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Abstract  56 

Making healthy food choices is challenging for many people. Individuals differ 57 

greatly in their ability to follow health goals in the face of temptation, but it is unclear 58 

what underlies such differences. Using voxel-based morphometry (VBM), we 59 

investigated in healthy humans (i.e., men and women) links between structural 60 

variation in gray matter volume and individuals’ level of success in shifting toward 61 

healthier food choices. We combined MRI and choice data into a joint dataset by 62 

pooling across three independent studies that employed a task prompting participants 63 

to explicitly focus on the healthiness of food items before making their food choices. 64 

Within this dataset, we found that individual differences in gray matter volume in the 65 

ventromedial prefrontal cortex (vmPFC) and dorsolateral prefrontal cortex (dlPFC) 66 

predicted regulatory success. We extended and confirmed these initial findings by 67 

predicting regulatory success out of sample and across tasks in a second dataset 68 

requiring participants to apply a different regulation strategy that entailed distancing 69 

from cravings for unhealthy, appetitive foods. Our findings suggest that 70 

neuroanatomical markers in the vmPFC and dlPFC generalized to different forms of 71 

dietary regulation strategies across participant groups. They provide novel evidence 72 

that structural differences in neuroanatomy of two key regions for valuation and its 73 

control, the vmPFC and dlPFC, predict an individual’s ability to exert control in 74 

dietary choices.  75 
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 76 

Significance statement  77 

Dieting involves regulating food choices in order to eat healthier foods and fewer 78 

unhealthy foods. People differ dramatically in their ability to achieve or maintain this 79 

regulation, but it is unclear why. Here, we show that individuals with more gray 80 

matter volume in the dorsolateral and ventromedial prefrontal cortex are better at 81 

exercising dietary self-control. This relationship was observed across four different 82 

studies examining two different forms of dietary self-regulation, suggesting that 83 

neuroanatomical differences in the vmPFC and dlPFC may represent a general marker 84 

for self-control abilities. These results identify candidate neuroanatomical markers for 85 

dieting success and failure, and suggest potential targets for therapies aimed at 86 

preventing or treating obesity and related eating disorders. 87 
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 101 

Introduction  102 

Humans have a remarkable capacity to utilize various cognitive regulation strategies 103 

to attain desired goals and to exercise self-control (Kober et al., 2010). Self-control 104 

dilemmas are often characterized by a trade-off between an immediate, tempting 105 

reward and a delayed, more abstract one (e.g., eat a piece of tasty chocolate cake now 106 

or forgo the pleasure to achieve better health and a longer life in the future; McClure 107 

et al., 2004; Kable and Glimcher, 2007; Hare et al., 2009, 2011; Li et al., 2013). Such 108 

decisions about diet, exercise, and other reward-guided behaviors all have 109 

consequential long-term effects on health and well-being. However, many people 110 

struggle to consistently stick to their diets, exercise, and save for retirement. A key 111 

challenge for promoting healthy, adaptive decision-making is understanding what 112 

underlies individual differences in self-control success (Tangney et al., 2004; Saarni 113 

et al., 2006; Pietilaeinen et al., 2011; Holmes et al., 2016).   114 

Recent work in cognitive neuroscience has investigated this question by examining 115 

how individual differences in functional brain activity during regulation tasks can be 116 

linked to differences in self-control abilities. For example, trait measures of self-117 

control correlated with both the ability to regulate negative emotions and enhanced 118 

functional connectivity between the amygdala and dorsolateral prefrontal cortex 119 

(dlPFC) (Paschke et al., 2016). Other studies have linked the desire for immediate 120 

reward to attenuated functional connectivity between cognitive control and reward-121 

related brain regions such as the anterior prefrontal cortex and nucleus accumbens 122 

(Diekhof and Gruber, 2010; Diekhof et al., 2011; van den Bos et al., 2014; Moreno-123 

Lopez et al., 2016). These findings are in line with work associating self-control 124 

abilities with connectivity of resting-state brain networks. For example, self-control 125 



 

 5 

when making trade-offs between smaller, sooner monetary rewards and larger, later 126 

ones was linked to enhanced resting-state connectivity between neural pathways 127 

underpinning reward-processing and cognitive-regulation processes (Li et al., 2013).  128 

Although associations between functional activation and self-control are tantalizing, it 129 

is unclear whether individual differences in success are driven by momentary 130 

fluctuations in motivation or attention, or by more stable, potentially neuroanatomical, 131 

differences in the mechanisms of choice. Initial support for a neuroanatomical basis 132 

comes from studies linking individual differences in structural connectivity between 133 

reward-related and cognitive control areas to behavioral differences in impatience for 134 

receiving monetary rewards (Peper et al., 2013; van den Bos et al., 2014). The goal of 135 

the current paper was to further test this idea by investigating (1) whether differences 136 

in neuroanatomy predict an individual’s ability to regulate healthier dietary choices, 137 

and if so (2) whether such differences depend on the type of regulatory strategy or are 138 

generalizable across different strategies promoting healthier choices and participant 139 

populations. 140 

To answer these questions, we used voxel-based morphometry (VBM) to determine 141 

whether and where neuroanatomical differences predict regulatory success during 142 

dietary decisions that involve explicitly focusing on health goals. First, we aggregated 143 

data from three independent studies (i.e., dataset 1), all employing a similar task that 144 

prompted participants to regulate their dietary decision processes by focusing on the 145 

healthiness of foods. Because subjective experience and behavior can be modified by 146 

using distinct strategies with distinct consequences (Gross, 1998), we then tested 147 

whether the same neuroanatomical variation underlies regulatory success for a 148 

different regulation strategy. We addressed this second question by examining 149 
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structural predictors of regulatory success in a fully independent fourth study (i.e., 150 

dataset 2): participants in this study were not told to focus specifically on health 151 

attributes, but were instead encouraged to use a self-selected strategy to distance 152 

themselves from and reduce cravings for tasty but unhealthy foods (Hutcherson et al., 153 

