Research Articles: Cellular/Molecular

Serotonin disinhibits a Caenorhabditis elegans sensory neuron by suppressing Ca\(^{++}\)-dependent negative feedback

Paul D. E. Williams, Jeffrey A. Zahratka, Matthew Rodenbeck, Jason Wanamaker, Hilary Linzie and Bruce A. Bamber

Department of Biological Sciences, The University of Toledo, Toledo, OH 43606-3390

DOI: 10.1523/JNEUROSCI.1908-17.2018

Received: 5 July 2017
Revised: 4 January 2018
Accepted: 12 January 2018
Published: 22 January 2018

Author contributions: W.Z. performed research; W.Z. and H.H. analyzed data; W.Z., K.R., I.S., and H.H. wrote the paper; K.R., I.S., and H.H. designed research.

Conflict of Interest: The authors declare no competing financial interests.

We thank the C. elegans Genetics Center for strains; Yifan Xu and C. Bargmann for the kind gift of the ASH::GCaMP3 marker, T. Lindsay, S. Lockery, and M. Goodman for assistance with electrophysiology; W Schafer and J Cregg for assistance with the video microscopy setup; A. Korchnak for technical assistance and Richard Komunieki for his valuable input. This work was supported by NIH grants R56 AI072644 and R15 AI109573

Corresponding Author: Bruce A. Bamber, Bruce.bamber@utoledo.edu, 419-530-2066, Department of Biological Sciences, The University of Toledo, Toledo, OH, 43606-3390

Cite as: J. Neurosci; 10.1523/JNEUROSCI.1908-17.2018

Alerts: Sign up at www.jneurosci.org/cgi/alerts to receive customized email alerts when the fully formatted version of this article is published.
Serotonin disinhibits a *Caenorhabditis elegans* sensory neuron by suppressing Ca^{++}-dependent negative feedback

5-HT reduces inhibitory neuronal Ca^{++} transients

Paul D. E. Williams, Jeffrey A. Zahratka, Matthew Rodenbeck, Jason Wanamaker, Hilary Linzie, and Bruce A. Bamber

Department of Biological Sciences
The University of Toledo
Toledo, OH 43606-3390

1. Corresponding Author
Bruce A. Bamber
Bruce.bamber@utoledo.edu
419-530-2066

Department of Biological Sciences
The University of Toledo,
Toledo, OH, 43606-3390

Total number of pages; 41.

Number of Figures; 7.

Word count; Abstract (208), Introduction (600) & Discussion (1,372)

The authors declare no competing financial interests or conflicts of interest

Acknowledgements: We thank the *C. elegans* Genetics Center for strains; Yifan Xu and C. Bargmann for the kind gift of the ASH::GCaMP3 marker, T. Lindsay, S. Lockery, and M. Goodman for assistance with electrophysiology; W Schafer and J Cregg for assistance with the video microscopy setup; A. Korchnak for technical assistance and Richard Komunieki for his valuable input. This work was supported by NIH grants R56 AI072644 and R15 AI109573
ABSTRACT

Neuromodulators such as serotonin (5-HT) alter neuronal excitability and synaptic strengths, and define different behavioral states. Neuromodulator-dependent changes in neuronal activity patterns are frequently measured using calcium reporters, since calcium imaging can easily be performed on intact functioning nervous systems. With only 302 neurons, the nematode Caenorhabditis elegans provides a relatively simple, yet powerful, system to understand neuromodulation at the level of individual neurons. C. elegans hermaphrodites are repelled by 1-octanol, and the initiation of these aversive responses are potentiated by 5-HT. 5-HT acts on the ASH polymodal nociceptors that sense the 1-octanol stimulus. Surprisingly, 5-HT suppresses ASH Ca^{++} transients while simultaneously potentiating 1-octanol-dependent ASH depolarization. Here we further explore this seemingly inverse relationship. Our results show first, that 5-HT acts downstream of depolarization, through G_{i/o}-mediated signaling and calcineurin, to inhibit L-type voltage-gated Ca^{++} channels; second, that the 1-octanol-evoked Ca^{++} transients in ASHs inhibit depolarization; and third, that the Ca^{++}-activated K^+ channel, SLO-1, acts downstream of 5-HT, and is a critical regulator of ASH response dynamics. These findings define a Ca^{++}-dependent inhibitory feedback loop that can be modulated by 5-HT to increase neuronal excitability and regulate behavior, and highlight the possibility that neuromodulator-induced changes in the amplitudes of Ca^{++} transients do not necessarily predict corresponding changes in depolarization.
SIGNIFICANCE STATEMENT:

Neuromodulators such as 5-HT modify behavior by regulating excitability and synaptic efficiency in neurons. Neuromodulation is often studied using Ca** imaging, whereby neuromodulator-dependent changes in neuronal activity levels can be detected in intact, functioning circuits. Here we show that 5-HT reduces the amplitude of depolarization-dependent Ca** transients in a C. elegans nociceptive neuron, through Gαq signaling and calcineurin, but that Ca** itself inhibits depolarization, likely through Ca**-activated K* channels. The net effect of 5-HT, therefore, is to increase neuronal excitability through disinhibition. These results establish a novel 5-HT signal transduction pathway, and demonstrate that neuromodulators can change Ca** signals and depolarization amplitudes in opposite directions, simultaneously, within a single neuron.
INTRODUCTION:

Neuromodulation is an important mechanism for regulating nervous system function, and can generate behavioral flexibility in response to changing conditions (Marder 2012). Major neuromodulatory neurotransmitters include the monoamines, such as serotonin and dopamine (Harris-Warrick and Johnson 2010), and neuropeptides, for instance oxytocin, vasopressin, and the opioid peptides (Stein and Zollner 2009; Stoop 2014). These molecules regulate neuronal excitability and synaptic strengths through G-protein signaling cascades, and can reconfigure neural circuits to produce differential outputs (Gutierrez and Marder 2014; Harris-Warrick and Johnson 2010; Nadim and Bucher 2014; Swensen and Marder 2001). Neuromodulatory signaling cascades are involved in many neurological conditions including anxiety, depression, schizophrenia, chronic pain and drug addiction, and drugs used to treat these conditions frequently act to increase or decrease neuromodulatory signaling (Chiechio 2016; McCready and Newman-Tancredi 2015; Yohn et al. 2017).

