a fluorescent dye (DiD, Thermo 219 
Fisher) prior to insertion, to facilitate post hoc histological reconstruction of the recording sites.  220 
Procedures for recording with silicon microprobes are described elsewhere (Shobe et al., 2015).  221 
After the recordings, animals were overdosed with isoflurane and perfused with 10% formalin 222 
solution (Sigma-Aldrich).  The brain was extracted and fixed for a minimum of 24 hr at 4 °C.  223 
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Tissue was cut into 100 μm sections on a vibratome and stained for DAPI (4 μg/mL) to visualize 224 
cell nuclei.  Confocal imaging of DiD and DAPI fluorescence confirmed that recordings in all 225 
mice were located in approximately the same subregions of the OFC. 226  227 
Firing rate analysis, and identification of significantly discriminating or modulated cells 228 
Spike sorting was performed using custom, semi-automated scripts written in MATLAB 229 
(Mathworks, Cambridge MA) for the identification of putative single units.  The analysis 230 
combined all types of units (putative pyramidal cells and interneurons).  The mean firing rate per 231 
unit was calculated by binning spike count data into 5 ms time steps, convolving with a 232 
Gaussian kernel (SD = 25 ms), and averaging across trials of the same stimulus type (either 233 
CS1+, CS1-, CS2+, transfer).  To determine whether a unit’s activity significantly discriminated 234 
between CS1+ and CS1- trials, we used a permutation test to detect significant differences in 235 
observed firing rate for each time step between these trials (Bakhurin et al., 2016).  The firing 236 
rate was sampled from t = 0 to 1 s post CS1 onset in time steps of 5 ms.  For each time step, 237 
the data from CS1+ and CS1- trials were shuffled, and a new absolute difference in firing rate 238 
was calculated.  This was repeated 10,000 times to obtain a distribution of permuted differences 239 
in firing rates.  A unit was defined as being discriminating if the absolute value of the observed 240 
rate difference was higher than the 99th percentile of the permuted distribution (p = 0.01).  To 241 
calculate whether a unit’s activity was significantly modulated we applied the same permutation 242 
analysis to compare cue-related firing with baseline activity.  In each case, we used a 1 s 243 
period, corresponding to the duration of the cue, to determine cue-related firing, and compared 244 
this to a 4 s within-trial baseline period (-7 to -3 s, 4 s duration chosen to provide a smooth 245 
baseline average).   246 
 247 
 248 
 249 
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Onset, offset cell and population overlap analysis 250 
Latency to peak firing during the period between the feature cue and CS (t = -2 to 0 s from CS 251 
onset) was estimated from the maximum average firing rate using 5 ms time bins and a 252 
Gaussian kernel convolution.  Firing rate was calculated from the average of both CS1- and 253 
transfer trials (i.e., all trials containing a feature cue).  The observed latency distribution across 254 
all recorded cells (Figure 4C) showed a good fit to the sum of two Lorentzian distributions.  We 255 
defined the cutoff between onset and offset cells at the local minimum in the latency distribution, 256 
which occurred at t = -1.9 s from CS onset.  The range of latency values was bounded from -2.5 257 
to -1 s.  To determine the overlapping population size predicted by chance between the feature, 258 
CS1- and CS1+ cues, we first calculated the percentage of neurons per animal (n = 8) that was 259 
significantly modulated in response to these three individual cues.  We then multiplied these 260 
three percentage values together to determine each animal’s percentage of overlapping cells 261 
predicted by chance.  This, in turn, was statistically compared to the observed overlap value of 262 
the corresponding animal using a paired t-test.  263 
 264 
Network state prediction analysis 265 
Analysis of cortical network state (Figures 5B, 5C) was performed separately for each animal, 266 
using both CS1- and transfer trials (i.e., all trials containing a feature cue).  For the network state 267 
analysis, these two trial types were behaviorally indistinguishable because during the delay 268 
period, the animal had no prior knowledge of which CS it would subsequently receive.  For each 269 
trial, the spike count for each unit was calculated for the 1 s period prior to the feature 270 
presentation (defined as the baseline, BL), and for the 1 s period occurring prior to the odor 271 
stimulus presentation (defined as the delay, DL).  This resulted in two paired population rate 272 
vectors for each trial to be used in the classification algorithm.  We used a binary support vector 273 
machine (SVM) classifier with a linear kernel, implemented in the LIBSVM library (version 3.21, 274 
(Chang and Lin, 2011)).  The classifier was trained to distinguish between population rate 275 
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vectors on BL and DL periods (Figure 5B).  We used a repeated five-fold cross-validation 276 
strategy, so that each training set contained four folds of trials, leaving the remaining fold for 277 
