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ABSTRACT 42 

An integral part of human language is the capacity to extract meaning from spoken and written words, but the 43 
precise relationship between brain representations of information perceived by listening versus reading is 44 
unclear. Prior neuroimaging studies have shown that semantic information in spoken language is represented 45 
in multiple regions in the human cerebral cortex, while amodal semantic information appears to be 46 
represented in a few broad brain regions. However, previous studies were too insensitive to determine whether 47 
semantic representations were shared at a fine level of detail rather than merely at a coarse scale. We used 48 
fMRI to record brain activity in two separate experiments while participants listened to or read several hours of 49 
the same narrative stories, and then created voxelwise encoding models to characterize semantic selectivity in 50 
each voxel and in each individual participant. We find that semantic tuning during listening and reading are 51 
highly correlated in most semantically-selective regions of cortex, and models estimated using one modality 52 
accurately predict voxel responses in the other modality. These results suggest that the representation of 53 
language semantics is independent of the sensory modality through which the semantic information is 54 
received. 55 
 56 
Keywords 57 
 58 
fMRI; BOLD; listening; reading; semantics; regression; representation; cross-modal representation 59 
 60 
SIGNIFICANCE STATEMENT 61 
 62 
Humans can comprehend the meaning of words from both spoken and written language. It is therefore 63 
important to understand the relationship between the brain representations of spoken or written text. Here we 64 
show that although the representation of semantic information in the human brain is quite complex, the 65 
semantic representations evoked by listening versus reading are almost identical. These results suggest that the 66 
representation of language semantics is independent of the sensory modality through which the semantic 67 
information is received. 68 
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INTRODUCTION 69 
 70 
Humans have the unique capacity to communicate and extract meaning through both spoken and written 71 
language. Although the early sensory processing pathways for listening and reading are distinct, listeners and 72 
readers appear to extract very similar information about the meaning of a narrative story (Diakidoy et al., 73 
2005; Rubin et al., 2000). This suggests that the human brain represents semantic information in an amodal 74 
form that is independent of input modality (for reviews see (Binder et al., 2009; Price, 2010, 2012; Vigneau et 75 
al., 2006)). There is evidence that several cortical regions are activated during both listening and reading (for 76 
reviews see (Price, 2010, 2012)). However, the demonstration of some common activation during listening and 77 
reading is necessary but not sufficient evidence of a common amodal semantic representation. 78 
 79 
A direct and convincing way to determine if listening and reading involve a common underlying semantic 80 
representation would be to compare directly the semantic selectivity maps obtained during listening and 81 
reading of natural text, in single participants. However, to date no study has performed this crucial 82 
comparison. Most imaging studies of the semantic system have examined only one input modality, either 83 
spoken or written words (Booth et al., 2002; Démonet et al., 1994, 1992; Devlin et al., 2004; Nakamura et al., 84 
2005; Rissman et al., 2003; Scott et al., 2000; Vandenberghe et al., 1996). Relatively few have studied cross-85 
modal representations by presenting the same stimuli in both modalities (Buchweitz et al., 2009; Chee et al., 86 
1999; Jobard et al., 2007; Liuzzi et al., 2017; Michael et al., 2001; Petersen et al., 1989; Spitsyna et al., 2006). 87 
Most of these cross-modality studies observed activity in left lateralized regions such as the left anterior 88 
temporal lobe, left superior temporal sulcus (STS), left middle temporal gyrus (MTG) and left inferior frontal 89 
gyrus (IFG). Most of these studies used tightly controlled stimuli, such as a set of single isolated words, 90 
sentences or curated passages, and an explicit lexical semantic task (Buchweitz et al., 2009; Chee et al., 1999; 91 
Liuzzi et al., 2017; Michael et al., 2001). A study that used narrative speech in a listening and reading task 92 
demonstrated amodal brain activity in left pSTG, left IFG, bilateral Precuneus, medial prefrontal cortex, and 93 
angular gyrus (Regev et al., 2013). However that study did not model semantic information, but only showed 94 
that voxel activations in these regions tend to be correlated across these two modalities. Furthermore, previous 95 
studies were too coarse grained to determine whether listening and reading shared semantic representations at 96 
the level of a single voxel. For example, the semantic representation of listening and reading might have been 97 
modal at a fine scale (i.e. single voxel), although amodal at a coarse scale. In sum, the evidence available 98 
currently is insufficient to determine whether semantic information obtained during listening and reading are 99 
represented in the same way. 100 
 101 
To address this issue we used functional magnetic resonance imaging (fMRI) to record blood-oxygen-level 102 
dependent (BOLD) activity in human participants while they listened to and read the same narrative stories. 103 
We then used voxelwise modeling (VM) combined with banded ridge regression (Nunez-Elizalde et al., 2019) to 104 
characterize the semantic selectivity of each voxel in each presentation modality and for each individual 105 
participant (see Materials and Methods and (Çukur et al., 2013; Huth et al., 2012, 2016; Lescroart et al., 106 
2015; Nishimoto et al., 2011; Stansbury et al., 2013)). Finally, we compared the semantic tuning of each voxel 107 
in the two modalities by creating semantic maps (Huth et al., 2016) for both modalities and each individual 108 
participant. In addition, we identified modality independent cortical representation of semantic information by 109 
predicting voxel responses cross-modally. Comparison of the fit semantic models and semantic maps obtained 110 
by listening versus reading provides a sensitive and objective means to determine whether and how semantic 111 
selectivity changes depending on the modality with which semantic information is perceived. 112 
 113 
MATERIALS and METHODS 114 
 115 
Participants 116 
 117 
Functional data were collected from six male participants and three female participants: S1 (male, age 31), S2 118 
(male, age 31), S3 (female, age 28), S4 (female, age 25), S5 (male, age 30), S6 (male, age 25), and S7 (male, age 119 
36), S8 (female, age 24), S9 (male, age 24). Two of the participants were authors on the paper (AGH and 120 
AONE). All participants listened to and read all the stories. Listening and reading presentations were 121 
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counterbalanced across participants. All participants were healthy and had normal hearing, and normal or 122 
corrected-to-normal vision. One participant was left handed, all other participants were right handed or 123 
ambidextrous according to the Edinburgh handedness inventory (Oldfield, 1971) (laterality quotient of -100: 124 
entirely left-handed, +100: entirely right-handed). Laterality scores were +90 (decile R.7), +70 (decile R.3), 125 
+10 (ambidextrous), +80 (decile R.5), +80 (decile R.5), +80 (decile R.5), -60 (decile L.3), +90 (decile R.7) and 126 
+95 (decile R.9) for S1-9, respectively. To stabilize head motion during scanning sessions participants wore a 127 
personalized headcase that precisely fit the shape of each participant's head (https://caseforge.co/). 128 
 129 
Natural Speech Stimuli 130 
 131 