Although neuromodulators and their receptors have been extensively catalogued over many years, neuromodulatory signaling is still not fully understood at the cellular or network levels. Whole-brain optical recording is a promising new approach to understand neuromodulation because, in principle, activity patterns can be compared in the presence and absence of neuromodulators, within intact nervous systems in freely behaving animals (Kato et al. 2015; Lemon et al. 2015; Naumann et al. 2016; Poort et al. 2015).
Fluorescent Ca** sensors such as the GCaMPs are currently the reporters of choice, as their speed, sensitivity, and ease of expression are superior to alternatives such as fluorescent voltage indicators (Vogt 2015). However, measurable Ca** levels provide an indirect indication of neuronal activation, with Ca** usually entering the cytoplasm through voltage-gated Ca** channels (VGCCs) that activate upon depolarization. As a consequence, over-reliance on Ca** signals to analyze circuit function has three principal pitfalls: First, the activity of the voltage-gated Ca** channels can be modulated by intracellular signaling cascades, so the Ca** signal strength may reflect more the functional state of Ca** channel than the amplitude of the underlying depolarization. Second, Ca** may be released from intracellular stores independently of depolarization, leading to overestimation of neuronal activation. Third, Ca** itself is a potent signaling molecule with significant effects on the membrane potential, yet Ca** signals are often interpreted simply as passive indicators of membrane potential changes.

C. elegans is an excellent system to understand neuromodulation at single neuron resolution because its nervous system is relatively small and simple (only 302 neurons), stereotyped in development and structure, and fully reconstructed by serial section electron microscopy (Hobert 2010; White et al. 1986). Moreover, they are transparent, which facilitates the use of optical reporters; in particular, Ca** imaging is widely used. Importantly, neuromodulators, receptors, and downstream signaling pathways are highly conserved between C. elegans and mammals (Chase and Koelle 2007; Koelle 2016). Aversive locomotory
responses to the noxious odorant 1-octanol are potentiated by the neuromodulator 5-HT. 5-HT acts on the ASH polymodal nociceptive neurons (among others) to shorten the lag time between sensation and aversive reaction stimulated by 30% 1-octanol (Chao et al. 2004; Harris et al. 2011). We have begun addressing neuromodulatory mechanisms with an emphasis on Ca++ signaling, using this relatively simple background. We previously showed that 5-HT reduces the ASH Ca++ signal in response to 1-octanol, in apparent contradiction to the potentiated aversive behavior. However direct electrical recordings showed that 5-HT treatment actually potentiates ASH depolarization (Zahratka et al. 2015). Here, we delineate the relationship between 5-HT signaling, Ca++ transient amplitude, and modulation of depolarization, demonstrating that 5-HT potentiates ASH excitability by suppressing a Ca++-dependent inhibitory feedback loop. These findings highlight potential nonlinearities in the relationship between Ca++ signal amplitudes and depolarization amplitudes that may significantly distort the interpretation of circuit analysis data.
MATERIALS AND METHODS

Strains and constructs: Strains were maintained on NGM agar plates with *E. coli* OP50 bacteria per standard protocols. Strains used were; N2, FY908 grls17 [Psra-6::GCaMP3], FY928 grls17 [Psra-6::GCaMP3]; Pgpa-4::RFP, FY867 ser-5 (tm2654) I; kyEx2865 [Psra-6::GCaMP3], FY934 egl-30 (n686sd) I; grls17 [Psra-6::GCaMP3], FY936 slo-1 (eg142) V; grls17 [Psra-6::GCaMP3], FY975 tax-6 (p675) IV; grls17 [Psra-6::GCaMP3]. Neuron-specific RNAi transgenes were generated as previously described (Esposito et al. 2007), and co-injected with *Punc-122::RFP* at a concentration of 50ng/μL. Animals were analyzed within three generations of original injection. The primers used to produce the *Psra-6::slo-1 RNAi* transgene were:

Psra-6 Promoter Forward: 5’ - CACTGATGTACCTTTCTATCTTTCTAAAC – 3’
Psra-6 Promoter Forward Internal: 5’ – CTTTCTATCTTTCTAAACTTTTG – 3’
slo-1 Transcript Forward: 5’ – CGTACCAGAAATTGCCGATTTG – 3’
slo-1 Transcript Forward Internal: 5’ – CCGATTTGATTGGAAACCGG – 3’
slo-1 Transcript Reverse: 5’ – CTGCTAAGATCCAGAGAATC – 3’
slo-1 Transcript Reverse Internal: 5’ – CCAGAGAATCCATGACAGTC – 3’
Psra-6::slo-1 Promoter Reverse Sense: 5’ – CAATTTCGGTACGGGCAAAATCTGAAATAAAATATTAAATTTCTGCG – 3’

Psra-6::slo-1 Promoter Reverse Antisense: 5’ – ATCTTAGCAGGGCAAAATCTGAAATAAAATATTAAATTTCTGCG – 3’

Calcium imaging: Calcium imaging experiments were performed as previously described (Mills et al. 2012; Zahratka et al. 2015). Animals were glued to a 15mm diameter circular coverslip coated with Sylgard (Dow Corning, Midland, MI), immersed in external solution (see below) using WormGlu cyanoacrylate glue (GluStitch, Delta, Canada). The coverslips were placed in a laminar flow chamber (Warner RC26G, Warner Instruments, Hamden, CT) and perfused continuously with external solution. External solution contained 150mM NaCl, 5mM KCl, 5mM CaCl₂, 1mM MgCl₂, 10mM glucose, 15mM HEPES; pH7.30, 327-333 mOsm. 1-octanol (~2.37μM in external solution) was delivered under gravity feed through solenoid valves using a perfusion pencil (AutoMate Scientific, Berkley, CA) or homemade equivalent. All solutions contained the fluorescent tracer Sulforhodamine 101 (SR101, 1μM), which stained the animals on contact and allowed visual inspection of flow. Solutions were delivered using the perfusion pencil as described above, mounted on a Warner SF77B Perfusion Fast Step device (step size 200μM, Warner Instruments) to provide precise computer control of pipette position. After each exposure animals were visually examined for SR101 staining to confirm successful application and flow. No response was observed in ASHs to external solution containing 1μM SR101 alone or in the ASIs (also expressing the Psra-6::GCaMP3 reporter transgene).
Ca** imaging of ASH neurons via High K⁺ stimulation required partial dissection to expose the ASHs to the external solution. Dissection was performed as described previously (Goodman et al. 1998). The cuticle was slit with a patch pipette (TW150-3, World Precision Instruments, Sarasota, FL) that had been melted at the tip, drawn to a fine point, and broken back to create a sharp-ended ‘cutter’, using a Narishige MF-83 microforge (Narishige, Setegaya-ku, Tokyo, Japan). Cutters were mounted on a micromanipulator (Sutter MP285, Sutter instruments, Novato, CA) to puncture the cuticle. A successful dissection would invariably expose only one ASH neuron, leaving the other within the cuticle, allowing exposed and unexposed ASH Ca** responses to be compared (Figure 6D). This dissection technique, and the validation of differential exposure of the two ASHs, is demonstrated in Movie 1. Exposure times were 110ms with 4x binning. High K⁺ (30mM) external solution contained 120mM NaCl, 30mM KCl, 5mM CaCl₂, 1mM MgCl₂, 10mM glucose, 15mM HEPES; pH7.30, 327-333 mOsm, and was applied via a four-barreled glass puffer (barrel cross section 300 μm), mounted on a Warner SF77B Perfusion Fast Step device. Solutions were delivered using a syringe pump (KD Scientific, Holliston, MA) at a rate of 0.2ml/min. All recordings were performed on an Axioskop 2 FS Plus upright compound microscope (40X Achroplan water immersion objective, GFP filter set #38), fitted with an Orca ER CCD camera (Hamamatsu, Skokie, IL) and an automated shutter (Uniblitz, Vincent Associates, Rochester, NY). Minimal illumination intensity was used to prevent GCaMP3 photobleaching, and we did
not observe differential photobleaching rates between different genotypes and treatment groups.