testing.  Each fold of the data was used once for testing, ensuring that each trial was tested 278 
exactly once.  During testing, each population rate vector in the tested fold was classified as 279 
belonging to either BL or DL periods.  The classifier’s performance was defined as the 280 
percentage of correctly classified BL and DL periods across all tested folds.  We repeated this 281 
procedure 500 times, each time shuffling the order of trials allocated to the folds, to account for 282 
potential variability across trials in the population and to ensure the most accurate estimate of 283 
classifier performance.  The average of all 500 accuracy scores was defined as the decoder 284 
accuracy score for each data set.  To maximize decoder performance, we determined the 285 
optimal SVM misclassification cost parameter, C, via an iterative search across a range of 286 
parameters (also using five-fold cross-validation).  The final value of C ranged from 0.002 to 287 
0.0625.  To determine the chance level of performance for each population, we shuffled the BL 288 
and DL labels on the data.  We then applied the binary classifiers that were trained on observed 289 
data to the randomized datasets in a parallel cross-validation procedure.  The mean decoder 290 
accuracy score on the randomized data (approximately 50%) was used as chance level for each 291 
data set.  292 
 We used a similar approach to classify whether delay period activity prior to incorrect CS1- 293 
trials, was more similar to the baseline period prior to correct CS1+ trials, or the delay period 294 
prior to correct CS1- trials (Figures 5D, 5E).  For each trial, the spike count for each unit was 295 
calculated for the 1 s baseline period prior to the odor presentation during correct CS1+ trials 296 
(defined as the baseline prior to licking, BLL), the 1 s delay period occurring prior to the odor 297 
stimulus presentation during correct CS1- trials (defined as the delay prior to lick withholding, 298 
DLW), and the 1 s delay period occurring prior to the odor stimulus presentation during incorrect 299 
CS1- trials (defined as the delay prior to errant licking, DLL).  This resulted in a population rate 300 
vector for each trial of each class to be used in the classification algorithm.  Since there were an 301 
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uneven number of correct trial observations (unlike in the paired situation described for the BL 302 
versus DL activity classification) we equalized the numbers of correct trials by randomly 303 
subsampling the larger population down to the size of the smaller population.  This ensured that 304 
classification would not be biased toward the type of trial that contained a greater numbers of 305 
observations.  After training the classifier on balanced data from the two correctly performed trial 306 
types, we then tested all of the DLL observations on the model and asked whether the classifier 307 
was more likely to identify activity in the DLL period as a BLL or DLW period.  We repeated this 308 
procedure 500 times, each time shuffling the order of trials prior to subsampling, thus creating a 309 
new classifier on new combinations of training trials.  To maximize decoder performance, we 310 
determined the optimal SVM misclassification cost parameter, C.  The optimal parameter for 311 
each dataset was determined by first subsampling from BLL and DLW trials, and performing 312 
five-fold cross validation decoding while systematically varying C.  This procedure was 313 
performed 100 times, with each iteration containing a new combination of subsampled trials.  314 
Thus, we chose the C parameter that resulted in the highest BLL and DLW separation.  The 315 
final values of C ranged from 0.001 to 0.125. 316 
 317 
Experimental design and statistical analyses 318 
All statistical tests were performed in MATLAB or Prism (GraphPad, La Jolla CA) software.  The 319 
sample size, type of test used, and probability value is reported in the text and figure legends.  320 
All p values lower that 0.0001 are reported as p < 0.0001.  One subject (animal # 1) was 321 
excluded from the analysis of Figure 5E for having only 1 DLL trial, which prevented a 322 
statistically sound analysis.   323 
 324 
Results: 325 
Behavioral responses reveal a negative occasion setting strategy  326 
In the feature negative conditioning task, mice (n = 8) are exposed to conditioned odor stimuli 327 
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(CS1 and CS2, 1 s duration) that are either followed by reward if no feature cue (mild air puff) 328 
was present, or not followed by reward if a feature cue was present prior to the odor stimulus 329 
(Figure 1A).  Therefore, the presence or absence of the feature cue determines the outcome on 330 
that trial.  On training sessions, we presented three trial types with equal likelihood: CS1+, CS1-, 331 
and CS2+ (Figure 1B, left).  Thus, during this training period, the feature cue was presented in 332 
half of the CS1 trials, but never paired with the CS2 trials.  The final training session, which 333 
coincided with electrophysiological recordings, included transfer trials in the form of the same 334 
feature cue followed by the CS2 cue (Figure 1B, right). 335 