2012).  154 

Our results indicate that neuroanatomical differences in specific value-related and 155 

cognitive control areas in the vmPFC and the dlPFC are generally predictive of 156 

regulatory success across different strategies and independent populations. They thus 157 

hold promise to serve as neuroanatomical markers of the ability to exercise self-158 

control over dietary decisions. 159 

Materials and Methods  160 

Participants. The analyses included 123 healthy individuals (mean age: 29.97±0.96 161 

years; 78 females, 45 males) from two different previously published studies (Hare et 162 

al., 2011; Hutcherson et al., 2012) and two different unpublished studies. Research 163 

was conducted in accordance with the Helsinki declaration and was approved by the 164 

local ethics committee (see Table 1 for an overview). All participants provided 165 

written and informed consent. Participants were screened for standard fMRI inclusion 166 

criteria: right-handedness, normal to corrected-to-normal vision, no history of 167 

substance abuse or any neurological or psychiatric disorder, and no medication or 168 

metallic devices. All participants were tested after four hours of fasting.  169 

Procedure 170 

Participants took part in one of two different dietary decision-making tasks that 171 

required them to use various strategies to make healthier choices. 172 
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 173 

Regulation Task 1: Focusing on Healthiness of Foods (Dataset 1).  174 

Dataset 1 included 91 participants pooled over three similar studies (study 1: N = 13 175 

from Hare et al., 2011; study 2: N = 35 from an unpublished study; study 3: N = 43 176 

from another unpublished study) (see Table 1). Participants decided while in the fMRI 177 

scanner how much they would like to eat different food items varying in tastiness and 178 

healthiness at the end of the experiment. Participants made their choices under three 179 

different conditions: being prompted to focus on (1) tastiness (TC) or (2) healthiness 180 

(HC) of the foods or (3) with no dieting instruction (NC), i.e., making food choices as 181 

they naturally would, which served as a baseline (see Figure 1a). Participants always 182 

started with a baseline block (NC) followed by a randomized taste or health block. 183 

The conditions were randomized across blocks of 10 trials, and participants were 184 

instructed to rate how much they wanted to eat a food item presented on the screen 185 

relative to a constant default option chosen for each participant. To determine the 186 

weight participants placed on a food’s tastiness and healthiness under different 187 

regulatory goals, participants also indicated the perceived healthiness and tastiness of 188 

all presented foods using a 4-point Likert scale (outside the scanner).  189 

The tasks in studies 1, 2, and 3 were identical, with two exceptions. First, studies 1 190 

and 3 consisted of 18 blocks of 10 trials (i.e., six blocks per condition of HC, TC, 191 

NC), for a total of 180 trials. Study 2 consisted of 27 blocks of 10 trials (i.e., nine 192 

blocks per condition of HC, TC, NC), for a total of 270 trials. Moreover, in study 2 193 

the same food pictures were presented once in each condition of HC, TC, and NC. 194 

Second, studies 1 and 2 included both men and women. Study 3 included only female 195 
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participants, who served as lean controls in a large-scale project aiming at the neural 196 

and behavioral underpinnings of dietary decision-making in female obesity.  197 

Regulation Task 2: Distancing Oneself from Cravings for Unhealthy Foods (Dataset 198 

2). In a fourth study, 32 participants completed a different dietary self-control task 199 

(Hutcherson et al., 2012). In study 4, rather than explicitly considering the healthiness 200 

of food items, participants were instructed to distance themselves (distance condition, 201 

or DC) from food cravings when contemplating highly palatable foods rich in calories 202 

(see Figure 1c). (In separate blocks, participants in this study also attempted to 203 

indulge their cravings for palatable, unhealthy foods; given the focus of this paper on 204 

healthy food choices, these trials were not included in the current analyses.) 205 

Participants were told to regulate their cravings by applying any strategy they 206 

preferred. The task also had a baseline condition in which participants were asked to 207 

make their dietary decisions naturally, without any regulation instruction (natural 208 

condition, or NC). Fifty trials of each of the three conditions were randomly 209 

intermixed, for a total of 150 trials. To make their decisions, participants were asked 210 

to use a 6-point scale ($0, $0.50, $1, $1.50, $2, $2.50) to indicate their willingness to 211 

pay (WTP) for the right to eat the food at the end of the experiment, rather than being 212 

asked about how much they would like to eat it. Importantly, participants rated all 213 

foods for subjective liking before entering the scanner, on the same scale used for 214 

dataset 1. The high correlation between pre-scan liking and in-scan bids for foods in 215 

the natural condition (average r = .72 ± .19, p < .001) suggested that they measured 216 

similar constructs. 217 

To incentivize participants to choose according to their actual preferences, in all four 218 

studies participants had to eat one item at the end of the experiment, determined by a 219 
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random draw of one trial. Food pictures were presented on a computer screen in the 220 

form of high-resolution pictures (72 dpi). Matlab and Psychophysics Toolbox 221 

extensions were used for stimulus presentation and response recording. Participants 222 

saw the stimuli via goggles or a head-coil–based mirror and indicated their responses 223 

using a response box system. 224 

Behavioral analyses. All statistical tests were conducted with the Matlab Statistical 225 