Cyclosporin A (CsA) exposure was achieved by incubating animals on NGM containing 50μM CsA for 45 minutes. 5-HT and NemA exposure was performed using one of two methods; incubation on NGM plates or direct application. 5-HT incubation was performed on 4mM 5-HT containing NGM plates for 30 minutes. NemA incubation was performed on 5 μM NemA containing NGM plates for 45 minutes. CsA, 5-HT and NemA plates were prepared fresh on each day of recording. Direct application of 5-HT and NemA was achieved using a two-opening theta (Θ) glass tube that had been heated and drawn to a fine point by hand. Two lengths of polyethylene tubing 10’ (0.61 ODx0.28 ID) tubing (Warner Instruments, Hamden, CT) were inserted into the back of the tubing and sealed using Sylgard. A control stream (external solution) occupied one line and a drug containing solution occupied the second. Solutions were delivered via a syringe pump (KD Scientific, Holliston, MA) at a rate of 0.05ml/min. Supply lines were activated or inactivated manually using nylon 3-way Luer Lock stopcocks; only one line was active at any time. Both streams from this dual chambered pipette were capable of shielding the exposed ASH cell body from the 1-octanol stream perfusing the amphid (Figure 2A). Animals were inspected for SR101 staining after each 1-octanol application, and any animal whose neuron had become exposed to the 1-octanol stream was discarded. 5-HT dose-response curves where generated using the equation;

\[A = \frac{A_{\text{max}}}{1 + 10^{\frac{\text{LogEC50}-[\text{agonist}]}} X n} \]

where \(A \) is the percentage of inhibition of the Ca\(^{++} \)
signal at a given 5-HT concentration and A_{max} inhibition of the Ca++ signal at 5-HT saturation. EC\textsubscript{50} of 5-HT is the concentration necessary to elicit half-maximal inhibition of the 1-octanol induced Ca++ signal, n is the slope coefficient. Curve fitting was performed using GraphPad Prism software (San Diego, CA).

Fluorescent images were acquired using MetaVue 7.6.5 (MDS Analytical Technologies, Sunnyvale, CA), and analyzed with Jmalyze software (Rex Kerr). Exposure times were 50ms with 4x binning. We routinely compared baseline fluorescence values between mutant or drug treated worms and corresponding controls.

Electrophysiology: For patch-clamp analysis, animals were glued and placed in the recording chamber as described above. ASH cell bodies (identified by GCaMP3 expression and lack of RFP expression (ASI $Pgpa-4::RFP$)) were exposed for whole cell recordings by slitting the cuticle as described above. Dissection quality was validated by visually inspecting the dendrite of the exposed ASH to ensure it had not been severed. Whole cell recordings were performed as previously described (Zahratka et al. 2015). Briefly, we used pressure-polished patch pipettes (Goodman and Lockery 2000) with 12-25MΩ resistance containing low Cl- internal solution (15mM KCl, 115mM K gluconate, 10mM HEPES, 5mM MgCl\textsubscript{2}, 0.25mM CaCl\textsubscript{2}, 5mM EGTA, 20mM sucrose, 5mM MgATP, 0.25mM NaGTP; pH 7.20, 315 mOsm). 1-octanol was delivered as described above via perfusion pencil mounted on Warner SF77B Perfusion Fast Step Device (step size 200µM). NemA was delivered using the dual-chambered pipette, as previously described. Cells were observed after each 1-octanol
application using SR101. Any cell that had become exposed directly to the 1-octanol stream was discarded. Signals were recorded with an Axopatch 200B amplifier (Molecular Devices, Sunnyvale, CA) in current clamp mode (0pA injected current, 10kHz sampling, 2kHz filtering), digitized with a Digidata 1440A digitizer and analyzed using pCLAMP10 software (Molecular Devices).

Behavioral assays: Behavioral responses to 1-octanol were assayed as previously described (Chao et al. 2004; Harris et al. 2009). 20-40 L4 animals were picked the night before the assay onto fresh OP50 seeded NGM plates. 5-HT containing plates were prepared the day of the assay two hours before the experiment by adding 4mM 5-HT creatinine sulfate monohydrate to molten agar (~55°C). 1-octanol was presented to a forward moving animal via a glass capillary that was dipped in 30% 1-octanol solution (dissolved in 100% ethanol, v/v). For assays in the absence of 5-HT, animals were transferred from the stock plate to an intermediate plate for one minute to remove any OP50, and transferred to a food-free assay plate and tested 10 minutes later. In contrast, 5-HT assayed animals were transferred to the 5-HT containing plates after the intermediate plate and tested 30 minutes later.

All reagents were obtained from Fisher Scientific (Pittsburgh, PA) or Sigma-Aldrich (St. Louis, MO).

Experimental design and statistical analysis: For Ca**++-imaging and electrophysiology experiments, a minimum of five young hermaphrodite adult animals were recorded for each treatment/mutation for each day of recording.
For behavioral experiments, a minimum of 25 young hermaphrodite adult animals were needed for each treatment/mutation analyzed. All experiments were performed between 19 and 23°C. All reagents were made fresh on the day of the experiment.

Statistical analysis was performed using two-tailed Students t-tests (unpaired unless indicated otherwise), one-way ANOVA with Tukey post-test and Repeated Measures ANOVA with Tukey post-test. All data presented as mean ± SEM using GraphPad Prism software (San Diego, CA).