On the final training session, the percentage of CS1- trials with licking was significantly 336 
reduced relative to CS1+ trials (Figures 1C, 1E; p < 0.0001, paired t-test).  Thus, mice learned 337 
that the feature predicts an unrewarded outcome with respect to the CS1 cue.  In order to 338 
determine the specificity of the feature-CS association, we introduced a small percentage (15%) 339 
of transfer trials, which animals encountered for the first time during the recording session.  340 
Animals showed a reduction in licking on transfer trials relative to CS2+ trials (Figures 1D, 1F; p 341 
= 0.03, paired t-test).  However, the inhibitory effect of the feature on licking in CS1- trials (62% 342 
median reduction, 28%, interquartile range, IQR) was significantly greater than its effect on 343 
transfer trials (9% median reduction, 21% IQR, p < 0.0001, paired t-test).  Thus, the feature cue 344 
primarily suppressed CS1 elicited anticipatory licking behavior (compared with CS2), as 345 
predicted by the negative occasion setting model.  This selectivity also suggests that information 346 
about the feature cue’s presence is maintained during the delay period, in order to guide the 347 
animal’s decision about whether to lick following the CS presentation. 348 
 349 
Feature cues selectively inhibit OFC encoding of conditioned stimuli 350 
Previous studies suggest that the OFC regulates feature negative behavior (Meyer and Bucci, 351 
2016).  However, the neural activity correlates of this behavior have not been studied in this 352 
brain area.  We used silicon-based microprobes (4 silicon prongs with 64 electrodes each) to 353 
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simultaneously record from dozens of orbitofrontal units during the final training session (n = 8 354 
mice, 48 to 119 single units per animal).  After each recording, we verified the silicon prong 355 
locations using confocal microscopy (Figure 2A), and used these images to estimate the 356 
recording site and corresponding unit positions.  We found that the measurements were 357 
primarily located in the ventral and lateral subregions of the OFC (Figure 2B).   358 
 Based on the finding that the feature cue predominantly diminished levels of anticipatory 359 
licking in response to the CS1, we hypothesized that the feature cue would modulate odor 360 
stimulus-evoked cortical activity.  Consistent with this prediction, we observed that the presence 361 
of the feature, on CS1- trials, suppressed the OFC population’s mean firing rate relative to CS1+ 362 
trials during the CS presentation period (n = 585 units pooled across 8 mice, Figure 3A).  We 363 
then separately examined the mean firing rate in each animal and found that the feature caused 364 
a significant reduction in firing rate during the 1 s CS1 presentation period (Figure 3D; p = 365 
0.016, paired t-test).  In contrast, we did not see any feature effect on mean CS2 evoked firing 366 
rate during transfer trials (Figures 3B, 3E; p = 0.46, paired t-test).  Furthermore, we found a 367 
small but statistically significant difference (p = 0.045, paired t-test) between the feature-induced 368 
reduction in firing rate on CS1 compared to CS2 cues, demonstrating that the feature selectivity 369 
inhibits the encoding of the CS1 representation.  We also found the OFC does not appear to 370 
encode choice, because we did not observe any difference in mean firing rate between CS1- 371 
trials with anticipatory licking and CS1- trials without licking (Figures 3C, 3F; p = 0.30, paired t-372 
test). 373 
 To further examine the feature cue’s effect on OFC neuronal responses to CS1 cues, we 374 
compared the firing rates between the CS1+ and CS1- trials for each individual neuron during 375 
the 1 s cue presentation period (n = 585 units pooled across 8 mice).  We found that a 376 
significant fraction of neurons had a lower firing rate in the CS1- trials (Figure 3G; p < 0.0001, 377 
paired t-test), suggesting that the feature suppressed the response of a large proportion of OFC 378 
neurons.  We also found that the percentage of cells per animal that could discriminate between 379 
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CS1+ and CS1- trials during the 1 s CS presentation period was significantly correlated with 380 
behavioral discrimination (Figure 3H; n = 8 mice, Pearson r = 0.86, p = 0.012).  Thus, the 381 
greater the proportion of OFC units that distinguished between non-feature and feature trial 382 
types, the better the animal was at correctly licking to CS1+ trials and correctly withholding to 383 
CS1- trials.  Therefore, these electrophysiological measurements, together with the 384 
corresponding behavioral tests, support the negative occasion setting model by showing that 385 
the feature cue selectively suppresses OFC activity and anticipatory behavior following CS1 386 
cues, but not CS2 cues.   387 
 388 
Temporally specific feature encoders have unique discriminatory properties 389 
To further understand the encoding properties of feature and CS1 cues, we examined the firing 390 
patterns of individual neurons under different stimulus conditions.  Across the recorded 391 
population, we found that a large proportion of cells appeared to respond to individual cues 392 
(feature, CS1+, or CS1-), or a combination of these cues (Figure 4A).  To quantify this 393 
relationship, we calculated the proportion of units that were significantly modulated by single 394 
cues or different cue combinations.  We found that across n = 8 mice, 53% (median, 20% IQR) 395 
of the neurons responded to the feature whereas 51% (median, 15% IQR) and 42% (median, 396 
28% IQR) of neurons responded to the CS1 in the CS1+ and CS1- trials, respectively (Figure 397 
4B).  Notably, 31% (median, 19%, IQR) of the neurons responded to all three cues.  This 398 
overlap is significantly higher than chance levels (10%, 11% IQR), based on the total number of 399 
identified units in the OFC (paired t-test, p < 0.0001), suggesting a common representation of 400 
the cells that encode these stimuli.  These results suggest that not only is OFC encoding of a 401 
reward-associated stimulus (CS1) modulated by the feature cue, but that this circuit is strongly 402 
tuned by stimuli that activate overlapping neuronal subpopulations.  403 
 In the population of feature responsive cells, we found evidence for heterogeneous 404 
response properties, with some cells responding early, and others later to the feature cue 405 
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(Figure 4A).  We calculated each unit’s latency to peak firing during the feature period, and 406 
found that the latency values appeared to cluster into two distinct firing groups (Figure 4C).  One 407 
group of neurons fired maximally around the feature onset time (onset cells), whereas another 408 
group preferentially fired around the feature offset time (offset cells).  We separately examined 409 
the mean CS1-triggered firing rate of the onset and offset cells, and found that they appeared to 410 
show different responses during the CS1 presentation period (Figure 4D).  Specifically, the 411 
mean firing rate of onset cells appeared markedly reduced in CS1- relative to CS1+ trials (Figure 412 
4D, top panel).  This suggests that the CS1 representation associated with the onset population 413 
is highly susceptible to suppressive properties of the feature.  In contrast, the response of offset 414 