Toolbox (Matlab 2014a, MathWorks). In dataset 1, we measured regulatory success 226 

by combining the increase in weight given to healthiness and the decrease in weight 227 

given to tastiness during the health focus condition (HC), following the approach of 228 

Hare et al., 2011. To this end, we fit a general linear model (GLM) to stimulus value 229 

(SV, i.e., participants’ ratings of how much they would like to eat a food item). The 230 

behavioral GLM is described by equation i.  231 

(i)232 

 233 

Stimulus value (SV) corresponded to the dependent variable, which was predicted by 234 

the following regressors: HC, an indicator variable for a health focus condition block 235 

(dummy coded); TC, an indicator variable for the taste focus condition block (dummy 236 

coded); and HR and TR, corresponding to health rating and taste ratings for the trial-237 

specific food item (assessed outside the scanner). This GLM also included four 238 

interaction terms: health focus condition by health rating (HCxHR), health focus 239 

condition by taste rating (HCxTR), taste focus condition by health rating (TCxHR) 240 

and taste focus condition by taste rating (TCxTR). Note that the TR and HR 241 

regressors measure to what extent taste and health attributes of the food stimuli 242 

influenced participants’ stimulus values during the natural baseline condition (NC). 243 
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SV, TR, and HR regressors were scaled as –2 (strong no), –1 (no), 1 (yes), or 2 244 

(strong yes). In contrast, the interaction terms (HCxHR, HCxTR, TCxHR, and 245 

TCxTR) assessed how much change occurred in the weight given to the taste and 246 

health attributes during the health or taste focus conditions, respectively. The 247 

individual regression coefficients (i.e., beta estimates ) for each regressor were 248 

analyzed at the group level using one-sample, two-tailed t-tests.  249 

For the purpose of our subsequent analyses, equation i contains two terms of interest 250 

that characterize how participants regulated their food decisions to make healthier 251 

choices in the health condition (HC): (1) HCxHR, which assessed how much more 252 

participants integrated the healthiness of the food, and (2) HCxTR, which assessed 253 

how much the tastiness of the food was inhibited during the food decision. Because 254 

these two measures were highly correlated (r = .53, p < .001), we integrated them into 255 

an overall regulatory success score that was then entered as a regressor in the VBM 256 

analysis (i.e., ). The more positive this 257 

difference score is, the higher the regulatory success of the participant. 258 

The difference in SV (measured in this task as participants’ WTP) between the natural 259 

condition and the distance condition was used as the measure of regulatory success 260 

( ) for the 32 participants who took 261 

part in the second dietary decision-making task (i.e., dataset 2). This approach is the 262 

same as that originally used by Hutcherson et al. (2012). A positive score indicated 263 

that participants successfully regulated their cravings and exercised self-control 264 

because their SV for unhealthy foods was lower when they distanced themselves from 265 

their food cravings compared to their natural responses. A paired, two-tailed t-test was 266 
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conducted to test for a significant difference in SV between the distance and natural 267 

conditions. 268 

 269 

MRI structural acquisition. Anatomical brain images were collected on a 3T Trio 270 

Siemens (studies 1, 2, 4) or a 3T Verio Siemens scanner (study 3). Whole-brain high-271 

resolution T1 weighted structural scans (1 x 1 x 1 mm) were acquired for all 123 272 

participants with a MPRAGE sequence. Details of the sequences are described in 273 

Table 1. 274 

MRI data preprocessing. Each participant’s anatomical image was segmented into 275 

gray matter (GM) using the SPM12 segmentation tool. Individual GM images were 276 

then co-registered between participants using Diffeomorphic Anatomical Registration 277 

through Exponentiated Lie Algebra (DARTEL). Next, the registered images were 278 

normalized to the Montreal Neurological Institute (MNI) stereotactic space using the 279 

DARTEL template, and spatially smoothed using a Gaussian kernel with full width at 280 

half maximum of 8 mm. 281 

VBM analyses. All VBM analyses were performed using SPM12 (Wellcome Trust 282 

Center for Neuroimaging, http://www.fil.ion.ucl.ac.uk/spm). Out-of-sample 283 

predictions were conducted using the glmfit and glmval functions from the Matlab 284 

Statistical Toolbox (Matlab 2014a, MathWorks). We conducted GLM-based leave-285 

one-subject-out (LOSO) predictive analyses within dataset 1 as well as cross-study 286 

predictions between datasets 1 and 2 to test whether individual differences in 287 

neuroanatomy were linked to dietary self-control choices. Building on the fMRI 288 

literature, our a priori focus was on GM volume in the dlPFC and vmPFC, but we 289 
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also tested models including additional regions for completeness. The details of the 290 

various analysis steps are given in the following paragraphs. 291 

GM volume-based predictions of regulatory success within dataset 1. We conducted 292 

an out-of-sample LOSO prediction analysis for all participants in dataset 1 using the 293 