The speech stimuli consisted of ten 10- to 15-minute stories taken from The Moth Radio Hour and used 132 
previously (Huth et al., 2016). In each story, a speaker tells an autobiographical story in front of a live 133 
audience. The ten selected stories cover a wide range of topics and are highly engaging. The model validation 134 
dataset consisted of one 10-minute story. This story was played twice for each participant (once during each 135 
scanning session), and then the two responses were averaged (see Huth et al. (2016) for more details). 136 
 137 
Speech stimuli were played over Sensimetrics S14 in-ear piezoelectric headphones (Sensimetrics, Malden, MA, 138 
USA). A Behringer Ultra-Curve Pro hardware parametric equalizer was used to flatten the frequency response 139 
of the headphones based on calibration data provided by Sensimetrics. All stimuli were played at 44.1 kHz 140 
using the pygame library in Python. All stimuli were normalized to have peak loudness of -1 dB relative to max. 141 
However, the stories were performed by different speakers and were not uniformly mastered, so some 142 
differences in total loudness remain. 143 
 144 
Story transcription and preprocessing 145 
 146 
Each story was manually transcribed by one listener, and this transcription was checked by a second listener. 147 
Certain sounds (e.g. laughter, lip-smacking and breathing) were also marked in order to improve the accuracy 148 
of the automated alignment. The audio of each story was downsampled to 11.5 kHz and the Penn Phonetics Lab 149 
Forced Aligner (P2FA; Yuan & Liberman, 2008) was used to automatically align the audio to the transcript. 150 
The forced aligner uses a phonetic hidden Markov model to find the temporal onset and offset of each word 151 
and phoneme. The Carnegie Mellon University (CMU) pronouncing dictionary was used to guess the 152 
pronunciation of each word. The Arpabet phonetic notation was used when necessary to manually add words 153 
and word fragments that appeared in the transcript but not in the dictionary. 154 
 155 
After automatic alignment was complete, Praat (Boersma and Weenink, 2014) was used to check and correct 156 
each aligned transcript manually. The corrected aligned transcript was then spot-checked for accuracy by a 157 
different listener. 158 
 159 
Finally the aligned transcripts were converted into separate word and phoneme representations using Praat's 160 
TextGrid object. The phoneme representation of each story is a list of pairs (P, t), where P is a phoneme and t is 161 
the onset time in seconds. Similarly the word representation of each story is a list of pairs (W, t), where W is a 162 
word and t is the onset time in seconds. 163 
 164 
Natural Reading Stimuli 165 

The same stories from listening sessions were used for reading sessions. Praat's word representation for each 166 
story (W, t) was used for generating the reading stimuli. The words of each story were presented one-by-one at 167 
the center of the screen using a rapid serial visual presentation (RSVP) procedure (Buchweitz et al., 2009; 168 
Forster, 1970). During reading, each word was presented for a duration precisely equal to the duration of that 169 
word in the spoken story. RSVP reading is different than natural reading because during RSVP the reader has 170 
no control over which word to read at each point in time. Therefore, in order to make listening and reading 171 
more comparable we matched the timing of the words presented during RSVP to the rate at which the words 172 
occurred during listening. 173 
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 174 
The pygame library in Python was used to display text on a gray background at 34 horizontal, and 27 vertical 175 
degrees of visual angle. Black letters were presented at average 6 (min=1, max=16) horizontal and 3 vertical 176 
degrees of visual angle. A white fixation cross was present at the center of the display. Participants were asked 177 
to fixate while reading the text. These data were collected during two 3-hour scanning sessions that were 178 
performed on different days. Participants’ eye movement were monitored at 60 Hz throughout the scanning 179 
sessions using a custom-built camera system equipped with an infrared source (Avotec) and the ViewPoint 180 
EyeTracker software suite (Arrington Research). The eye tracker was calibrated before the first run of data 181 
acquisition. Certain auditory sounds (laughter and applause) were presented as text to provide cues about the 182 
ambiance of each story. 183 
 184 
Semantic model construction 185 
 186 
To account for response variance caused by the semantic content of the story stimuli a 985-parameter semantic 187 
feature space based on word co-occurrence statistics in a large corpus of text (Deerwester et al., 1990; Huth et 188 
al., 2016; Lund and Burgess, 1996; Mitchell et al., 2008) was used. In short, a word co-occurrence matrix, , 189 
with 985 rows and 10,470 columns was created. The 985 rows describe 985 basic words from Wikipedia's List 190 
of 1000 basic words, the 10,470 columns are words selected from a very large corpora of 13 transcripts of Moth 191 
stories (including the 10 used as stimuli in the experiments described in this paper), 604 popular books 192 
available through Project Guttenberg, 2,405,569 Wikipedia pages, 36,333,459 reddit.com user comments (see 193 
Huth et al., 2016 for a detailed description).  194 
  195 
Iterating through the text corpus, we added 1 to  each time word  appeared within 15 words of basis word . 196 
Once the word co-occurrence matrix was complete, we log-transformed the counts, replacing  with  197 

. Next, each row of  was z-scored to correct for differences in basis word frequency, and then 198 
each column of  was z-scored to correct for word frequency. Each column of  is now a 985-dimensional 199 
semantic vector representing one word in the lexicon.  200 
 201 
The semantic model stimulus matrix was then constructed from the stories: for each word-time pair , 202 
within each story the corresponding column of  was selected, creating a new list of semantic vector-time 203 
pairs, . These unevenly-sampled lists of vectors were resampled at times corresponding to the fMRI 204 
acquisitions using a 3-lobe Lanczos filter with the cutoff frequency set to the Nyquist frequency of the fMRI 205 
acquisition (0.249 Hz). 206 
 207 
Motion-energy model construction 208 
 209 
A spatiotemporal Gabor pyramid was used to extract low-level visual features from the sequence of word 210 
frames used in the reading experiment (Adelson and Bergen, 1985; Watson and Ahumada, 1985). The word 211 
frames were first cropped to 400x400 pixels (14 horizontal, and 14 vertical degrees of visual angle) to include 212 
mainly the words and then downsampled to 96x96 pixels to minimize computational cost. The word frames 213 
were then converted to the CIE L*A*B* color space (McLaren, 1976) and the color information was discarded. 214 
The spatiotemporal Gabor pyramid consisted of a total of 39 three-dimensional Gabor filter pairs of orthogonal 215 
quadrature spanning a square grid that covered the screen. The filters consisted of two spatial and one 216 
temporal dimension and were created using five spatial frequencies (0, 2, 4, 6, and 8 cycles/image), three 217 
temporal frequencies (0, 2 and 4 Hz), and four directions of motion (0, 90, 180, and 270 degrees). Each of the 218 
filters was convolved with the sequence of word frames. The resulting filter activations were squared and 219 
summed for each quadrature pair, resulting in a 39-dimensional feature vector for each word frame. The 220 
output was downsampled to the functional image acquisition rate (2.0045 s) using sinc interpolation 221 
(Oliphant, 2007). See (Nishimoto et al., 2011) for more details. However, note that only five spatial frequencies 222 
and four directions of motion were used here. 223 
 224 
Spectral model construction 225 
 226 