RESULTS

5-HT acts downstream of depolarization to reduce the stimulus-induced Ca** transient in ASH

5-HT reduces the ASH Ca** signal, but the mechanism is unclear (Zahratka et al. 2015). 5-HT is unlikely to reduce the initial sensory potential since overall ASH depolarization is enhanced (Zahratka et al. 2015), and therefore, we have hypothesized that 5-HT modulates Ca** dynamics downstream of the initial 1-octanol-dependent depolarization. To test this idea, we determined whether 5-HT could reduce Ca** transients in ASHs after artificial depolarization induced by elevated [K+] treatment (30mM compared to 5mM, after partial dissection to expose the ASH soma to the bath, see Methods). High K+ treatment led to robust
Ca2+ transients, which were sensitive to the L-type Ca2+ channel blocker Nemadipine-A (NemA), as observed previously for 1-octanol-dependent ASH Ca2+ transients (Figures 1A & B), (Zahratka et al. 2015). 5-HT treatment significantly inhibited high K+ ASH Ca2+ transients similar to 1-octanol treatment (Figures 1A & B) (Zahratka et al. 2015). Similarly, 5-HT modulation of both high K+ and 1-octanol-dependent signals are dependent on the 5-HT receptor SER-5 and the Go\textsubscript{q} subunit EGL-30 to which it is coupled (Figure 1C & D), (Zahratka et al. 2015). Together these data suggest that 5-HT acts downstream of the initial ASH depolarization evoked by aversive olfactory stimuli to directly reduce Ca2+ transient amplitudes via a Go\textsubscript{q}-coupled pathway.

5-HT modulates ASH function at physiological concentrations and time scales

To further study 5-HT signaling in ASHs, we developed methods to apply 5-HT with precise control over concentration and time course. Monoamine studies in *C. elegans* have previously been carried out by incubating worms on agar plates containing high (i.e. mM) concentrations of monoamines for 30 minutes or longer (Chao et al. 2004; Ezcurra et al. 2011; Ghosh et al. 2016; Harris et al. 2011; Harris et al. 2009). Under these conditions, the effective concentration of ligand at the relevant receptors cannot be known or precisely controlled, and is affected by multiple factors such as cuticular permeability, slow diffusion kinetics, and transport/degradation dynamics within the worm. We again turned to limited dissection to expose the ASH cell bodies to the bath, and applied 5-HT using a perfusion system that permitted ligand exchange over the course of a few
seconds (see Methods, Figure 2A). Importantly, this system was configured to perfuse the worm’s nose and exposed neuronal soma independently, with no cross-contamination, so odorants can be applied to the nose while modulators are applied to the cell body (neurons directly exposed to 1-octanol showed rapid irreversible increases in Ca**, often followed by cellular fragmentation, suggesting that direct 1-octanol contact kills exposed cells). Under these conditions, the EC50 for 5-HT inhibition of 1-octanol induced Ca** signals was calculated to be 6nM (Figure 2B) after a 1 min exposure time. 10nM 5-HT was used in subsequent experiments, which produced a robust and reversible effect (Figure 2C).

In the canonical Goq pathway, phospholipase C activation leads to the production of diacylglycerol (DAG) and inositol-trisphosphate (IP3) which binds to the IP3 receptor and gates the release of Ca** from intracellular stores (Baker et al. 2013; Miller et al. 1999; Singer et al. 1997; Walker et al. 2009). We observed a rapid increase in GCaMP3 fluorescence upon 5-HT treatment that is SER-5 dependent, consistent with release of intracellular Ca** downstream of Goq activation (Figures 2D & E). NemA treatment did not significantly reduce the 5-HT-stimulated Ca** transient (Figure 2E), consistent with an intracellular origin for this Ca**, rather than extracellular through EGL-19.

To determine if this Ca** signal is functionally coupled to the inhibition of 1-octanol-induced Ca** responses in ASHs, we performed limited dissection to expose an ASH neuron, then sequentially treated the worm with 1-octanol (at the tip of the nose), 5-HT (at the ASH soma); and finally, in the continued presence
of 5-HT, 1-octanol again. In the wild type, 1-octanol generated a robust signal, 5-HT induced a somewhat smaller Ca** signal, and the second 1-octanol application generated a greatly reduced signal relative to the first (Figure 2F upper panel, 2G white bars), consistent with 5-HT inhibiting the 1-octanol response, as previously observed (Zahratka et al. 2015). In ser-5 mutants, as expected, 5-HT alone did not induce a Ca** signal, and the second 1-octanol responses was unaffected (Figure 2F lower panel, 2G black bars). These results suggest that 5-HT activates a SER-5- and Gαq-dependent signaling pathway, including release of Ca** from intracellular stores, to inhibit Ca** transients associated with 1-octanol stimulation in ASH neurons. Furthermore, 5-HT signaling is rapid, reversible, and occurs at physiological 5-HT concentrations (i.e. comparable to 5-HT receptors in heterologous cells and neurons from other species (Adolph and Tuan 1972; Bunin and Wightman 1998).

Calcineurin mediates 5-HT inhibition of 1-octanol induced Ca signals**

In cardiomyocytes, L-type VGCCs are inhibited through the calcium dependent inhibition (CDI) pathway, where Ca**-calmodulin (CaM) binds to and activates calcineurin (CaN), which in turn dephosphorylates the channel at a conserved serine residue. CaM binding to a conserved IQ domain on the intracellular cytoplasmic tail of the channel is necessary for CaN dephosphorylation of its target serine (Blaich et al. 2012; Wang et al. 2014). In neurons, a CDI-like mechanism operates downstream of Gαq-coupled GPCRs, with IP3-R-dependent Ca** release activating CaM-CaN, which dephosphorylates and inactivates the L-type VGCC at the same serine residue (Day et al. 2002; Hernandez-Lopez et al.
The L-type VGCC forms a signaling complex with the IP$_3$-R through Shank and Homer, allowing the GPCR to control the L-type VGCC at extremely short range (Olson et al. 2005). The EGL-19 L-type VGCC in *C. elegans* also contains the conserved IQ domain and serine residue (Figure 3A), and may associate with the IP$_3$-R directly through Ce-SHANK (SHN-1) (Oh et al. 2011). Therefore, we hypothesized that 5-HT activates a CDI-like pathway to regulate Ca$^{++}$ influx in ASH neurons, and predicted that CaN would be required for 5-HT signaling (outlined in Figure 3B).

Cyclosporin-A (CsA) inhibits CaN in *C. elegans* (Bandyopadhyay et al. 2002; Donohoe et al. 2009). We pre-incubated worms in 50μM CsA on agar plates for 45 minutes, performed partial dissection to expose ASHs to the bath, and repeated the sequential 1-octanol and 5-HT application protocol performed earlier (Figures 3C, D). The initial 1-octanol response and the direct 5-HT responses were unaffected by CsA treatment. However, the second 1-octanol response was equal in amplitude to the first (Figures 3C, D). These results show that CaN inhibition blocks the 5-HT-dependent diminution of ASH Ca$^{++}$ responses, suggesting that CaN acts downstream of Ca$^{++}$ in the 5-HT signaling pathway. Importantly, this result also shows that diminution of the second 1-octanol response after 5-HT application is unlikely to reflect a non-specific ceiling effect in the endoplasmic reticulum (ER) Ca$^{++}$ releasing capacity (i.e. ER Ca$^{++}$ contributes to 1-octanol responses (Zahratka et al. 2015), and 5-HT-dependent Ca$^{++}$ release could deplete the ER of Ca$^{++}$, leading to a diminished signal). In the presence of CsA, the second 1-octanol application still evoked a robust Ca$^{++}$
transient despite the earlier 5-HT-dependent Ca\(^{++}\) release (Figures 3C, D), which is incompatible with a ceiling effect explanation. CaN is also required for 5-HT modulation of Ca\(^{++}\) responses evoked by high K\(^{+}\) buffer. 5-HT did not inhibit these Ca\(^{++}\) responses in the presence of CsA (Figures 4A, B & C), or in tax-6 mutants which lack CaN (Kuhara et al. 2002) (Figure 4D). Taken together, these results are consistent with TAX-6/CaN inhibiting Ca\(^{++}\) entry into ASHs through its conserved ability to dephosphorylate the EGL-19 L-type VGCC. However, we cannot rule out that other targets of TAX-6/CaN could be playing a role, as this phosphatase has a wide substrate specificity (Bandyopadhyay et al. 2002).