cells to CS1 was less perturbed by the feature (Figure 4D, bottom panel).  To quantify these 415 
differences, we compared the number of cells within each group that significantly discriminated 416 
between the CS1+ and CS1- trial types during the 1 s CS1 presentation period.  We found that 417 
the onset group contained a significantly larger proportion of discriminating cells relative to the 418 
offset group (Figure 4E; p < 0.0001, paired t-test).   419 
 420 
Feature cues trigger a distinct network state in the delay period 421 
If the feature cue influences subsequent OFC encoding of reward-conditioned stimuli, we 422 
hypothesized that information about whether the feature cue was present is maintained in the 423 
OFC throughout the delay period.  Previous work suggests that delay periods in working 424 
memory tasks often coincide with persistent firing patterns in the prefrontal cortex (Fuster and 425 
Alexander, 1971; Goldman-Rakic, 1995; Fuster, 2005; Constantinidis, 2015).  However, our 426 
data revealed that the average firing rate in the OFC returns to baseline levels before the CS1 427 
onset (Figures 3A, 4D), suggesting that the feature cue does not trigger persistent changes in 428 
mean spiking activity.  In support of this observation, there was no significant difference in mean 429 
firing rate between the final 1 s of the delay period (DL), and a 1 s baseline period prior to 430 
feature cue onset (BL, Figure 5A; n = 8 mice, p = 0.11, paired t-test).  We therefore wondered if 431 
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the OFC could still maintain the information about the feature cue’s presence during the delay 432 
period without any significant persistent activity signal.  We speculated that if the OFC is 433 
maintaining this information, it does so through an ‘activity silent’ but distinct network state 434 
(Stokes et al., 2013; Stokes, 2015), that does not give rise to an overt change in mean firing 435 
rate.  An alternative possibility is that another region outside the OFC is exclusively responsible 436 
for maintaining the feature cue information.  To determine whether OFC networks exhibit 437 
dynamics during the delay period that are distinct from the baseline period, we used a decoder 438 
to distinguish between population activity in the DL and BL periods from the same trial 439 
containing a feature cue (Figure 5B).  The decoder was applied to simultaneously recorded 440 
populations of cells from individual animals.  Our results reveal that for all animals tested, the 441 
decoder performed significantly above chance levels in discriminating between activity in the BL 442 
and DL periods (Figure 5C; n = 8 mice, p < 0.0001, paired t-test).  The average accuracy was 443 
69 ± 2 % (mean ± SEM, dashed black line).  To rule out any differential interaction between the 444 
paired BL and DL periods and the previous trial, we also compared the BL and DL periods from 445 
separate trials: CS1+ and CS1-, respectively.  In this case, the decoder also performed 446 
significantly above chance levels in discriminating between activity in the BL and DL periods (n 447 
= 8 mice, p < 0.0001, paired t-test, data not shown).  The average accuracy was 69 ± 3 % 448 
(mean ± SEM), which is very close to our value using the paired period method.  A direct 449 
comparison revealed no significant differences (n = 8 mice, p = 0.96, paired t-test), indicating 450 
that both approaches produce the same result.  Taken together, these findings suggest that, 451 
despite the absence of an overt change in mean population firing rate, the feature induces a 452 
distinct network state in the OFC during the delay period.   453 
 Finally, we examined whether OFC network dynamics during the delay period also provide 454 
information about the subsequent behavioral choice of the animal on that trial.  In other words, 455 
is there a prospective code during the delay period that predicts whether or not the mouse will 456 
lick?  To test this, we took advantage of the observation that mice sometimes licked incorrectly 457 
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during CS1- trials (Figure 1C).  We trained a classifier to distinguish between population activity 458 
occurring during the baseline period prior to correct CS1+ trials (BLL), and the delay period prior 459 
to correct CS1- trials (DLW).  First, using cross-validation, we found that the classifier could 460 
distinguish these periods above chance levels (n = 8 mice, p < 0.0001, paired t-test, data not 461 
shown), consistent with a distinct network state during DL and BL periods shown in Figure 5C.  462 
We next examined whether OFC population activity in the delay period prior to incorrect CS1- 463 
trials (DLL) was classified more frequently as a BLL or DLW period (Figure 5D).  There was a 464 
significant preference for the classifier to label DLL as a DLW period (Figure 5E; n = 7 mice, p = 465 
0.018, paired t-test).  The average accuracy was 64 ± 4 % (mean ± SEM, dashed black line). 466 
Thus, it appears that in the OFC, the feature rather than the behavioral outcome (i.e., licking) 467 
dictates the delay period network state.  This is consistent with our earlier findings showing no 468 
significant difference in mean firing rate between correct and incorrect CS1- trials (Figures 3C, 469 
3F).  These findings suggest that the feature triggers a network state that is maintained 470 
throughout the delay period, which could function to downregulate the network’s response to the 471 
CS1 stimulus.  472 
  473 
Discussion: 474 
This is, to our knowledge, the first study to show the neural dynamics that may underlie an 475 
occasion setter’s ability to modulate behavior.  A key insight that this study reveals is the 476 
selective nature of the association between the feature cue and the conditioned odor stimulus 477 
(Holland, 1984).  The feature causes animals to suppress their conditioned responding in the 478 
form of anticipatory licking to a trained stimulus (CS1).  However, the ability of the feature to 479 
suppress conditioned responding does not transfer to another stimulus (CS2) that had never 480 
previously been paired with the feature.  Neural recordings in the OFC complement this finding 481 
by showing that the feature negatively modulates activity triggered by CS1, but this modulation 482 
effect does not transfer to the CS2 cue.  This lack of transfer, observed in both our behavioral 483 
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and neurophysiological data, rules out the simple Rescorla-Wagner model since this model 484 
posits that the feature’s inhibitory properties should transfer to any CS paired with that reward.  485 
The fact that we did not observe transfer thus provides strong evidence against a direct 486 
inhibitory link between the feature cue and reward.  Furthermore, our data suggest that the OFC 487 
may be involved in the task, because a measure of the level of OFC modulation by the feature 488 
(percent of cells per animal that discriminate between CS1+ and CS1- trials) significantly 489 
correlates with an individual animal’s behavioral discrimination.  Together, our findings provide 490 
strong evidence for the negative occasion setting model (Holland, 1984; Lamarre and Holland, 491 
1987) in which a feature cue can modulate the ability of a separate cue to retrieve its reward 492 
association. 493 