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A cochleogram model that accounts for the logarithmic filtering of the mammalian coclea described in (de Heer 227 
et al., 2017) was used to create the low level auditory features (80 parameters). This model was selected based 228 
on an earlier study showing that it outperforms other low level acoustical models (de Heer et al., 2017). The 80 229 
waveforms of the coclear filter bank were between 264 and 7360 Hz, spaced at 25% of the bandwidth. The 230 
spectral features were downsampled to the rate of acquisition of the functional images (2.0045 s) using a 231 
Lanczos filter.  232 
Syntax model construction 233 
 234 
The syntactic properties of each spoken word were labeled. A pre-trained neural network was used to create a 235 
parse tree for each sentence of the stories (Andor et al., 2016). Two feature spaces were extracted from the 236 
parse trees. The first was constructed from the part-of-speech tags (e.g. noun, verb) by assigning a value of one 237 
to each entry in which the part-of-speech tag appeared and all other entries were set to zero (12 parameters). 238 
The second feature space captured the word dependencies in the sentence (i.e. direct object, indirect object, 239 
etc.) and was constructed by assigning a value of one to each entry in which the word dependency appeared and 240 
all other entries were set to zero (44 parameters). For each syntactic feature (e.g. noun), a time course was 241 
created with a value of 1 whenever a word was labeled with that feature and 0 otherwise. The syntactic features 242 
were then downsampled to the rate of acquisition of the functional images (2.0045 s) using a Lanczos filter. 243 
 244 
Phoneme model construction 245 
 246 
To account for response variance caused by the low-level phonemic content of the stories, a 39-parameter 247 
model that captures how often each of the 39 phonemes in English was spoken over time was constructed. The 248 
phoneme representation of the stories were used to construct this model: the lists of phoneme-time pairs (P, t) 249 
were re-arranged into 39 lists, each of which contains only the times of a single phoneme. These lists of times 250 
were then downsampled to the fMRI acquisition rate (2.0045 s). 251 
 252 
Letter model construction 253 
 254 
To account for response variance caused by the letters during reading a 26-parameter model that captures how 255 
often each of the 26 letters in English was present on screen over time was constructed. This was constructed 256 
by counting the number of times a letter was present within a word and then downsampled to the fMRI 257 
acquisition rate (2.0045 s). 258 
 259 
Word rate, word length variation, phoneme rate, letter rate, and pauses model construction 260 
 261 
To account for the highly variable speech rate both within and across stories, single-feature models that simply 262 
count the number of words, number of phonemes, number of letters, and number of story speaker’s pauses that 263 
occurred during the acquisition of each fMRI volume (2.0045 s) were constructed. To account for the variable 264 
word lengths during the visual presentation a single-feature word length variation model was constructed by 265 
taking the variance of word lengths that occurred during the acquisition of each fMRI volume. 266 
 267 
Stimulus downsampling 268 
 269 
Before downsampling to the fMRI acquisition rate, the phoneme and semantic models were represented as 270 
unevenly-sampled impulse trains. A 3-lobe Lanczos filter with cutoff frequency set to the fMRI Nyquist rate 271 
(0.249 Hz) was used to resample these impulse trains at evenly spaced time points corresponding to the middle 272 
of each fMRI volume. 273 
 274 
Experimental Design and Statistical Analysis 275 
 276 
fMRI data acquisition 277 
Each spoken and written story was presented during a separate fMRI scan. The length of each scan was the 278 
same as the story. Each scan included 10 seconds (5 TR) of silence both before and after the story. These data 279 
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were collected during two 3-hour scanning sessions that were performed on different days. 280 
 281 
MRI data were collected on a 3T Siemens TIM Trio scanner at the UC Berkeley Brain Imaging Center using a 282 
32-channel Siemens volume coil. Functional scans were collected using gradient echo EPI water excitation 283 
pulse sequence with repetition time (TR) = 2.0045s, echo time (TE) = 31ms, flip angle = 70 degrees, voxel size 284 
= 2.24 x 2.24 x 4.1 mm (slice thickness = 3.5 mm with 18% slice gap), matrix size = 100 x 100, and field of view 285 
= 224 x 224 mm. 30 axial slices were prescribed to cover the entire cortex and were scanned in interleaved 286 
order. A custom-modified bipolar water excitation radiofrequency (RF) pulse was used to avoid signal from fat. 287 
Anatomical data were collected using a T1-weighted multi-echo MP-RAGE sequence on the same 3T scanner. 288 
 289 
fMRI data pre-processing 290 
 291 
Each functional run was motion-corrected using the FMRIB Linear Image Registration Tool (FLIRT) from FSL 292 
5.0 (Jenkinson and Smith, 2001; Jenkinson et al., 2002). All volumes in the run were then averaged across 293 
time to obtain a high quality template volume. FLIRT was also used to automatically align the template volume 294 
for each run to the overall template, which was chosen to be the temporal average of the first functional run for 295 
each participant. The temporal average of the cross-modal runs (listening or reading) were also automatically 296 
aligned to the same overall template. These automatic alignments were manually checked and adjusted as 297 
necessary to improve accuracy. The cross-run transformation matrix was then concatenated to the motion-298 
correction transformation matrices obtained using MCFLIRT, and the concatenated transformation was used 299 
to resample the original data directly into the overall template space. 300 
 301 
Low-frequency voxel response drift was identified using a 3rd order Savitsky-Golay filter with a 120-second 302 
window. This drift was subtracted from the signal. Responses of each story were z-scored separately, i.e., the 303 
mean response for each voxel was subtracted and the remaining response was scaled to have unit variance. 304 
Prior to the voxelwise modeling, 10 TRs from the beginning and 10 TRs at the end of each story were discarded. 305 
 306 
Cortical surface reconstruction and visualization 307 
 308 
Cortical surface meshes were generated from the T1-weighted anatomical scans using Freesurfer software (Dale 309 
et al., 1999). Before surface reconstruction, anatomical surface segmentations were carefully hand-checked and 310 
corrected using Blender software and pycortex (Gao et al., 2015) (http://pycortex.org). Relaxation cuts were 311 
made into the surface of each hemisphere. Blender and pycortex were used to remove the surface crossing the 312 
corpus callosum. The calcarine sulcus cut was made at the horizontal meridian in V1 using retinotopic mapping 313 
data as a guide. 314 
 315 
Functional images were aligned to the cortical surface using pycortex. Functional data were projected onto the 316 
surface for visualization and analysis using the line-nearest scheme in pycortex. This projection scheme 317 
samples the functional data at 64 evenly-spaced intervals between the inner (white matter) and outer (pial) 318 
surfaces of the cortex, then averages together the samples. Samples are taken using nearest-neighbor 319 
interpolation, wherein each sample is given the value of its enclosing voxel. 320 
 321 
Localizers for known ROIs 322 
 323 
Known regions of interest (ROIs) were localized separately in each participant using standard techniques 324 
(Hansen et al., 2007; Spiridon et al., 2006). For all participants ROIs were defined using three experiments: a 325 
visual category localizer, an auditory cortex localizer, and a motor localizer. For some participants retinotopic 326 