Ca\(^{++}\) inhibits ASH depolarization

How can 5-HT suppress stimulus-induced Ca\(^{++}\) transients while simultaneously potentiating depolarization in ASHs? One possibility is that Ca\(^{++}\) itself may act as a second messenger to inhibit depolarization, and if so, pharmacological block of L-type Ca\(^{++}\) channels should potentiate depolarization. L-type channels are the predominant Ca\(^{++}\) channel mediating somal Ca\(^{++}\) influx in ASHs (Zahratka et al. 2015). To test this prediction, we performed direct electrophysiological recordings of ASH neurons, predicting that NemA inhibition of L-type voltage-gated Ca\(^{++}\) channels should increase depolarization amplitude. Interestingly, after 45-minute incubation on agar plates containing 5\(\mu\)M NemA, resting membrane potentials (RMPs) in ASHs were highly unstable relative to untreated animals (Figure 5A) which, unfortunately, precluded measurement of 1-octanol evoked depolarization. This observation is consistent with observations in other systems where blockade of L-type Ca\(^{++}\) channels disrupts normal cellular physiology,
resulting in rapid changes in ion channel expression which could presumably affect the stability of the RMP (Hogan 2007; Ransdell et al. 2012). To circumvent this difficulty, we performed partial dissection and acutely treated dissected ASHs with NemA for 60s, before performing electrophysiological recordings. We first titrated NemA using 1-octanol evoked Ca** signals as a readout, and determined that 100nM NemA consistently inhibited the channel (10nM was also effective, but more variable; Figure 5B). Baseline membrane potentials of these NemA-treated ASH neurons were stable, and most importantly, 1-octanol evoked depolarization was significantly potentiated (Figures 5C, D). This result was particularly interesting, as Ca** entering through the L-type VGCCs is often assumed to be a primary carrier of inward current during depolarization. To verify that another VGCC (such as UNC-2 or CCA-1) was not activating to compensate, we carefully imaged the entire length of the ASH neuron during 1-octanol stimulation in the presence of NemA. We observed no increased Ca** signal in any ASH compartment (i.e. cilium, dendrite, soma or axon), and significant reduction of Ca** signals in the soma and dendrite (Figure 5E). This result suggests optically-detectable Ca** influxes across the plasma membrane of the dendrite, soma, or axon are not the primary carriers of inward current during ASH depolarization. Taken together with the previous results, we conclude that ASH intracellular Ca** exerts negative feedback on depolarization, and that 5-HT disinhibits ASHs by suppressing this feedback.

SLO-1 is required in ASHs for 5-HT signaling and regulation of olfactory response dynamics
The SLO-1 voltage- and Ca++-activated K+ channel (homologous to the mammalian BK channel) is expressed throughout the
C. elegans nervous system (Wang et al. 2001), and could potentially mediate Ca++-dependent inhibition of depolarization in ASHs (Goodman et al. 1998). We used various genetic manipulations to investigate a possible role for SLO-1 in ASH signaling and modulation. ASH-specific RNAi knockdown of SLO-1 prevented 5-HT potentiation of 1-octanol aversive responses, demonstrating a key role for SLO-1 in the 5-HT signaling pathway within ASHs (Figure 6A). Similarly, *slo-1* loss-of-function mutants were also 5-HT insensitive, corroborating the RNAi result (Figure 6A).

Next, we observed that the kinetics of the 1-octanol-induced Ca++ responses in ASHs were much less uniform and consistent in the absence of SLO-1 (Figures 6B, C). This effect was most readily observed and quantified by comparing the traces from left and right ASHs in the same animal, recorded simultaneously. In wild type, ASHL and ASHR responded with nearly identical kinetics; this uniformity led to Pearson’s correlation coefficients (between ASHL and ASHR signals) approaching 1.0 (Figures 6B, C). By contrast, *slo-1* mutants and ASH-specific RNAi animals showed highly irregular response profiles (representative examples shown), resulting in significant asynchrony between ASHL and ASHR; with significantly reduced Pearson’s coefficients (Figures 6B, C). This finding suggests that the remarkable uniformity of ASH Ca++ response kinetics is the result of intrinsic ionic mechanisms critically dependent on SLO-1, and that these mechanisms are powerful enough to produce bilaterally symmetric
responses in the two ASH neurons, which is a novel insight into *C. elegans*
sensory neurophysiology.

However, it is also possible that left and right ASHs are electrically
coupled because a single gap junction was observed between ASHL and ASHR
by electron microscopy (White et al. 1986). This coupling may be somehow
dependent on SLO-1, possibly developmentally (Alqadah et al. 2016), and
therefore lost in the *slo-1* mutants. To distinguish these possibilities, we once
again partially dissected single wild-type ASHs (see Methods, and Movie 1), and
stimulated them with high K⁺ buffer, comparing the bath-exposed ASH to the
unexposed ASH remaining within the cuticle. If electrically coupled, the exposed
and unexposed ASHs should respond together with minimal lag time; if not
coupled, the unexposed ASH should respond much more slowly, as the cuticle
remnant will pose a diffusion barrier for the high K⁺ buffer. We observed a 5s
delay in the response times of the unexposed ASHs, suggesting a lack of
electrical coupling (Figures 6D, E). Moreover, the unexposed ASH response
times were unaffected by killing the exposed ASH using sharp glass probe, which
further confirms the independence of the responses of the two ASH neurons
(Figure 6F). Therefore, we do not see evidence for electrical coupling, at least
under the conditions we tested. However, the gap junction may be physiologically
significant under other conditions, because electrical synapses can be
dynamically regulated, and therefore may be differentially active under different
conditions (Pereda and Macagno 2017). The proper regulation of ASH response
kinetics and/or left-right synchrony appears to be physiologically significant: ASH-
specific RNAi inactivation of SLO-1 led to significantly shorter reversal distances following 1-octanol stimulation (as defined as the distance travelled prior to the first omega turn and/or resumption of forward locomotion) (Figure 6G). Taken together, our results demonstrate that SLO-1 in ASHs is necessary for 5-HT modulation of aversive behavior, which places SLO-1 in the 5-HT signaling pathway, most likely downstream of Ca++. However, SLO-1 also plays a role in other important aspects of ASH physiology, including maintenance of resting membrane potential and shaping the response kinetics to aversive odorant stimuli.