Our data also suggest a possible OFC information transfer mechanism between the feature 494 
and conditioned odor stimulus during the delay period.  Many studies on working memory have 495 
found persistent changes in mean population firing activity that accompany the delay period 496 
(Fuster and Alexander, 1971; Goldman-Rakic, 1995; Miller et al., 1996; Miller and Cohen, 2001; 497 
Pasternak and Greenlee, 2005; Liu et al., 2014).  While we found that many cortical neurons 498 
were activated within ~1.5 s of the feature cue’s presentation, this activity did not appear to 499 
persist into the final 1 s of the delay period, suggesting that the OFC subregions that were 500 
targeted here do not exhibit sustained changes in activity.  Of course, this observation does not 501 
rule out the possibility that persistent activity occurs in other brain areas.  On the other hand, a 502 
number of studies suggest that sustained activity is not necessary to retain task-relevant 503 
information (Jensen and Tesche, 2002; Howard et al., 2003; Riggall and Postle, 2012; Ester et 504 
al., 2015; Lundqvist et al., 2016).  Intriguingly, an ‘activity silent’ model of working memory 505 
raises the possibility that information is retained in the patterns of network-level activity (Stokes 506 
et al., 2013; Stokes, 2015).  To examine whether such an effect could be taking place in the 507 
OFC during the final 1 s of the delay period in our task, we used a machine learning-based 508 
decoding algorithm to assess whether this time period coincides with a distinct network state.  In 509 
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all mice tested the decoder was able to accurately distinguish delay from baseline period activity 510 
at above chance levels, consistent with the activity silent working memory model (Stokes et al., 511 
2013; Stokes, 2015).  Thus, our data indicate that the OFC has the potential to transfer 512 
information about the feature cue across the delay period.  513 
 Our results suggest that the OFC uses the feature as a source of rule information in order to 514 
regulate behavioral responses.  As discussed above, the degree to which the feature cue 515 
suppresses anticipatory licking correlates with its ability modulate neural activity to the 516 
conditioned odor stimulus.  In contrast, we found no change in OFC activity during trials when 517 
animals incorrectly lick during a feature negative trial.  Moreover, our classifier results suggest 518 
that the network state during the delay period prior to incorrect CS1- trials (DLL) is significantly 519 
different from the state during the baseline period prior to correct CS1+ trials (BLL), even though 520 
both types of trials contain licking.  These two pieces of evidence suggest that the OFC code is 521 
relatively insensitive to behavioral choice.  Thus, our data are consistent with a number of other 522 
studies indicating the importance of rule encoding in the OFC (Buckley et al., 2009; Tsujimoto et 523 
al., 2009; 2012; Johnson et al., 2016; Sleezer et al., 2016).   524 
 The information coding properties revealed here provide insight into how the brain could 525 
quickly manipulate information at more abstract levels to regulate behavior.  The feature 526 
appears to trigger a distinct network state that specifically interacts with its trained conditioned 527 
odor stimulus.  This may occur by inducing a temporary functional reweighting of synaptic 528 
connections within OFC microcircuits (Fujisawa et al., 2008; Stokes, 2015).  As a whole, this 529 
model fits well with the viewpoint that the OFC provides the animal with a cognitive map of task 530 
space (Roesch et al., 2006; Wilson et al., 2014; Cooch et al., 2015; Sharpe et al., 2015; 531 
Lopatina et al., 2016; Wikenheiser and Schoenbaum, 2016) because the extent to which the 532 
conditioned odor stimulus alters neural activity is mediated by the network state set by the 533 
feature.  Taken together, our observations provide a potential mechanism that helps to explain 534 
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how animals can rapidly interpret the meaning of a conditionally rewarded cue to make timely 535 
behavioral decisions.   536 
 537 
References: 538 
Abramson CI, Cakmak I, Duell ME, Bates-Albers LM, Zuniga EM, Pendegraft L, Barnett A, 539 