GLM described in equation ii.  294 

(ii)295 

 296 

The beta estimate, , quantifying the relationship between the change in 297 

regulatory success during the health focus condition (i.e., ( ) from the 298 

behavioral regression (Eq. i)) and voxel-wise GM volume was our effect of interest. 299 

Note that regulatory success is expected to increase with a positive value for  or 300 

a negative value for so the subtraction ( ) quantifies the total 301 

increase in regulatory success. Voxels in which GM volume was potentially 302 

predictive of regulatory success were identified by the contrast [ > 0]. To 303 

control for variance related to age, gender, MRI scanner, study, and global GM 304 

volume, these factors were included in all voxel-wise linear regression models 305 

(following ANCOVA normalization).  306 

The LOSO procedure was conducted as follows: We divided dataset 1 into 91 307 

separate training (90 participants) and test (1 participant) sets. For each training set, 308 

we computed the GLM described by Eq. ii above. We then created 91 sets of ROIs 309 

from these results using a voxel-wise threshold of t = 2.64 (p < 0.005). Each set of 310 

contiguous voxels was treated as a single ROI, and GM volume was averaged over 311 

the voxels in each ROI. Next, we used these 91 sets of independently defined ROI 312 
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masks to calculate a predicted regulatory success measure for each participant in 313 

dataset 1 using the GLMs in equations iii and iiiall. These GLMs differed in terms of 314 

whether they used only our a priori regions of interest, dlPFC and vmPFC, or all ROIs 315 

identified in a particular training set to predict regulatory success in the left-out 316 

participant. 317 

(iii)     318 

(iiiall)  319 

In both GLMs, the subscripts dlFPC and vmPFC refer to the GM volume from those 320 

two regions. We assigned anatomical labels based on the MNI coordinates to each set 321 

of 91 ROIs allowing us to identify the dlPFC and vmPFC in each set. Both dlPFC and 322 

vmPFC ROIs were present in all 91 training sets. For equation iiiall, the subscript X 323 

refers to potential additional regressors for any additional ROIs present in that specific 324 

training set.  325 

Last, once we had obtained a predicted regulatory success value for each participant 326 

from equation iii or iiiall, we quantified the association between predicted and 327 

observed regulatory success using Pearson’s correlation and a permutation test, which 328 

involved estimating the distribution of correlation coefficients by randomly 329 

resampling with replacement 10,000 observations for observed and predicted 330 

regulatory success.  331 

Predicting out-of-sample regulatory success at the participant and task levels. We 332 

also tested whether regulatory success can be predicted in an independent sample of 333 

participants (dataset 2, N = 32) performing a different regulation task (i.e., regulation 334 
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task 2). First, we computed the average GM volume values for each participant in 335 

dataset 1 within 5-mm-radius spheres centered around the peak MNI coordinates 336 

found within the dlPFC (MNI [40, 40, 20]) and vmPFC (MNI [9, 46, –15]) when 337 

estimating Eq. ii for the full participant sample in dataset 1. Second, we computed the 338 

GLM in Eq. iii across all dataset 1 participants in order to estimate the relationship 339 

(i.e. beta coefficients ) between vmPFC and dlPFC GM volume and 340 

regulatory success. Next, we tested whether regression weights estimated for dataset 1 341 

, ) could significantly predict regulatory 342 

success on the separate behavioral task used in dataset 2 when combined with the 343 

dlPFC and vmPFC GM volumes of those participants. In other words, we used Eq. iii 344 

with the intercept set to  and GM volume beta coefficients for dlPFC set to 6.68 345 

and for vmPFC set to 6.92 to make predictions about regulatory success in dataset 2.  346 

Last, we used Pearson’s correlation and the same permutation test that was used for 347 

testing the results of Eqs. iii and iiiall in dataset 1 to quantify the association between 348 

the predicted and observed levels of regulatory success (SV(NC DC)) in dataset 2.  349 

Voxel-wise correlations with regulatory success in dataset 2. To test the relationship 350 

between GM volume and regulatory success within dataset 2, we conducted a voxel-351 

wise GLM analysis on these data using equation iv below.   352 

(iv)  353 

This model mirrored the model in Eq. ii except that it omitted study and scanner 354 

dummy regressors because all participants in the dataset were part of the same study 355 

and thus were scanned with the same MRI scanner.  Regulatory success in Eq. iv was 356 

defined as difference in average SV during the natural condition (NC) compared to 357 
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the distance condition (DC) (i.e., ). Once 358 

again, voxels in which GM volume was positively associated with regulatory success 359 

were identified by the contrast [ > 0]. 360 

Results 361 

Behavioral results 362 

Regulatory success when focusing on healthiness during SV computations in dataset 363 

1. We quantified regulatory success in terms of how much participants adjusted the 364 

relative weights on healthiness and tastiness in the health focus compared to the 365 

natural condition (i.e., the HCxHR and HCxTR interaction terms shown in Figure 1b). 366 

In line with the previously reported results in the separate original studies, the 367 

behavioral GLM described in Eq. i showed significant interactions between the 368 

weightings of the health and taste attributes and the choice conditions in the joint set 369 

of 91 participants (Table 2).  370 

These interaction terms capture different forms of regulatory success. Health 371 

attributes were significantly more integrated into SV computations in the health focus 372 

condition (ßHCxHR = 0.39, SEMHCxHR = 0.04, t(90) = 10.8, p < .001), indicating that 373 

more weight was placed on the healthiness of the foods compared to natural 374 

condition. Taste attributes of the foods were significantly less integrated into SV 375 

computations in the health focus condition (ßHCxTR = –0.25, SEMHCxTR = 0.03, t(90) = 376 