DISCUSSION

The objective of this study was to determine how 5-HT signaling in the nociceptive ASH neurons of *C. elegans* can inhibit odorant-evoked Ca\(^{++}\) transients, measured by Ca\(^{++}\) imaging, while potentiating depolarization and aversive behavior. Our results identify a Ca\(^{++}\)-dependent negative feedback pathway in ASHs. 5-HT attenuates this pathway by reducing the Ca\(^{++}\) transient, and thereby disinhibiting the ASH response (Figure 7). This conclusion is based on four principal observations: 1) odorant or high K\(^{+}\)-evoked increases in ASH Ca\(^{++}\) are dependent primarily on an L-type calcium channel, which contains conserved residues for negative regulation by CaN downstream of canonical G\(_{\alpha_q}\) signaling, a well-established signaling pathway in other cell types; 2) 5-HT
inhibits odorant or high K+-evoked increases in ASH Ca++ by transiently increasing the release of intracellular Ca++, via canonical G\textsubscript{q} signaling and subsequent CaN activation; 3) blocking odorant-evoked ASH Ca++ transients potentiates depolarization; 4) the Ca++-activated K+ channel SLO-1 is essential for the 5-HT potentiation of behavior, and profoundly shapes ASH odorant-response kinetics. It is often assumed that Ca++, entering through voltage-gated Ca++ channels, is the primary carrier of inward current during neuronal depolarization in C. elegans, which lacks voltage-gated Na+ channels. However, after blockade of L-type Ca++ channels, we observed no increased Ca++ influx anywhere along the neuron, even though depolarization amplitude increased by 50%. This observation implies that the Ca++ influxes usually measured by Ca++ imaging are unlikely to be the primary carriers of inward current driving depolarization, at least in the ASHs. Instead, we hypothesize that the sensory potential generated by the 1-octanol receptor and downstream transduction pathway is sufficient to depolarize the entire neuron. The sensory transduction pathway activates OSM-9/OCR-2 TRP channels in the cilium (Tobin et al. 2002). TRP channels are generally permeable to Na+ and Ca++ (Owsianik et al. 2006), and we recorded robust Ca++ transients in the amphids in response to 1-octanol application, regardless of whether the L-type channels were blocked, representing the sensory potential. This depolarization is able to spread passively along the entire length of the ASH neuron to the distal synapses, because voltage changes can travel relatively long distances with little to no attenuation in nematode neurons due to their very high membrane resistance.
(Davis and Stretton 1989; Goodman et al. 1998). Interestingly, Goodman et al. (1998) also documented counterbalancing Ca** and K+ conductances in C. elegans neurons, which summed to a 0 net current over a range of physiological potentials (Goodman et al. 1998). L-type Ca** channels and Ca**-activated K+ channels are likely contributors to these currents, based on the conserved roles of these channels in other vertebrate and invertebrate neurons (Fettiplace 1987; Gorman et al. 1982). 5-HT signaling has the potential to alter this balance by inhibiting Ca++ influx through the L-type channels, thereby reducing the hyperpolarizing K+ currents and augmenting overall neuronal depolarization.

Regulation of L-type Ca++ channels by GPCRs is widespread and highly conserved. For example, in cardiomyocytes, a conserved serine residue on L-type Ca++ channels is phosphorylated by PKA, and dephosphorylated by CaN, dependent on intracellular Ca++ flowing in through the L-type channel itself (i.e. autoinhibition), and Ca++ released from internal stores. PKA-dependent phosphorylation increases Ca++ currents, leading to increased cardiac output, while CaN-dependent phosphorylation reverses this effect. This mechanism allows bidirectional regulation in the heart, with β-adrenergic signaling increasing cardiac output during times of stress, and CaN dephosphorylation providing negative feedback to prevent cardiac muscle overexcitation and damage (Harvey and Hell 2013). In neurons (both vertebrate and invertebrate), L-type Ca++ channels may be inhibited by GPCRs, including muscarinic acetylcholine, 5-HT2A/C, and DA D2 receptors (Day et al. 2002; Hernandez-Lopez et al. 2000). For 5-HT2 and D2 signaling, the involvement of IP3R-mediated Ca++ release and
CaN activation have been documented (Day et al. 2002; Hernandez-Lopez et al. 2000), similar to the results described here. Similarly, the association of L-type Ca\(^{++}\) channels and Ca\(^{++}\)-activated K\(^{+}\) channels is highly conserved and well documented. These channels function together in many contexts, including regulation of secretion and synaptic release, setting the membrane potential, and modulating electrical excitability (Contet et al. 2016; Goodman et al. 1998; Lewis and Hudspeth 1983; Steciuk et al. 2014; Vandael et al. 2010), and moreover, physically associate in signaling complexes (Chen et al. 2010; Chen et al. 2011; Kim and Oh 2016; Kim et al. 2009). The novel aspect of the present study is to connect 5-HT receptor signaling, CaN-dependent regulation of L-type Ca\(^{++}\) channels, Ca\(^{++}\)-dependent modulation of depolarization, and Ca\(^{++}\)-activated K\(^{+}\) channels in a single pathway that modulates the electrical excitability of a sensory neuron, and its corresponding sensory-mediated behavior. We also observed an unexpected, but critical role for SLO-1 in precisely shaping the response kinetics of ASHs. Loss of SLO-1 in ASHs leads to highly variable response profiles, loss of synchrony between the left and right ASHs, and defective overall avoidance behavior.