Cowo CL, Warren JJ, Albritton-Ford AC, Barthell JF, Hranitz JM, Wells H (2013) Feature-540 
positive and feature-negative learning in honey bees. J Exp Biol 216:224–229. 541 

Bakhurin KI, Mac V, Golshani P, Masmanidis SC (2016) Temporal correlations among 542 
functionally specialized striatal neural ensembles in reward conditioned mice. Journal of 543 
Neurophysiology. 215:1521-32. 544 

Buckley MJ, Mansouri FA, Hoda H, Mahboubi M, Browning PGF, Kwok SC, Phillips A, Tanaka 545 
K (2009) Dissociable components of rule-guided behavior depend on distinct medial and 546 
prefrontal regions. Science 325:52–58. 547 

Bueno JLO, Holland PC (2008) Occasion setting in Pavlovian ambiguous target discriminations. 548 
Behav Processes 79:132–147. 549 

Chang C-C, Lin C-J (2011) LIBSVM: A library for support vector machines. ACM Transactions 550 
on Intelligent Systems and Technology (TIST) 2:27. 551 

Constantinidis C (2015) Role of Prefrontal Persistent Activity in Working Memory. Front Syst 552 
Neurosci 9:181. 553 

Cooch NK, Stalnaker TA, Wied HM, Bali-Chaudhary S, McDannald MA, Liu T-L, Schoenbaum G 554 
(2015) Orbitofrontal lesions eliminate signalling of biological significance in cue-responsive 555 
ventral striatal neurons. Nat Commun 6:7195. 556 



 

 23 

Ester EF, Sprague TC, Serences JT (2015) Parietal and Frontal Cortex Encode Stimulus-557 
Specific Mnemonic Representations during Visual Working Memory. Neuron 87:893–905. 558 

Franklin KBJ, Paxinos G (1997) The Mouse Brain in Stereotaxic Coordinates. Morgan 559 
Kaufmann. 560 

Fujisawa S, Amarasingham A, Harrison MT, Buzsáki G (2008) Behavior-dependent short-term 561 
assembly dynamics in the medial prefrontal cortex. Nat Neurosci 11:823–833. 562 

Fuster JM (2005) Memory. In: Cortex and Mind, pp 111–142. Oxford University Press. 563 
Fuster JM, Alexander GE (1971) Neuron activity related to short-term memory. Science 564 

173:652–654. 565 
Goldman-Rakic PS (1995) Cellular basis of working memory. Neuron 14:477–485. 566 
Guo ZV, Hires SA, Li N, O'Connor DH, Komiyama T, Ophir E, Huber D, Bonardi C, Morandell K, 567 

Gutnisky D, Peron S, Xu NL, Cox J, Svoboda K (2014) Procedures for Behavioral 568 
Experiments in Head-Fixed Mice. PLoS ONE 9(2): e88678.  569 

Holland PC (1984) Differential effects of reinforcement of an inhibitory feature after serial and 570 
simultaneous feature negative discrimination training. J Exp Psychol Anim Behav Process 571 
10:461–475. 572 

Holland PC (1989) Transfer of negative occasion setting and conditioned inhibition across 573 
conditioned and unconditioned stimuli. J Exp Psychol Anim Behav Process 15:311–328. 574 

Holland PC (1995a) Transfer of occasion setting across stimulus and response in operant 575 
feature positive discriminations. Learning and Motivation 26:239–263. 576 

Holland PC (1995b) The effects of intertrial and feature-target intervals on operant serial 577 



 

 24 

feature-positive discrimination learning. Animal Learning & Behavior 23:411–428. 578 
Holland PC (1997) Brain mechanisms for changes in processing of conditioned stimuli in 579 

Pavlovian conditioning: Implications for behavior theory. Animal Learning & Behavior 580 
25:373–399. 581 

Holland PC (2008) Cognitive versus stimulus-response theories of learning. Learn Behav 582 
36:227–241. 583 

Howard MW, Rizzuto DS, Caplan JB, Madsen JR, Lisman J, Aschenbrenner-Scheibe R, 584 
Schulze-Bonhage A, Kahana MJ (2003) Gamma oscillations correlate with working memory 585 
load in humans. Cereb Cortex 13:1369–1374. 586 

Jensen O, Tesche CD (2002) Frontal theta activity in humans increases with memory load in a 587 
working memory task. Eur J Neurosci 15:1395–1399. 588 

Johnson CM, Peckler H, Tai L-H, Wilbrecht L (2016) Rule learning enhances structural plasticity 589 
of long-range axons in frontal cortex. Nat Commun 7:10785. 590 

Lamarre J, Holland PC (1987) Transfer of inhibition after serial feature negative discrimination 591 
training. Learning and Motivation. 18:319-342. 592 

Liu D, Gu X, Zhu J, Zhang X, Han Z, Yan W, Cheng Q, Hao J, Fan H, Hou R, Chen Z, Chen Y, 593 
Li CT (2014) Medial prefrontal activity during delay period contributes to learning of a 594 
working memory task. Science 346:458–463. 595 

Lopatina N, McDannald MA, Styer CV, Peterson JF, Sadacca BF, Cheer JF, Schoenbaum G 596 
(2016) Medial Orbitofrontal Neurons Preferentially Signal Cues Predicting Changes in 597 
Reward during Unblocking. J Neurosci 36:8416–8424. 598 



 

 25 

Lundqvist M, Rose J, Herman P, Brincat SL, Buschman TJ, Miller EK (2016) Gamma and Beta 599 
Bursts Underlie Working Memory. Neuron 90:152–164. 600 

Meyer HC, Bucci DJ (2016) Imbalanced Activity in the Orbitofrontal Cortex and Nucleus 601 
Accumbens Impairs Behavioral Inhibition. Curr Biol. 26:2834:2839. 602 

Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev 603 
Neurosci 24:167–202. 604 

Miller EK, Erickson CA, Desimone R (1996) Neural mechanisms of visual working memory in 605 
prefrontal cortex of the macaque. J Neurosci 16:5154–5167. 606 

Nallan GB, Brown MB, Edmonds C, Gillham V, Kowalewski K, Miller JS (1981) Transfer effects 607 
in feature-positive and feature-negative learning by adult humans. Am J Psychol 94:417–608 
429. 609 

Pace GM, McCoy DF (1981) Effects of stimulus contact on the feature-positive effect. Am J 610 
Psychol 94:153–158. 611 