visual ROIs using a retinotopic localizer and area MT+ using an MT localizer were defined. 327 
 328 
Visual category localizer. Visual category localizer data were collected in six 4.5-minute scans consisting of 329 
16 blocks, each 16 seconds long. During each block, 20 images of either places, faces, human body parts, non-330 
human animals, household objects, or spatially scrambled household objects were displayed. Each image was 331 
displayed for 300 ms followed by a 500 ms blank. Occasionally the same image was displayed twice in a row, in 332 
which case the participant was asked to respond with a button press.  333 
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 334 
The contrast between faces and objects was used to define the fusiform face area (FFA) (Kanwisher et al., 1997) 335 
and occipital face area (OFA) (Halgren et al., 1999). The contrast between human body parts and objects was 336 
used to define the extrastriate body area (EBA) (Downing et al., 2001). The contrast between places and objects 337 
was used to define the parahippocampal place area (PPA) (Epstein and Kanwisher, 1998), occipital place area 338 
(OPA) (Nakamura et al., 2000), and retrosplenial cortex (RSC). 339 
 340 
Auditory cortex localizer. Auditory cortex localizer data were collected in one 10 minute scan. The 341 
participant listened to 10 repeats of a 1-minute auditory stimulus, which consisted of 20-second segments of 342 
music (Arcade Fire), speech (Ira Glass), and natural sound (a babbling brook). To determine whether a voxel 343 
was responsive to auditory stimuli, the repeatability of the voxel response across the 10 stimulus repeats was 344 
calculated using an F-statistic. The F-statistic map was used to define the auditory cortex (AC). 345 
 346 
Motor localizer. Motor localizer data were collected during one 10-minute scan. The participant was cued to 347 
perform six different motor tasks in a random order in 20-second blocks. For the hand, mouth, foot, speech, 348 
and rest blocks the stimulus was simply a word at the center of the screen (e.g. "Hand"). For the saccade block 349 
the participant was shown a pattern of saccade targets. 350 
 351 
For the “Hand” cue the participant was instructed to make small finger-drumming movements with both hands 352 
for as long as the cue remained on the screen. Similarly for the “Foot” cue the participant was instructed to 353 
make small toe movements for the duration of the cue. For the “Mouth” cue the participant was instructed to 354 
make small mouth movements approximating the nonsense syllables balabalabala for the duration of the 355 
cue—this requires movement of the lips, tongue, and jaw. For the “Speak” cue the participant was instructed to 356 
continuously subvocalize self-generated sentences for the duration of the cue. For the saccade condition the 357 
written cue was replaced with a fixed pattern of twelve saccade targets, and the participant was instructed to 358 
make frequent saccades between the targets. A linear model was used to find the change in BOLD response of 359 
each voxel in each condition relative to the mean BOLD response. 360 
 361 
Weight maps for the foot, hand, and mouth responses were used to define primary motor and somatosensory 362 
areas for the feet (M1F, S1F), hands (M1H, S1H), and mouth (M1M, S1M); supplementary motor areas for the 363 
feet (SMFA) and hands (SMHA); secondary somatosensory area for the feet (S2F) and, in some participants, 364 
the hands (S2H); and, in some participants, the ventral premotor hand area (PMVH) (Penfield and Boldrey, 365 
1937). The weight map for saccade responses was used to define the frontal eye field (FEF) (Paus, 1996), frontal 366 
operculum eye movement area (FO) (Corbetta et al., 1998), intraparietal sulcus visual areas (IPS), and, in some 367 
participants, the supplementary eye field (SEF) (Grosbras et al.). The weight map for speech production 368 
responses was used to define Broca's area (BA) (Amunts et al., 2010; Zilles and Amunts, 2018) and the superior 369 
ventral premotor speech area (sPMv). 370 
 371 
Retinotopic localizer. Retinotopic mapping data were collected in four 9-minute scans. Two scans used 372 
clockwise and counterclockwise rotating polar wedges, and two used expanding and contracting rings. Visual 373 
angle and eccentricity maps were used to define visual areas V1, V2, V3, V4, LO, V3A, V3B, and V7 (Hansen et 374 
al., 2007). 375 
 376 
Area MT+ localizer. Area MT+ localizer data were collected in four 90-second scans consisting of 377 
alternating 16-second blocks of continuous and temporally scrambled natural movies. The contrast between 378 
continuous and temporally scrambled natural movies was used to define visual motion area MT+ (Tootell et al., 379 
1995). 380 
 381 
Voxelwise model fitting 382 
 383 
A single joint model that included all feature spaces was estimated for each voxel in each dataset (listening and 384 
reading) separately using banded ridge regression (see below for details and (Nunez-Elizalde et al., 2019)). 385 
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Banded ridge regression assigns a different regularization parameter for every feature space and so reduces 386 
bias caused by correlations between feature spaces. 387 
 388 
Feature spaces 389 
 390 
The feature spaces were motion-energy features (39 parameters), spectral features (80 parameters), word rate 391 
(1 parameter), phoneme rate (1 parameter), phonemes (39 parameters), letter rate (1 parameter), letters (26 392 
parameters), word length variation per repetition time (1 parameter), syntactic features (56 parameters), and 393 
co-occurence semantics (985 parameters). The motion-energy, spectral, word rate, phoneme rate, phonemes, 394 
letter rate, letters, and word length variation features were used to explain away low-level parameters that 395 
might otherwise contaminate the semantic model weights. 396 
 397 
Before doing regression, each feature channel was z-scored within each story (training and testing features 398 
were z-scored independently) by subtracting the mean and dividing by the standard deviation. This was done 399 
to match the features to the fMRI responses, which were also z-scored within each story. In addition, 10 TRs 400 
from the beginning and 10 TRs at the end of each story were discarded prior to voxelwise modeling. 401 
 402 
Banded ridge regression 403 
 404 
We combine several feature spaces in the voxelwise modeling approach. In order to assign different levels of 405 
regularization to each feature space, we estimate all our models simultaneously using banded ridge regression 406 
(Nunez-Elizalde et al., 2019). Under banded ridge regression, brain responses are modeled as a linear 407 
combination of all the feature spaces. However, each feature space is assigned a different value of the 408 
regularization parameter. Banded ridge regression is a special case of the well-established statistical approach 409 
called Tikhonov regression (Tikhonov and Arsenin, 1977). The solution to the Tikhonov regression problem is 410 
given by , where  is the penalty matrix. In case of banded ridge regression, 411 
the matrix  is a diagonal matrix whose entries correspond to the regularization levels appropriate for each 412 
feature space. To find the optimal regularization parameter for every feature space a wide range of 413 
regularization parameters is explored using cross-validation. The regularization parameter is optimized based 414 
on prediction accuracy on a held-out data set. Note that in case of Tikhonov regression reduces to the 415 
ordinary least squares and in case of Tikhonov regression reduces to ridge regression. 416 
 417 
BOLD responses were modeled as a linear combination of all the feature spaces using linear regression with a 418 
non-spherical spatiotemporal multivariate normal prior on the weights (Nunez-Elizalde et al., 2019). This 419 
approach allows us to impose different levels of regularization on each feature space within the joint model for 420 