–7.74, p < .001), indicating that less weight was placed on the tastiness of the foods 377 

compared to the natural condition. The changes in the influence of taste (ßHCxTR ) and 378 

healthiness (ßHCxHR) on SV between HC and NC conditions were significantly 379 
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correlated across subjects (r = .53, p < .001). Although our primary interest is in the 380 

differences between HC and NC conditions, we note that there was a significant 381 

TCxHR interaction (ßTCxHR = –0.06, SEMTCxHR = 0.02, t(90) = –2.91, p = .005) as 382 

well, such that participants were less sensitive to the healthiness of foods in the TC 383 

condition. There was no significant TCxTR interaction.   384 

Regulatory success during SV computation using distancing strategies in dataset 2. 385 

Here we briefly restate the behavioral results for participants from dataset 2. These 386 

results are the same as those originally reported in Hutcherson et al. (2012), but are 387 

repeated here for the reader’s convenience. Participants in dataset 2 showed 388 

significantly higher SV in the indulge (MIC_zscored = 0.25, SEMIC_zscored = 0.04) versus 389 

the natural condition (t(31) = 6.22, p < .001, 95% CI: 0.17, 0.33). In contrast, they 390 

showed significantly lower SV in the distancing condition (mean SVDC_zscored = –0.25, 391 

SEMDC_zscored = 0.04) compared to the natural condition (mean SVNC_zscored = –0.002, 392 

SEMNC_zscored = 0.02; t(31) = –6.69, 95% CI: –0.32 ,–0.17, p < .001; see Figure 1d). 393 

We used this difference in SV between the distancing and the natural control 394 

conditions as the measure of regulatory success for our further analyses in this paper.  395 

VBM results 396 

Anatomical predictors of regulatory success when focusing on healthiness. We were 397 

able to significantly predict regulatory success in dataset 1 using GM volume in 398 

independently defined dlPFC and vmPFC ROIs and regression weights in a leave-399 

one-subject-out procedure. When basing the prediction of regulatory success on 400 

information from dlPFC and vmPFC alone, there was a significant positive 401 

association between predicted and observed regulatory success (Pearson’s r = 0.25, p 402 

= 0.02, 95% CI due to chance: –0.17, 0.17, see Figure 2a). In contrast, when using all 403 
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regions that were correlated with regulatory success in a given training set to predict 404 

regulatory success in the test set, there was no significant correlation (Pearson’s r = –405 

0.16, p = .11, 95% CI due to chance: –0.17, 0.17, see Figure 2a). The generalization 406 

failure of models trained using the GM volume from additional brain regions indicates 407 

that these models may be overfitting to the training set. Our results are in line with 408 

fMRI studies that have frequently reported the recruitment of the vmPFC and the 409 

dlPFC in dietary choices made under both regulatory goals and unregulated 410 

conditions (Plassmann et al. 2007, 2010, Hare et al., 2009, 2011; Hutcherson et al., 411 

2012; Harris et al., 2013; van der Laan et al, 2014). In light of these results, we 412 

focused on these two regions when attempting to predict regulatory success across 413 

choice paradigms using neuroanatomy. 414 

Anatomical markers of regulatory success across regulation strategies and 415 

populations. Next we tested whether the neuroanatomical correlates of regulatory 416 

success identified in regulation task 1 and dataset 1 could be used to make predictions 417 

about regulatory success in a separate set of individuals attempting to engage self-418 

regulation in a different type of food choice paradigm (i.e., regulation task 2). In other 419 

words, we sought to test how predictive and generalizable the associations between 420 

dlPFC and vmPFC GM volume and self-regulation were (see Figure 2b). Thus, we 421 

computed beta weights quantifying the association between dlPFC (  = 6.68) and 422 

vmPFC (  = 6.92) GM volumes (  and the regulatory success 423 

measure obtained in dataset 1 (i.e., Eq. iii), and then used these weights together with 424 

the GM volumes measured in these regions for participants in dataset 2 to predict 425 

regulatory success in dataset 2. We found that there was a significant correlation 426 

between GM-predicted and observed regulatory success (Figure 2b; Pearson’s r = 427 

0.35, p = 0.04, 95% CI of correlations due to chance: –0.29, 0.29), indicating that the 428 
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combination of dlPFC and vmPFC GM volumes can be used to generate significant 429 

out-of-sample predictions of regulatory success in different tasks. For robustness, we 430 

checked whether the dlPFC and vmPFC separately predicted out-of-sample regulatory 431 

success by correlating predicted regulatory success calculated based on the beta 432 

weight and GM volume of each of the two ROIs, respectively. The Pearson 433 

correlations between predicted and observed regulatory success were r = 0.28, p = 434 

0.11 for the dlPFC and r = 0.34, p = 0.06 for the vmPFC. Fisher’s r-to-z 435 

transformation did not detect any significant differences between the two correlations 436 

(z = –0.34, p = 0.73, two-tailed). 437 

Whole-brain, voxel-wise regression analyses. We also ran exploratory whole-brain, 438 

voxel-wise VBM analyses across all participants within both datasets 1 and 2 439 

separately. No regions survived correction for multiple comparisons in either dataset 440 