In this study, we emphasized a pharmacological method for studying ASH physiology, in which we gently exposed the ASH soma to the bath by partial dissection, while maintaining its dendritic connection to the amphid and preserving functionality. By precisely controlling liquid flow, we could independently target the amphid openings and neuronal soma with different solutions (e.g. odorants and neurotransmitters/drugs, respectively), without
cross-contamination. This approach greatly improved the accessibility of the ASH
to modulatory ligands by removing the relatively impermeable nematode cuticle
as a barrier, leading to several important insights. For example, we
demonstrated that 5-HT modulation takes place at physiological concentration
ranges (i.e. nM). In contrast, effective concentrations have been impossible to
quantify or precisely control using previous approaches in C. elegans, where
intact worms are soaked in high concentrations of monoamines (i.e. mM) for
upwards of 30 minutes (Chao et al. 2004; Ezcurra et al. 2011; Ghosh et al. 2016;
Harris et al. 2011; Harris et al. 2009; Horvitz et al. 1982). The rapidity of ligand
application in our dissected preparations was also advantageous. Under these
conditions, the very early rise in intracellular Ca** downstream of SER-5
activation by 5-HT was detectable, and we could thereby define two separate
ASH Ca** pools with distinct origins and functions. Acute ligand application also
mitigates the potential for indirect effects to confound data interpretation.
Observed effects are less likely to be the result of secondary signaling by another
cell type because of the short time frame. Moreover, the exposed cell soma and
applied ligand are largely isolated from the remainder of the C. elegans nervous
system, further reducing the potential for non-cell-autonomous signaling
mechanisms to operate. Over longer time frames, developmental and
physiological compensation can significantly confound experimental analysis.
We encountered examples of this with slo-1 mutants and cell-specific RNAi
knockdown, and 45 minute incubation of worms on NemA-containing plates,
which were overcome using the acute application approach. These observations
demonstrate that acute direct application of agonists, antagonists, neurotransmitters and neuropeptides to dissected neural soma can produce critical insights into the biochemical basis of neural circuit function in the C. elegans model.

Finally, our results have important implications for interpreting Ca** imaging data in neural circuit analysis. Ca** transients are often treated quantitatively, with the amplitude of the Ca** signal assumed to positively correlate with the strength of the membrane depolarization (Chen et al. 2017; Ghosh et al. 2016; Gourgou and Chronis 2016; Guo et al. 2015; Kato et al. 2014; Shidara et al. 2013). Our results challenge this view by demonstrating that in the ASH neurons, Ca** transient and depolarization amplitudes change in opposite directions in response to 5-HT signaling, that GPCR signaling can dramatically modulate Ca** signal strength independently of depolarization, that GPCR signaling can elicit measurable Ca** signals from internal stores in the absence of depolarization, and that Ca** can act as second messenger to significantly reduce membrane depolarization (this study; Zahratka et al, 2015). These observations show that the relationship between Ca** signals and the membrane potential is not necessarily monotonic. Instead, Ca** signals contain a wealth of information about a neuron’s physiological state and neuromodulatory milieu. These observations are relevant not only to C. elegans circuit analysis, where neurons rely on graded potentials rather than action potentials (Goodman et al. 1998), but also to other experimental systems, where action potential frequency must be
calculated from neuronal Ca\(^{++}\) signal amplitudes using computer algorithms (Sasaki et al. 2008; Vogelstein et al. 2009).

REFERENCES

Harvey RD, Hell JW. 2013. CaV1.2 signaling complexes in the heart. J Mol Cell Cardiol 58:143-152.

FIGURE LEGENDS

Figure 1: 5-HT inhibits Ca++ signals downstream of depolarization.

A) Ca++ responses in wild type dissected ASHs exposed to high K+ buffer: untreated (left trace), NemA-treated (middle trace), and 5-HT-treated (right trace). B) Quantification of NemA and 5-HT inhibition of high K+ amplitudes. * significantly different from control (F (2, 15) = 9.011 p = 0.0027, ANOVA) C) Loss of ser-5 signaling prevents 5-HT inhibition of ASH Ca++ in response to artificial depolarization. N.S. not significantly different compared to untreated control (p = 0.5456, t = 0.6281, df = 9, unpaired t-test) D) Loss of the G\textsubscript{q} protein egl-30 prevents 5-HT inhibition of high K+ responses. N.S. not significantly different compared to untreated control (p = 0.3971, t = 0.8891, df = 9, unpaired t-test).

Numbers in/above bars indicate n. Gray boxes indicate duration of high K+ exposure; values are means ±SEM.
Figure 2: 5-HT modulation of ASH Ca++ responses is potent, rapid, reversible, and involves release of Ca++ from internal stores. A) Diagram illustrating dual-pipette perfusion system. Left panel: Upper pipette delivers the olfactory stimulus, which is a saturated solution of 1-octanol (1-oct) in external solution. Pipette is mounted on a motorized drive, which can be moved to deliver stimuli at precise intervals. Lower pipette delivers external solution (ext), and deflects the 1-octanol solution away from the exposed cell body. The lower pipette contains a glass septum that separates two independent buffers, allowing rapid switching between them (eg. ext alone, or ext + 5-HT (middle, right panels).

B) Titration curve for 5-HT inhibition of the 1-octanol-evoked Ca++ responses. C) 10nM 5-HT (1 min exposure) inhibits 1-octanol induced Ca++ responses, reversible after 5 min washout. * significantly different from control, (F (2, 6) = 8.344, p = 0.0054, Repeated Measures ANOVA); N.S. not significantly different from control. D) Representative trace of 5-HT-induced Ca++ signal in ASHs. E) Ca++ transient evoked by 10nM 5-HT is NemA insensitive and ser-5-dependent. * significantly different from control (F (2, 18) = 6.119, p = 0.0094, ANOVA). F) Representative traces of sequential 1-octanol and 5-HT exposures. Left traces: initial 1-octanol-stimulated Ca++ response; middle traces: 10nM 5-HT-stimulated Ca++ responses; right traces: second 1-octanol-stimulated Ca++ signals. Upper traces are wild type, lower traces are ser-5. Bar below trace indicates duration of ligand exposure. G) Amplitudes of initial 1-octanol, 5-HT, and second 1-octanol responses in wild type (white bars) and ser-5 (black bars). * significantly different from control (10nM 5-HT 2nd 1-octanol response vs untreated, p = 0.0214, t =
2.852, $df = 8$, paired t-test). 5-HT responses in ser-5 are significantly smaller than wild type. † = significantly from control (10nM treated ser-5 vs 10nM 5-HT treated WT, $p = 0.0175, t = 2.722, df = 13$). N.S. not significantly different from untreated control. Numbers in/above bars indicate n. For titration curve $n = 4-5$ for each concentration; values are means ±SEM.
Figure 3: CaN is required for 5-HT inhibition of 1-octanol-evoked Ca$$^{++}$$ signals in ASHs

A) The conserved IQ domain and the calcineurin dephosphorylation site are present in the C. elegans EGL-19 L-VGCC (human CaV 1.2 sequences shown for comparison). B) Hypothesized signaling pathway in which 5-HT activates G$$\alpha_q$$ signaling, Ca$$^{++}$$ release from intracellular stores, calcineurin (TAX-6/CaN) activation, and inhibition of the EGL-19 L-type VGCC. C) Representative traces of sequential 1-octanol and 5-HT exposures of CsA-treated worms. Left trace: initial 1-octanol-stimulated Ca$$^{++}$$ response; middle trace: 5-HT-stimulated Ca$$^{++}$$ responses; right trace: second 1-octanol-stimulated Ca$$^{++}$$ signal. Bar below trace indicates duration of ligand exposure. D) Amplitudes of initial 1-octanol, 5-HT, and second 1-octanol responses in untreated wild type (white bars, reproduced from Figure 2G; * significantly different from control (10nM 5-HT treated 2nd 1-octanol response vs untreated, $$p$$ = 0.0214, $$t$$ = 2.852, df = 8, paired t-test)) and CsA-treated wild type ASHs (black bars). N.S. not significantly different from control. CsA treatment does not significantly change 5-HT-evoked Ca$$^{++}$$ signals, $$p$$ = 0.2814, $$t$$ = 1.111, df = 18. Numbers in/above bars indicate $$n$$; Values are means ± SEM.
Figure 4: CaN is required for 5-HT inhibition of high K⁺-evoked Ca²⁺ signals in ASHs