Pace GM, McCoy DF, Nallan GB (1980) Feature-positive and feature-negative learning in the 612 
rhesus monkey and pigeon. Am J Psychol 93:409–427. 613 

Pasternak T, Greenlee MW (2005) Working memory in primate sensory systems. Nat Rev 614 
Neurosci 6:97–107. 615 

Rescorla RA (1969) Pavlovian conditioned inhibition. Psychol Bull 72:77–94. 616 
Rescorla RA, Holland PC (1977) Associations in Pavlovian conditioned inhibition. Learning and 617 

Motivation 8:429–447. 618 
Rescorla RA, Wagner AR (1972) A theory of Pavlovian conditioning: Variations in the 619 



 

 26 

effectiveness of reinforcement and nonreinforcement. In:  Classical conditioning II: Current 620 
research and theory, pp 64-99. Meredith Corporation.  621 

Riggall AC, Postle BR (2012) The relationship between working memory storage and elevated 622 
activity as measured with functional magnetic resonance imaging. J Neurosci 32:12990–623 
12998. 624 

Robinson S, Keene CS, Iaccarino HF, Duan D, Bucci DJ (2011) Involvement of retrosplenial 625 
cortex in forming associations between multiple sensory stimuli. Behav Neurosci 125:578–626 
587. 627 

Roesch MR, Taylor AR, Schoenbaum G (2006) Encoding of time-discounted rewards in 628 
orbitofrontal cortex is independent of value representation. Neuron 51:509–520. 629 

Schmajuk NAE, Holland PCE (1998) Occasion setting: Associative learning and cognition in 630 
animals. (Schmajuk NA, Holland PC, eds). Washington: American Psychological 631 
Association. 632 

Sharpe MJ, Wikenheiser AM, Niv Y, Schoenbaum G (2015) The State of the Orbitofrontal 633 
Cortex. Neuron 88:1075–1077. 634 

Shobe JL, Claar LD, Parhami S, Bakhurin KI, Masmanidis SC (2015) Brain activity mapping at 635 
multiple scales with silicon microprobes containing 1,024 electrodes. Journal of 636 
Neurophysiology 114:2043–2052. 637 

Sleezer BJ, Castagno MD, Hayden BY (2016) Rule Encoding in Orbitofrontal Cortex and 638 
Striatum Guides Selection. J Neurosci 36:11223–11237. 639 

Stokes MG (2015) “Activity-silent” working memory in prefrontal cortex: a dynamic coding 640 
framework. Trends Cogn Sci (Regul Ed) 19:394–405. 641 



 

 27 

Stokes MG, Kusunoki M, Sigala N, Nili H, Gaffan D, Duncan J (2013) Dynamic coding for 642 
cognitive control in prefrontal cortex. Neuron 78:364–375. 643 

Tsujimoto S, Genovesio A, Wise SP (2009) Monkey orbitofrontal cortex encodes response 644 
choices near feedback time. J Neurosci 29:2569–2574. 645 

Tsujimoto S, Genovesio A, Wise SP (2012) Neuronal activity during a cued strategy task: 646 
comparison of dorsolateral, orbital, and polar prefrontal cortex. J Neurosci 32:11017–11031. 647 

Wikenheiser AM, Schoenbaum G (2016) Over the river, through the woods: cognitive maps in 648 
the hippocampus and orbitofrontal cortex. Nat Rev Neurosci 17:513–523. 649 

Wilson RC, Takahashi YK, Schoenbaum G, Niv Y (2014) Orbitofrontal Cortex as a Cognitive 650 
Map of Task Space. Neuron 81:267–279. 651 

  652 
 653 
 654 
 655 
 656 
 657 
 658 
 659 
 660 
 661 
 662 
 663 
 664 



 