(see Tables 3 and 4). For illustrative purposes, in Figure 2c we plot voxels in which 441 

GM volume correlated with regulatory success in the respective tasks for datasets 1 442 

and 2.  443 

Discussion 444 

Making healthy food choices is often a challenge in everyday life, and people vary in 445 

their ability to choose healthy over tasty foods on the menu, even when they have the 446 

explicit goal of eating healthily. This paper provides new evidence that regulatory 447 

success in healthy eating is related, in part, to individual differences in brain anatomy 448 

in both the vmPFC and dlPFC. Importantly, this relationship generalizes across 449 

different groups and regulatory strategies. These findings suggest that both brain 450 

regions contribute broadly to the regulation of valuation processes in the context of 451 

dietary decision-making and its control.  452 
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Implications for dietary decision-making and self-control 453 

Our findings are relevant for current neuroeconomic theories of dietary self-control. 454 

Some research in this area suggests that the vmPFC and the dlPFC may represent 455 

distinct value systems biased to respond to either immediate hedonistic rewards or 456 

delayed, more abstract rewards (McClure et al., 2004; Hutcherson et al., 2012). Other 457 

research suggests a more cooperative relationship, in which the dlPFC modulates 458 

computations in the vmPFC in order to weight different attributes according to current 459 

behavioral goals (Hare et al., 2009). Consistent with both theoretical accounts, our 460 

results suggest a key role of the vmPFC and the dlPFC for dietary self-control on an 461 

anatomical level.  462 

Limitations and open questions 463 

Our work has several limitations. First, our results do not speak to the question of 464 

whether the vmPFC and the dlPFC play differentiable or similar roles in regulatory 465 

success. Understanding their specific roles and their interactions is important because 466 

of an ongoing debate in the literature regarding different models of self-control: Do 467 

they represent two independent sources of value (McClure et al., 2004; Hutcherson et 468 

al., 2012), or does the dlPFC play only an indirect role in choice by modulating value 469 

signals within the vmPFC (Hare et al., 2009, 2011)? Our results are fully consistent 470 

with both models, because dlPFC gray matter volume could either contribute an 471 

independent value input to choice processes or provide enhanced capacity to modulate 472 

vmPFC value signals. Further work will be needed to tease apart the common and 473 

distinct roles the dlPFC and the vmPFC play in regulatory success.  474 

For example, approaches using patients with localized lesions in these brain areas or 475 

methods that temporarily inhibit or excite brain activity in these regions will be 476 
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particularly important. Evidence for a causal role of both regions in human decision-477 

making already exists. For example, transcranial magnetic stimulation (TMS) of the 478 

dlPFC produces clear alterations in choice behavior, both in the context of foods 479 

(Camus et al., 2009) and in the context of intertemporal decision-making (Figner et 480 

al., 2010). Although this latter result is not directly related to healthy decision-481 

making, intertemporal considerations may still play an important role in food choice, 482 

which involves trade-offs between the immediately rewarding taste and longer-term 483 

benefits of healthiness in dietary choices. Causal evidence for the role of the vmPFC 484 

in dietary and monetary intertemporal choices comes from lesion studies (Sellitto et 485 

al., 2010; Camille et al., 2011; Jo et al., 2013; Peters and D’Esposito, 2016). Taken 486 

together then, our results and the results of lesion studies confirm a critical role for 487 

both the vmPFC and the dlPFC, but future research investigating their potentially 488 

dissociable roles is needed.  489 

Another important question raised by our results is how generalizable the role of 490 

individual differences in dlPFC and vmPFC neuroanatomy is beyond the realm of 491 

dietary choices. For example, do dlPFC and vmPFC gray matter volumes also predict 492 

self-control success for financial decisions when considering saving for the future 493 

instead of consuming now? There is evidence indicating that individual differences in 494 

dlPFC neuroanatomy are related to regulating the intake of addictive substances 495 

(Holmes et al., 2016), suggesting a broad and generalizable role for the dlPFC.  496 

Conclusion 497 

Our findings extend previous work by highlighting the importance of individual 498 

differences in the neuroanatomy of the dlPFC and the vmPFC for dietary decision-499 

making and its control. They imply that individual differences in the dlPFC and 500 
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vmPFC anatomy could be combined with existing assays and measures such as 501 

choice, fMRI, or questionnaire data to better estimate an individual’s likelihood of 502 

success in regulating dietary choices. Our results suggest that regulatory success may 503 

result not only from momentary fluctuations in motivation and attention, but also 504 

from more stable variation in neuroanatomy.  505 

Yet the brain and its anatomy are also subject to plasticity in response to new 506 

situations, life styles, disease, and environmental constraints (Merzenich et al., 2013). 507 