each voxel, which is important because of differences in feature space size and signal-to-noise levels. The 421 
regularization parameter for each feature space was estimated empirically via cross-validation on a held-out 422 
set. 423 
 424 
Within the same model, the hemodynamic response function was modeled using a finite impulse response 425 
(FIR) filter per voxel and for each subject and modality (listening and reading) separately. This was 426 
implemented by modeling the BOLD responses at ten temporal delays corresponding to 0, 2, 4, 6, …, 16 and 18 427 
seconds. We also imposed a multivariate normal prior on the temporal covariance of the FIR filter. The 428 
temporal prior was constructed from a set of HRF basis functions (Penny et al., 2007). 429 
 430 
Cross-validation 431 
 432 
We used cross-validation to find the optimal regularization parameter for each feature space in the joint model. 433 
Because evaluating k regularization parameters for m models leads to km combinations, conducting a grid-434 
search in our high-dimensional parameter space is impractical (requiring 1010 model fits). To overcome this 435 
problem, we used a tree-structured Parzen search (Bergstra et al., 2011). We performed the search 25 times 436 
each time using different initialization values and stopped each search after 300 iterations. For every set of 437 
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regularization parameters tested in each iteration, we performed 5-fold cross-validation twice. We used the 438 
coefficient of determination (R2) between the predicted and the actual voxel responses as our performance 439 
metric for each validation fold.  440 
 441 
Model estimation and evaluation 442 
 443 
We computed the mean prediction performance across cross-validation folds per voxel for each of the 7500 444 
(300 x 25) regularization parameter sets tested. The regularization parameters that yielded the maximum 445 
cross-validated prediction performance were selected for each voxel. These regularization parameters were 446 
then used to estimate the model weights for each of the voxels in each modality independently for each of the 447 
nine subjects. 448 
 449 
The estimated model weights were then used to predict the voxel responses to the validation story. Model 450 
prediction performance was computed per voxel as the Pearson correlation coefficient between predicted and 451 
actual responses. 452 
 453 
To validate the voxelwise models, estimated model weights were used to predict responses to a validation story 454 
that was not used for model estimation. Only the estimated semantic model weights were used for model 455 
predictions. Pearson's correlation coefficient was computed between the predicted responses and the mean of 456 
the two validation datasets (291 time points).  457 
 458 
Statistical significance was computed by a permutation test with 10,000 iterations and comparing estimated 459 
correlations to the empirical null distribution of correlations for each participant and modality separately. At 460 
each permutation iteration, the time course of the held-out validation dataset was permuted by blockwise 461 
shuffling (10 TRs were blocked to account for autocorrelations in voxel responses), and then Pearson's 462 
correlation coefficient between the permuted voxel response and the predicted voxel response was computed 463 
for each voxel separately. This produced a distribution of 10,000 estimates of correlation coefficients for each 464 
voxel, participant, and modality. These 10,000 estimates define an empirical distribution that was used to 465 
obtain a p-value. Resulting p-values were corrected for multiple comparisons within each participant using the 466 
false discovery rate (FDR) procedure (Benjamini and Hochberg, 1995). 467 
 468 
Voxelwise model fitting and analysis was performed using custom software tikreg (Nunez-Elizalde et al., 2019) 469 
written in Python, making heavy use of NumPy (Oliphant, 2006) and SciPy (Oliphant, 2007). Analysis and 470 
visualizations were developed using iPython (Perez and Granger, 2007) and the interactive programming and 471 
visualization environment jupyter notebook (Kluyver et al., 2016). 472 
 473 
Semantic PC projections 474 
 475 
Listening model weights and reading model weights were projected onto the semantic subspace that was 476 
created in a previous study from our laboratory (Huth et al., 2016). That study recovered a low-dimensional 477 
semantic subspace from an aggregated set of estimated semantic model weights using principal components 478 
analysis. Taking the dot product of the estimated model weights with the low-dimensional semantic subspace 479 
revealed for each voxel a projection along the 985 semantic principal components (PCs). To visualize which 480 
semantic concepts are represented in each voxel we used an RGB color space to map the first three semantic PC 481 
projections onto the cortical surface separately for the two modalities (Huth et al., 2012, 2016). 482 
 483 
Correlating the semantic principal components 484 
 485 
Pearson’s correlation coefficient was computed between each semantic projection in listening and the 486 
corresponding semantic projection in reading. To find out whether the semantic projections could be 487 
correlated by chance, a permutation test with 10,000 iterations was performed for each individual participant 488 
separately. The correlation was computed for the 10,000 best predicted voxels by the co-occurrence semantics 489 
model in both modalities. The best predicted voxels were selected by taking an average of listening and reading 490 
model prediction accuracies per voxel and selecting the 10,000 voxels with highest mean predictions. At each 491 
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permutation iteration (i) the time courses of the feature matrix was permuted (note that the feature matrix is 492 
the same for listening and reading sessions), (ii) banded ridge regression was performed between the fMRI 493 
responses and this permuted matrix, (iii) the estimated model weights were projected onto the semantic 494 
principal component space, (iv) Pearson's correlation coefficient between projections of the listening and 495 
reading weights onto the semantic subspace were computed separately for each PC. This results in a 496 
distribution of 10,000 estimates of correlation coefficients for each semantic PC and participant. Statistical 497 
significance was defined as any correlation coefficient that exceeded 95% of all of the permuted correlations. 498 
 499 
 500 
Cross-modality voxelwise model fitting 501 
 502 
Estimated model weights (see Voxelwise model fitting) from one modality (e.g. listening) were used to predict 503 
voxel responses in the other modality (e.g. reading). Model prediction accuracy was then computed using 504 
Pearson's correlation coefficient between cross-modal prediction responses (e.g. listening model estimates 505 
predicting reading responses) and the mean of the two validation responses (e.g. reading responses). 506 
 507 
RESULTS 508 
 509 
We sought to determine whether and how the cortical representation of semantic information in narrative 510 
language might depend on the modality with which it is perceived. Nine participants listened to and read 511 
narrative stories while whole-brain BOLD activity were recorded by means of functional MRI (see Figure 1). 512 
The experimental stimuli consisted of more than two hours of narrative stories from The Moth Radio Hour, 513 
along with written transcriptions of the same stories. In the reading condition we used a rapid serial visual 514 
presentation (RSVP) method (Buchweitz et al., 2009; Forster, 1970) to present the stories at precisely the same 515 
rate as they occurred during listening. That is, in the reading condition each word was presented serially at 516 