A) Representative traces of high K⁺ stimulated Ca²⁺ transients in CsA-treated ASHs. (5-HT treatment (10nM) as indicated). B) Quantitative comparison of 5-HT inhibition (data reproduced from Figure 1B; * significantly different from control (5-HT treated vs untreated, p = 0.0030, t = 3.89, df = 10)). C) Ca²⁺ amplitudes in CsA treated ASHs in absence and presence of 5-HT. N.S., not significant from untreated counterpart (p = 0.2790, t = 1.152, df = 9). D) 5-HT inhibition of high K⁺ induced Ca²⁺ signals tax-6 mutants. N.S. = not significantly different from untreated counterpart (p = 0.3146, t = 1.065, df = 9). Number in/above bars indicate n. Values are means ±SEM.
Figure 5: L-type VGCC-dependent Ca++ transients inhibit depolarization. A) Representative trace of the resting membrane potential of an ASH neuron from an untreated worm (upper panel), and a worm incubated on an agar plate containing 5 μM NemA for 45 min (lower panel). B) Amplitudes of 1-octanol-evoked Ca++ signals from partially-dissected worms treated acutely (1 min) with the indicated concentrations of NemA. * significantly different from control (F (3, 17) = 22.89, p = <0.0001, ANOVA). C) Representative traces of voltage recordings during 1-octanol stimulation of untreated (left panel) and worms acutely treated (1 min) with 100nM NemA (right panel). Gray boxes indicate time of 1-octanol application. D) Amplitudes of 1-octanol-evoked depolarization in untreated and NemA treated worms (100nM, 1 min). * significantly different from control (100nM treated vs untreated, p = 0.0185, t = 2.761, df = 11). E) 1-octanol-evoked Ca++ amplitudes in the cilium, dendrite, soma, and axon (representing the entirety of the cell) in untreated and NemA treated ASHs. * Significantly different from untreated counterpart; N.S. not significantly different from untreated counterpart (untreated cilia vs NemA treated cilia, p = 0.7024, t = 0.3882, df = 18; untreated dendrite vs NemA treated dendrite, p = 0.0277, t = 2.395, df = 18; untreated soma vs NemA treated soma, p = <0.0001, t = 4.901, df = 21; untreated axon vs NemA treated axon, p = 0.2119, t = 1.294, df = 18. Numbers in/above bars indicate n; values are means ±SEM.
Figure 6: SLO-1 acts downstream of Ca** in ASHs to regulate 5-HT modulation, ASH-dependent aversive behavior and ASH response dynamics. A) Reversal times in the 1-octanol avoidance assay, in the presence of 5-HT, for wild type worms, ASH-specific SLO-1 RNAi knockdown worms (2 independent lines, C 3.1 & C 3.2), and slo-1 mutants. * significantly different from control (F (3, 136) = 6.836, p = <0.001, ANOVA). B) Simultaneous Ca** responses of ASHL and ASHR from individual worms (representative traces). Gray boxes indicate 1-octanol application, genotypes and/or pharmacological treatments indicated below trace. C) Pearson’s correlation coefficients (r) values for ASHL and ASHR signals. * significantly different from control (F (2, 27) = 16.87, p = 0.0017, ANOVA). Representative traces (D) and 0-10% rise times (E) from simultaneous recordings of exposed and unexposed ASH neurons exposed to high K+ buffer (see also Methods, Movie 1). * significantly different from control (exposed vs unexposed p = 0.0123, t = 3.35, df = 7, paired t-test). F) Comparison of 0-10% rise times from unexposed ASHs in specimens where the exposed ASH was killed N.S. not significantly different to control (unexposed rise times reproduced from Figure 6E) p = 0.7538, t = 0.3216, df =11, unpaired t-test. G) Distance travelled prior to omega turn during 1-octanol avoidance, comparing wild type and ASH-specific SLO-1 RNAi knockdown. * significantly different from control (Psra-6::slo-1 RNAi vs WT, p = 0.0107, t = 2.8, df = 21). Numbers in bars indicate n; values are means ±SEM.
Figure 7: Model for 5-HT disinhibition of ASHs, through modulation of a Ca**-driven inhibitory feedback loop.

Ca** entry through the L-type VGCC, EGL-19, inhibits ASH excitability by activating the Ca**-activated K+ channel SLO-1. 5-HT inhibits the L-VGCC via SER-5, G\(\alpha_q\), release of Ca** from intracellular stores (via the IP3 receptor), and activation of the CaN orthologue TAX-6, which inhibits EGL-19 by dephosphorylating a highly-conserved regulatory Ser residue (based on results reported here, and (Zahratka et al. 2015)).
Movie 1: Differential dissection of ASHR and ASHL.

Movie shows a successful dissection of ASHR. Using a glass pipette sharpened to a fine point (see Methods), the cuticle is punctured just caudal to the ASHR soma, taking care to avoid the axon. ASHR can then be seen to extrude itself through the cuticle breach, becoming exposed to the external solution, without fragmentation of the soma or processes. ASHL remains within the cuticle, near its original position. Focal plane is varied before and after dissection to emphasize displacement of ASHR in the vertical dimension following dissection.

Frames rate approximately 10Hz.
A

Human CaV 1.2
DDEVTVGKFYATFLEQYFRKFKKRKEQGLVGKPSQR
C. elegans EGL-19
EDDVTVGKFYATFLEQYFRFKFKKEMAKGLVPAQ
PKA/CaMKII site
(S1700/1562)
RRAISGDL
KRAISGNL

B

L-VGCC
egl-19
Soma

Amphid/
dermite

5-HT
5-HTR
ser-5

CaN
tax-6
IP_3

Ca**

ER

nucleus

L-VGCC
egl-19

Axon

C

1-octanol
10nM 5-HT
1-octanol

100%
ΔF/Fo
10s

1-oct
5-HT
CsA

D

CSA -

CSA +

ΔF/Fo (%)
300
200
100
0

1st 1-oct
10nM 5-HT
2nd 1-oct

1st 1-oct
10nM 5-HT
2nd 1-oct

9
9
9
11
11

N.S.

9
9

*