An exciting avenue going forward will be to explore whether self-control training or 508 

biofeedback methods could harness neural plasticity to yield long-lasting changes in 509 

self-regulatory capacity. Our results suggest that the dlPFC and vmPFC may represent 510 

key targets for interventions that alter disadvantageous dietary choices in at-risk 511 

populations (e.g., those with obesity or eating disorders).   512 
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Figure legends 588 
Figure 1. Experimental design and behavioral results. A: Behavioral task dataset 1. 589 
Screenshots display successive events within one trial of each condition (i.e., health 590 
focus [HC], taste focus [TC], and natural focus [NC] conditions) during the dietary 591 
decision-making task performed by the participants of dataset 1 with durations in 592 
seconds. Conditions were presented in blocks, randomly intermixed. Each block 593 
started with an instruction to focus attention on the healthiness, taste, or natural 594 
preference. Next, a food item was displayed on the screen and participants had to 595 
evaluate how much they would like to eat it by pressing buttons corresponding to 596 
strong no, no, yes, and strong yes. B: Behavioral results in dataset 1 (N = 91). The bar 597 
graph depicts mean beta estimates for each regressor of equation i. The dotted red 598 
lines indicate the behavioral measures of interest: the weight of the healthiness [HR] 599 
and the tastiness [TR] on stimulus value computation during the health focus 600 
condition [HC]. C: Behavioral task dataset 2. Screenshots display successive events 601 
within one trial of each condition (i.e., distance [DC], indulge [IC], and natural [NC] 602 
conditions) during the dietary decision-making task performed by the participants of 603 
dataset 2 with durations in seconds. Conditions were presented in blocks, randomly 604 
intermixed. Each block started with an instruction to try to distance oneself from food 605 
cravings, indulge in food cravings, or make decisions naturally. Next, a food item was 606 
displayed on the screen and participants had to evaluate how much they would be 607 
willing to pay for the food item by pressing buttons corresponding to $0, $0.50, $1, 608 
$1.50, $2, and $2.50. D, Behavioral results in dataset 2 (N = 32). The bar graph 609 
depicts mean stimulus value of food items in each condition. The asterisks (*) indicate 610 
significance against zero at p < 0.05. HCxHR: interaction of healthiness ratings with 611 
the health focus condition; HCxTR: interaction of taste ratings with the health focus 612 
condition; TCxHR: interaction of the healthiness ratings with the taste focus 613 
condition; TCxTR: interaction of taste ratings with the taste focus condition. HR: 614 
healthiness ratings; TR: tastiness ratings. Error bars are  intersubject standard errors 615 
of the mean (SEM). 616 

Figure 2. Neuroanatomical markers of regulatory success in dataset 1 and dataset 2. 617 
A: Correlation between predicted and observed regulatory success for out-of-sample 618 
participants of dataset 1 when considering all clusters (left panel, Pearson’s r = -0.16, 619 
p = 0.11) or only vmPFC and dlPFC clusters (right panel, Pearson’s r = 0.25, p = 620 
0.02). Dots correspond to participants. B: Correlation between predicted and observed 621 
regulatory success for out-of-sample participants of dataset 2 when considering only 622 
the weights of the vmPFC and dlPFC clusters identified in dataset 1. C: GM volume 623 
in the dlPFC and vmPFC significantly correlated with overall regulatory success score 624 
(i.e., ßHCxHR – ßHCxTR) of dataset 1 (N = 91, illustrated in red) and of dataset 2 (i.e., 625 
SV(NC-DC), N = 32, illustrated in yellow). Significant voxels are displayed for 626 
visualization purposes at a whole-brain threshold of p < 0.005 uncorrected. SPMs are 627 
superimposed on the average structural brain image of each sample, respectively. 628 
 629 

 630 
 631 
 632 
 633 
 634 
 635 
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Table 1: Study and dataset overview  636 
Study Data

set 
Local ethics 
committee Scanner MPRAGE 

sequence N Age 
(SEM) 

Female
:male 

Task 
condition DV Other 

ratings 

1 1 

California 
Institute of 
Technology 
(Pasadena, 

CA) 

3T Trio 
Siemens 

TR = 1.5 s; TE = 
3.05 ms; 176 
sagittal slices; 

256x256 matrix 

13* 38.2 
(12.8) 8:5 

health, 
natural, 

taste 
SV health, 

taste 

     2 1 

California 
Institute of 
Technology 
(Pasadena, 

CA) 

3T Trio 
Siemens 

TR = 1.5 s; TE = 
2.91 ms; 176 
sagittal slices; 

256x256 matrix 

35 29  
(0.9) 16:19 

health, 
natural, 

taste 
SV health, 

taste 

    3 1 

Comité de 
Protection des 

Personnes, 
Ile-de-France 
VI, INSERM 

approval 
#C07-28, 

DGS approval 
#2007-0569, 

IDRCB 
approval 
#2007-

A01125-
48CPP 

3T Verio 
Siemens 

TR = 2.3 s; TE = 
2.98 ms; 176 
sagittal slices; 

240x256 matrix 

43 24.8 
(5.1) 43 

health, 
natural, 

taste 
SV health, 

taste 

4 2 

California 
Institute of 
Technology 
(Pasadena, 

CA) 

3T Trio 
Siemens 

TR = 1.5 s; TE = 
3.05 ms; 176 
sagittal slices; 

256x256 matrix 

32 22  
(3.3) 11:21 

distance, 
natural, 
indulge 

W
TP 

food 
liking 

DV: dependent variable; SV: stimulus value; WTP: willingness to pay. *Note that 637 
information on the gender and age for 20 out of the original 33 participants in the 638 
Hare et al. (2011) study was no longer available. Therefore, we included only the 13 639 
participants from that study for whom we had all relevant information for the data 640 
analysis.    641 
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Table 2: Multiple regression results on stimulus value (SV) in dataset 1 642 
Study 