exactly the same time, and for exactly the same duration as when it was spoken. The semantic content of the 517 
stories was estimated continuously by projecting the narrative into a word embedding space based on word co-518 
occurrence statistics (Church and Hanks, 1990; Lund and Burgess, 1996; Mitchell et al., 2008; Turney and 519 
Pantel, 2010; Wehbe et al., 2014; Xu et al. 2016). We then used voxelwise modeling to estimate a set of weights 520 
for each voxel that best characterize the relationship between the semantic features and the recorded BOLD 521 
signals separately for each modality. These estimated model weights were then used to predict voxel responses 522 
in a held-out validation dataset both within and across modalities. Finally, the semantic tuning of each voxel in 523 
the two modalities was compared by projecting the estimated model weights onto the semantic space described 524 
in Huth et al. (2016). 525 
 526 
Does the cortical distribution of semantically-selective voxels depend on stimulus modality? 527 
 528 
We used a voxelwise modeling procedure to determine whether the broad distribution of semantically-selective 529 
voxels depends on presentation modality. Semantic features were extracted from the stories and these were 530 
used to estimate voxelwise model weights for BOLD signals that were recorded while participants listened to 531 
the stories in the training set. These estimated model weights were then used to predict fMRI voxel responses 532 
to a separate held-out validation set. We repeated the same procedure for the reading sessions. Several low-533 
level features (low-level visual, spectral, word rate, letter rate, word length variation, phonemes, phoneme rate, 534 
and pauses) and syntactic features were included alongside the semantic features as nuisance regressors (see 535 
Materials and Methods), but these nuisance regressors were discarded after regression and the final model 536 
predictions were based only on semantic model weight estimates. The correlation coefficient between the 537 
actual responses in the held-out validation dataset and predicted responses were computed to give a measure 538 
of model prediction accuracy. These were then mapped onto the cortical surface. 539 
 540 
Figure 2 shows voxelwise model prediction accuracy for listening and reading for all voxels in one participant 541 
(p<0.05, FDR corrected). Figure 2a shows that our semantic model predicts brain activity in a broadly 542 
distributed semantic system when participants listen to natural stories, replicating a previous study from our 543 
lab (Huth et al., 2016). This system extends across much of lateral temporal cortex (LTC), ventral temporal 544 
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cortex (VTC), lateral parietal cortex (LPC), medial parietal cortex (MPC), medial prefrontal cortex, superior 545 
prefrontal cortex, and inferior prefrontal cortex. Figure 2b shows that when participants read natural stories 546 
this network of brain regions are similarly well predicted by the semantic model. Figure 2c compares 547 
prediction accuracy of semantic models fit to listening (depicted on the x-axis) versus reading (depicted on the 548 
y-axis). The saturation of each point represents the number of voxels that fall into a given range of prediction 549 
accuracy. Most voxels are approximately equally well predicted in both modalities. Overall, the semantic model 550 
accurately predicts activity in most of the semantic system independent of the presentation modality. 551 
 552 
Figure 3 shows voxelwise model prediction accuracy for listening and reading for all voxels and across nine 553 
participants in the standard MNI brain space. Figure 3a and 3b show average prediction accuracy across all 554 
participants in listening and reading, respectively. Figure 3c and 3d show for each voxel the number of 555 
participants where semantic model prediction accuracy is significant in listening and reading, respectively. 556 
These results show that our semantic model predicts brain activity within the semantic system in all 557 
participants. However, due to averaging across participants voxel prediction accuracies are lower than in 558 
individual participant results (maximum prediction accuracy across all MNI voxels for listening 0.27 ± 0.03, 559 
maximum prediction accuracy across all MNI voxels for reading: 0.28 ± 0.03). 560 
 561 
Does the representation of semantic information vary with sensory modality? 562 
 563 
In order to determine whether semantic representation is modality independent we compared the semantic 564 
tuning of each voxel estimated during listening versus reading. The semantic tuning of each voxel is given by a 565 
985-dimensional vector of weights, one weight for each of the 985 semantic features. Because there are 566 
~80,000 cortical voxels in each individual participant and 985 semantic features it is impractical to make 567 
comprehensive comparisons for each feature. Therefore, to simplify interpretation the estimated semantic 568 
model weights were projected into a low-dimensional semantic subspace that captures most of the information 569 
about the semantic selectivity of the voxel population. This semantic subspace was created by applying 570 
principal component analysis to an aggregated set of estimated semantic model weights from seven 571 
participants included in a previous study from our laboratory (Huth et al., 2016). (Note that three of those who 572 
participated in the earlier study are also included in the current study.) The resulting semantic principal 573 
components (PCs) are ordered by how much variance they explain across the voxels. By projecting both the 574 
listening model weights and the reading model weights separately into these semantic PCs, we ensure that 575 
cortical voxels that represent similar concepts will project to nearby points in the semantic space. 576 
 577 
To visualize which semantic concepts are represented in each voxel, we mapped the projections of the first 578 
three semantic principal components onto each participant’s cortical surface separately for the two modalities. 579 
Each voxel was then colored according to a simple RGB color scheme, where the color red represents the first 580 
semantic PC, the color green represents the second semantic PC, and blue the third semantic PC. Inspection of 581 
the listening and reading semantic maps shown in Figure 4 reveals that the semantic representations in both 582 
modalities are very similar. The similarity between the listening and reading semantic maps indicate that 583 
individual voxels within the semantic system are tuned for the same semantic concepts regardless of 584 
presentation modality. 585 
 586 
To quantify the similarity between the semantic maps shown in Figure 4 for all participants, we correlated the 587 
projections of the listening and reading model weights into the semantic PCs across the two modalities 588 
(listening and reading). To reduce noise, the 10,000 voxels that were best predicted by the semantic model in 589 
the two modalities were selected for this analysis. The listening and reading semantic PC projections were then 590 
correlated for each semantic PC separately. 591 
 592 
Figure 5 shows these correlation coefficients for the first ten semantic PC projections and for all nine 593 
participants. Each colored line shows the correlation between listening and reading semantic projections for 594 
one participant. The dotted lines indicate the upper bound of the 95% confidence interval of the correlation 595 
value under the null hypothesis. Hence, the dotted lines can be interpreted as a form of statistical significance 596 
as estimated by a permutation test (see Materials and Methods for details). Inspection of Figure 5 reveals 597 
that the first five semantic PC projections are significantly correlated between listening and reading modalities. 598 
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The first three semantic PC projections are those that are mapped onto the cortical surface in Figure 4. 599 