 28 

Figure Legends: 665 
Figure 1.  Distinct associations form from feature negative conditioning.   666 
(A) Schematic of the four distinct trial types used during training and recording sessions.  In 667 
rewarded trials (CS1+ and CS2+), different conditioned odor stimuli (CS1 or CS2, 1 s duration) 668 
predicted the delivery of reward.  In unrewarded trials (CS1- and transfer trials), when the same 669 
odor stimuli were preceded by a feature cue (mild air puff, 0.5 s duration), there was no reward.  670 
Orange bar denotes the feature, grey bar denotes CS1, green bar denotes CS2, black bar 671 
denotes reward.  (B) Probability of presenting each trial type during initial training (left) and on 672 
the final training session corresponding to recording (right).  All behavioral and 673 
electrophysiological results are from the final day.  (C & D) Average lick rate as a function of 674 
time during all rewarded and unrewarded trials.  Dashed lines represent the onset and offset 675 
times of the indicated cue.  Data represent mean ± SEM (n = 8 mice).  Grey bar: CS1, green 676 
bar: CS2, orange bar: feature.  (E) The feature significantly reduces the likelihood that animals 677 
express anticipatory licking (t = 0 to 2.5 from odor onset) in CS1 trials (p < 0.0001, paired t-test).  678 
(F) The feature significantly suppresses the likelihood of anticipatory licking in transfer trials (p = 679 
0.03, paired t-test). 680 
 681 
Figure 2.  Silicon microprobe recordings in the OFC.   682 
(A) Representative confocal image of a coronal section showing the recording position of the 683 
silicon microprobe containing 4 prongs.  Prior to insertion, the prongs were painted with DiD 684 
(red) to facilitate visualization.  The section was stained with DAPI (blue).  (B) Coronal section 685 
from the Franklin and Paxinos mouse brain atlas (2.35 mm anterior to bregma (Franklin and 686 
Paxinos, 1997)) annotated with the estimated position of each putative unit (red dot) in relation 687 
to the OFC structure.   688 
 689 
 690 
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Figure 3.  Cue-dependent modulation of OFC activity.   691 
(A, B & C).  Mean firing rate as a function of time in different trial types.  Dashed lines represent 692 
the onset and offset times of the indicated cue.  Data represent mean ± SEM (n = 585 units).  693 
Grey bar: CS1, green bar: CS2, orange bar: feature.  (A)  Comparison of CS1+ with CS1- trials. 694 
(B) Comparison of CS2+ with transfer trials.  (C) Comparison of CS1- trials with licking or without 695 
anticipatory licking.  (D, E & F) Mean firing rate per animal during the CS presentation period (t 696 
= 0 to 1 s), in different trial conditions.  Data represent individual animals (n = 8).  (D) CS1- trials 697 
exhibit significantly lower firing than CS1+ trials (p = 0.016, paired t-test).  (E) There is no 698 
significant difference in mean firing between transfer trials and CS2+ trials (p = 0.46, paired t-699 
test).  (F) There is no significant difference in mean firing between CS1- trials with licking and 700 
those without licking (p = 0.3, paired t-test).  (G) Comparison of the average firing rate per unit 701 
during the CS cue presentation period (t = 0 to 1 s) between CS1+ and CS1- trial types.  Across 702 
the population (n = 585) there was a significant bias toward lower firing during CS1- trials (p < 703 
0.0001, paired t-test).  (H) Behavioral discrimination (percent correct CS1+ trials minus percent 704 
incorrect CS1- trials) is significantly correlated with the percentage of OFC units per animal that 705 
discriminate between CS1+ and CS1- trials (Pearson r = 0.82, p = 0.012). 706 
 707 
Figure 4.  Identification of temporally distinct feature encoding populations.   708 
(A) Mean normalized firing rate as a function of time of the recorded population (n = 585 cells).  709 
Each cell’s firing rate is normalized to its peak firing rate on CS- trials (top panel) and CS+ trials 710 
(bottom panel).  Units are ordered by latency to peak firing relative to onset of the feature cue 711 
(FT).  Units are plotted in the same order in the top and bottom panels (red indicates high firing 712 
rate).  (B) Venn diagram showing the overlapping relationship between units that were 713 
significantly modulated by the feature (orange), the CS1 cue during CS1+ trials (magenta), and 714 
the CS1 cue during CS1- trials (blue).  Values represent the median percentage of modulated 715 
cells across n = 8 animals.  (C) Distribution of the latency to peak firing for the recorded 716 
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population (n = 585 units).  Two major peaks were resolved using Lorentzian curve fits (red 717 
line).  Dashed orange lines demarcate the onset and offset cell populations.  (D) Mean firing 718 
rate as a function of time during CS1+ and CS1- trials.  The top and bottom panels are 719 
comprised of onset and offset cells, respectively.  Data represent mean ± SEM (n = 585 units).  720 
The orange shaded area represents the time during the feature cue presentation.  (E) The 721 
percentage of cells that discriminated between CS1+ and CS1- trials was significantly higher in 722 
the onset cell population (n = 8 mice, p < 0.0001, paired t-test).   723 
 724 
Figure 5.  A distinct network state initiated by the feature cue.   725 
(A) There is no significant difference in mean OFC firing rate during the final 1 s of the delay 726 
period (DL) and a 1 s baseline period prior to feature cue presentation (BL, p = 0.11, paired t-727 
test).  (B) Strategy used to determine whether the network state in the BL period is distinct from 728 
that of the DL period.  This two-step process required training (top dashed box) and testing 729 
(bottom dashed box) a binary classifier.  During testing, each period (BL, green arrows and DL, 730 
blue arrows) was classified as either a correct match (e.g., BL classified as BL, solid arrow) or 731 
an incorrect match (e.g., BL classified as DL, dashed arrow).  (C) Mean classifier accuracy per 732 
animal of the classifier in B (accuracy defined as the percentage of correctly classified BL and 733 
DL periods across all tested folds, black) was significantly above chance levels shown in red (n 734 
= 8, p < 0.0001, paired t-test).  The average accuracy across the experimental group was 69 ± 2 735 
% (mean ± SEM, dashed black line).  (D) Strategy used to classify whether delay period activity 736 
prior to incorrect CS1- trials (DLL), was more similar to the baseline period prior to correct CS1+ 737 
trials (BLL), or the delay period prior to correct CS1- trials (DLW).  The classifier was trained (top 738 
dashed box) to distinguish population activity during BLL periods from DLW periods.  During 739 
testing (bottom dashed box) DLL activity was compared to BLL and DLW activity and classified 740 
as more similar to either BLL (dashed line) or DLW (solid line).  (E) Mean classifier accuracy per 741 
animal of the classifier in D (accuracy defined as the percentage of DLL periods that were 742 
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labeled as DLW, black) was significantly above chance levels shown in red (n = 7, p = 0.018, 743 
paired t-test).  The average accuracy across the experimental group was 64 ± 4 % (mean ± 744 
SEM, dashed black line).  Note that animal # 1 only had 1 DLL trial and was excluded from the 745 
analysis in E.  Error bars in C and E represent 95% confidence intervals across all iterations and 746 
dashed lines represent the average values across all animals.   747 
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