1 Intercept HR TR HC TC HCxHR TCxHR HCxTR TCxTR 

Coeff –0.01 0.14 0.61 –0.20 –0.01 0.24 –0.06 –0.20 0.05 
STE   0.07 0.04 0.05   0.06   0.04 0.05   0.03   0.06 0.03 
t –0.12 3.88 13.25 –3.36 –0.17 4.93 –2.02 –3.67 1.59 
Z –1.32 3.27 7.50 –2.86 –1.11 4.02 –1.61 –3.12 1.16 
p 0.9061 0.0005 0.0000 0.0021 0.8656 0.0000 0.0532 0.0009 0.1231 
Study 

2 Intercept HR TR HC TC HCxHR TCxHR HCxTR TCxTR 

Coeff 0.24 –0.06 0.26 –0.28 0.08 0.28 –0.06 –0.19 0.01 
STE 0.08   0.03 0.03   0.07 0.03 0.04   0.02   0.03 0.02 
t 2.93 –2.28 9.36 –3.83 2.32 6.54 –2.89 –5.68 0.34 
Z 2.51 –1.90 6.43 –3.27 1.94 5.09 –2.47 –4.58 0.64 
p 0.0060 0.0287 0.0000 0.0005 0.0264 0.0000 0.0067 0.0000 0.7387 
Study 

3 Intercept HR TR HC TC HCxHR TCxHR HCxTR TCxTR 

Coeff –0.13 0.06 0.28 –0.16 0.11 0.26 –0.04 –0.20 –0.04 
STE   0.07 0.03 0.04   0.06 0.04 0.04   0.03 0.05   0.04 
t –1.75 1.96 7.70 –2.50 2.52 6.67 –1.25 –4.38 –0.96 
Z –1.35 1.58 5.87 –2.13 2.15 5.22 –0.78 –3.75 –0.41 
p 0.0878 0.0571 0.0000 0.0165 0.0159 0.0000 0.2190 0.0001 0.3406 

all 3 
studies Intercept HR TR HC TC HCxHR TCxHR HCxTR TCxTR 

Coeff 0.06 0.02 0.36 –0.24 0.08 0.39 –0.06 –0.25 0.00 
STE 0.05 0.03 0.03   0.04 0.02 0.04   0.02   0.03 0.02 
t 1.18 0.75 12.95 –5.57 3.30 10.88 –2.91 –7.74 0.16 
Z 0.70 0.11 8.13 –5.01 2.99 8.13 –2.60 –6.62 1.14 
p 0.2408 0.4543 0.0000 0.0000 0.0014 0.0000 0.0047 0.0000 0.8735 

The table depicts results from Eq. i fitted to SV for each of the three studies of dataset 643 
1 separately and for all three studies taken together. The two interactions HCxHR and 644 
HCxTR are highlighted by red lines, because they were the main regressors of interest 645 
and were used to calculate a combined regulatory success measure.  646 



 

 28 

Table 3: VBM results in N = 91 participants (dataset 1): Positive effect of regulatory 647 
success 648 

Region BA x y z Peak z-
score 

dlPFC 46 40 40 20 3.74 
dmPFC 6 15 18 57 3.70 

  18 25 60 3.20 
STG 22 60 2 0 3.22 

mPFC 10 4 64 0 3.08 
vmPFC 25/11 9 46 –15 2.99 

This table reports the peak coordinates and z-score values for the VBM analysis 649 
detailed in Eq. ii across the full sample of 91 participants in dataset 1. All peaks 650 
surpassing a voxel-wise threshold of p < 0.001 uncorrected are reported for 651 
completeness, but only the dlPFC and vmPFC ROIs were used to predict regulatory 652 
success across samples. Note that this table is provided as an overview of the results 653 
of Eq. ii when fit to dataset 1 and the locations of the dlPFC and vmPFC ROIs used to 654 
predict regulatory success in dataset 2, but is not the basis of any statistical inferences 655 
in this manuscript. The xyz coordinates correspond to the Montreal Neurological 656 
Institute (MNI) space. dlPFC: dorsolateral prefrontal cortex; dmPFC: dorsomedial 657 
prefrontal cortex; STG: superior temporal gyrus; mPFC: medial prefrontal cortex; 658 
vmPFC: ventromedial prefrontal cortex.   659 
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Table 4: VBM results in N = 32 participants (dataset 2): Positive effect of regulatory 660 
success 661 

Region BA x y z Peak z-
score 

dlPFC 46/10 42 43 15 4.25 
ACC 32/9 –12 40 18 4.06 

  14 40 2 3.37 
dACC  0 18 36 3.28 
PCG 4 55 –9 45 4.03 

 6 55 –3 12 3.42 
vmPFC 25 10 34 –15 3.70 

 11 2 26 –8 3.18 
AG 39 44 –56 21 3.43 

This table was obtained by a VBM analysis with a combined regulatory success as a 662 
predictor variable of GM volume (Eq. iv) using a whole-brain threshold of p < 0.001 663 
uncorrected. The xyz coordinates correspond to the Montreal Neurological Institute 664 
(MNI) space. dlPFC: dorsolateral prefrontal cortex; ACC: anterior cingulate cortex; 665 
dACC: dorsal anterior cingulate cortex; PCG: precentral gyrus; AG: angular gyrus; 666 
vmPFC: ventromedial prefrontal cortex. 667 
 668 
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