Correlations of the sixth PC projection and beyond are relatively weaker, but remain above chance level until 600 
the seventh PC projection. Taken together, these results indicate that the cortical representation of semantic 601 
information is consistent across input modalities. 602 
 603 
Is semantic tuning consistent across modalities at the single voxel level? 604 
 605 
Here we sought to determine whether all the dimensions of semantic representation depend on input modality 606 
at the level of single voxels. To do this the 985 semantic model weights estimated for each voxel during 607 
listening were correlated with those semantic model weights estimated during reading. 608 
 609 
Figure 6a shows the correlation coefficient between estimated listening and reading model weights for each 610 
voxel, mapped onto the cortical surface of one individual participant. Listening and reading model weights are 611 
strongly correlated in many regions within the semantic system including bilateral temporal, parietal, and 612 
prefrontal cortices (red voxels in Figure 6a). These voxels are also significantly well predicted by the semantic 613 
model in both modalities. Voxels whose model weights are not correlated are located in few scattered voxels in 614 
the bilateral sensory cortex, intraparietal sulcus, and in prefrontal cortex (white voxels). This suggests that 615 
voxels that are semantically selective in Listening and Reading modalities (red) represent similar semantic 616 
information. Figure 6b summarizes the relation between within-modality voxelwise model prediction 617 
accuracy and semantic tuning, for each voxel. Each voxel is a single point in the scatterplot, and the correlation 618 
between the estimated listening and reading model weights is indicated by the color saturation. Semantic 619 
tuning is more similar for voxels that are semantically selective in both modalities (red) than for those that are 620 
well predicted in one modality only (blue or green). Negatively correlated voxels are mostly in sensory regions 621 
and are not well predicted by the semantic model in either modality. In general, individual voxels located 622 
within the semantic system are selective to similar semantic features during both listening and reading. 623 
 624 
Can a voxelwise model fit to one modality predict responses to the other modality? 625 
 626 
If the semantic representation in most of the semantic system is modality-invariant then voxel models fit to 627 
one modality should accurately predict responses in the other modality. Figure 7 and Figure 8 show cross-628 
modal predictions for all voxels in all participants. Figure 7 shows prediction accuracy for a model fit to voxel 629 
responses evoked during listening, but predicting responses evoked during reading. Figure 8 shows prediction 630 
accuracy for a model fit to responses evoked during reading, but predicting responses evoked during listening. 631 
In both figures voxels whose predictions were not statistically significant are shown in gray (p>0.05, FDR 632 
corrected). In both cases, voxels in bilateral temporal, parietal, and prefrontal cortices are well predicted across 633 
modalities. Voxels that are not well predicted cross-modally are located in sensory cortices.  634 
 635 
Figure 9 shows a summary map of the relationship between cross-modality predictions and within-modality 636 
predictions, for each voxel and all participants. Summary statistics for the two cross-modality predictions were 637 
computed by taking the average cross-modality prediction accuracy (per voxel average of Figure 7 and Figure 638 
8). Summary statistics for the two within-modality predictions were computed by taking the maximum within-639 
modality prediction accuracy (per voxel maximum of Figure 2a and Figure 2b). The mean cross-modality 640 
prediction accuracy and the maximum within-modality prediction accuracy per voxel were then mapped onto 641 
the same participant’s flattened cortical surface. Inspection of Figure 9 allows us to identify voxels that are 642 
well predicted both within and across modality. Most voxels that are well predicted within and across modality 643 
are located in the semantic system (white voxels in Figure 9). Outside the semantic system, some voxels on 644 
the border to visual cortex and voxels surrounding the temporal parietal junction are well predicted within 645 
modality but not across modality (orange voxels in Figure 9). (Note, however, that within-modality data were 646 
collected largely within sessions, and between-modality data were collected across sessions. Thus, within-647 
modality prediction accuracy is likely to be somewhat higher than between-modality accuracy for this reason 648 
alone.) This result demonstrates that the distribution of semantically selective voxels in most of the semantic 649 
system is independent of the modality. 650 
 651 
DISCUSSION 652 
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 653 
The experiments presented here were designed to determine whether semantic information obtained during 654 
listening and reading are represented within a common underlying semantic system. In separate fMRI sessions 655 
participants listened to a spoken story and read a stream of words visually (RSVP using time-locked transcripts 656 
of spoken stories). We used voxelwise modeling to estimate semantic selectivity across the entire cerebral 657 
cortex, in individual participants, in each voxel separately and in two different presentation modalities 658 
(listening and reading). 659 

Our experiments provide three lines of evidence in support of the hypothesis that semantic representations 660 
throughout most of the semantic system are invariant to presentation modality. First, voxels in most of the 661 
semantic system (temporal, parietal, and prefrontal cortices) are well predicted by the semantic model in each 662 
modality independently (Figure 2-3). Second, the estimated model weights and the semantic maps are similar 663 
between listening and reading (Figure 4-6). Third, voxelwise models estimated from one modality (e.g. 664 
listening) accurately predict responses in the other modality (e.g. reading) throughout most of the semantic 665 
system (Figure 7-9). 666 

Our results demonstrate in a single study that semantically amodal voxels span most of the bilateral semantic 667 
system. It has been previously proposed that subsequent to early sensory processing, the pathways for 668 
processing information by listening or reading converge in semantically-selective regions (Booth et al., 2002; 669 
Buchweitz et al., 2009; Carpentier et al., 2001; Chee et al., 1999; Cohen et al., 2004; Constable et al., 2004; 670 
Jobard et al., 2007; Liuzzi et al., 2017; Patterson et al., 2007; Spitsyna et al., 2006). Different studies have 671 
emphasized different brain regions such as the left anterior temporal lobe, left ventral angular gyrus, left 672 
inferotemporal cortex, a region left lateral to the visual word form area (VWFA), left MTG, and the left IFG. 673 
Bilateral activations have been reported previously in epileptic patients (Carpentier et al., 2001) or when 674 
complex stimuli such as narrative has been used (Jobard et al., 2007; Regev et al., 2013; Spitsyna et al., 2006). 675 
Our study shows that semantically amodal voxels are bilaterally distributed across many regions of the 676 
temporal, parietal and prefrontal cortices (Figure 3-6). Specifically, we show amodal semantic representation 677 
in bilateral precuneus, temporal parietal junction (TPJ), angular gyrus (AG), anterior to posterior superior 678 
temporal sulcus (STS), superior ventral premotor cortex (sPMv), Broca's area and inferior frontal gyrus (IFG). 679 

One previous report noted that listening and reading evoke different levels of brain activity in anterior and 680 
posterior left DLPFC (Regev et al., 2013). However, Regev et al. (2013) did not model linguistic features 681 
directly. Therefore, it is unclear whether the differences they identified within left DLPFC are due to differences 682 
in semantic representation or some other aspect of linguistic information (e.g. syntax). In our study, we 683 
focused solely on semantic representations and our results suggest that semantic representations do not differ 684 
between listening and reading in left DLPFC. However, it is possible that this structure may represent other 685 
types of linguistic information differently during listening and reading. 686 
 687 
One striking difference between our results and those reported in earlier studies is that we find a large network 688 
of semantically-selective regions that are independent of the presentation modality, whereas previous studies 689 
reported a few amodal semantic regions located mostly in the left hemisphere (Buchweitz et al., 2009; Chee et 690 
al., 1999; Jobard et al., 2007; Liuzzi et al., 2017; Petersen et al., 1989). There are three possible factors that 691 
contribute to this discrepancy. First, we used rich narrative language as stimuli to study cross-modal semantic 692 
representation (Figure 1). Previous studies have shown that complex linguistic stimuli such as narrative 693 
stories activate many more brain regions than single words or short sentences (Jobard et al., 2007; Lerner et 694 
al., 2011; Mazoyer et al., 1993; Xu et al., 2005). Hence, differences in signal-to-noise ratio can account for fewer 695 
number of amodal regions identified in previous cross-modality studies that use single words or short 696 
sentences. 697 
 698 
Second, our voxelwise modeling approach used explicit semantic features, which allowed us to identify brain 699 
regions that consistently respond to specific semantic information across different modalities (Figure 1-6). To 700 
our knowledge, only one previous study of cross-modal representation has used explicit semantic features to 701 
model brain activity patterns related to semantics (Liuzzi et al., 2017). That study used as stimuli twenty-four 702 
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single words derived from only six animate categories, and showed cross-modal representations within left 703 
pars triangularis. However, the most likely reason that the Luizzi et al. (2017) study only identified one region 704 
as semantically amodal is that single word presentations elicit little brain activity. 705 
 706 
Third, the present study is the first that reveals the amodal representation of semantic information during 707 
listening and reading in single participants (Figure 1). In contrast, most previous neuroimaging studies of 708 
language perform comparisons at the group level after transforming individual participant data into a 709 
standardized brain space (e.g. MNI or Talairach space). However, the anatomical normalization procedures 710 
used in these studies tend to smooth and mask the substantial individual variability in language processing 711 
(Caramazza, 1986; Fedorenko and Kanwisher, 2009; Steinmetz and Seitz, 1991). Therefore, studies performing 712 
inter-subject averaging might average away meaningful signal and fail to find significant relationships 713 
(Fedorenko and Kanwisher, 2009). Indeed, projecting our results into a standard brain space and averaging 714 
across individuals reduces prediction performance within modality across much of the brain (compare Figure 715 
3a and Figure 2). This result already demonstrate that it is important to study cross-modal language 716 
representations in individual participants. 717 
 718 
Our naturalistic experiment and voxelwise modeling provides a powerful and efficient method for identifying 719 
amodal representations in individual human brains. However, the semantic feature space that we used here is 720 
only one possible way of representing semantics (Huth et al., 2016; Mitchell et al., 2008; Pereira et al., 2018), 721 
and it has some limitations. For example, when people listen to or read a story they likely employ conceptual 722 
knowledge at long time scales beyond those using for computing semantic features (Yeshurun et al., 2017). 723 
Furthermore, semantic comprehension involves metaphors, humor, sarcasm and narrative information that is 724 
not reflected in the current semantic model. It is possible that these unmodeled properties of natural language 725 
might have different, modality-specific representations in the brain. 726 
 727 
In sum, we demonstrate modality-independent semantic selectivity in most of the bilateral semantic system. 728 
The semantic maps recovered in this study show that semantic tuning in individual participants is very similar 729 
across the two modalities. Our findings are consistent with the view that sensory regions process unimodal 730 
information related to low-level processing of spoken or written language, whereas high-level regions process 731 
modality invariant semantic information. Furthermore, our results reveal that modality invariant semantic 732 
representations are not isolated in a few left-lateralized regions, but are instead present in many bilaterally 733 
distributed regions of the semantic system. 734 
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Figure Legends 909 
 910 
Figure 1: Experimental procedure and voxelwise modeling. Nine participants listened to and read over two hours 911 
of natural stories in each modality while BOLD responses were measured using fMRI. The presentation time of single 912 
words was matched between listening and reading sessions. Semantic features were constructed by projecting each word 913 
in the stories into a 985-dimensional word embedding space independently constructed using word co-occurence statistics 914 
from a large corpus. These features and BOLD responses were used to estimate a separate finite impulse response (FIR) 915 
banded ridge regression model for each voxel in every individual participant. These estimated model weights were used to 916 
predict BOLD responses for a separate held-out story that was not used for model estimation. Predictions for individual 917 
participants were computed separately for listening and reading sessions. Model performance was quantified as the 918 
correlation between the predicted and recorded BOLD responses to this held-out story. Within-modality prediction 919 
accuracy was quantified by correlating the predicted responses from one modality (e.g. listening) with the recorded 920 
responses to the same modality (e.g. listening). Cross-modality prediction accuracy was quantified by correlating the 921 
predicted responses for one modality (e.g. listening) with the recorded responses of the other modality (e.g. reading). 922 
Figure 2: Semantic model prediction accuracy across the cortical surface. Voxelwise modeling was used to 923 
estimate semantic model weights in two modalities, listening and reading. Prediction accuracy was computed as the 924 
correlation (r) between the participant's recorded BOLD activity to the held-out validation story and the responses 925 
predicted by the semantic model. a. Accuracy of voxelwise models estimated using listening data and predicting withheld 926 
listening data. The flattened cortical surface of one participant is shown. Prediction accuracy is given by the color scale 927 
shown at bottom. Voxels that are well predicted appear yellow or white, voxel predictions that are not statistically 928 
significant are shown in gray (p>0.05, FDR corrected; LH, left hemisphere; RH, right hemisphere; NS, not significant; 929 
EVC, early visual cortex; AC: auditory cortexc; LTC, lateral temporal cortex, VTC, ventral temporal cortex; LPC, lateral 930 
parietal cortex; MPC, medial parietal cortex; PFC, prefrontal cortex). b. Accuracy of voxelwise models estimated using 931 
reading data and predicting withheld reading data. The format is the same as panel a. Estimated semantic model weights 932 
accurately predict BOLD responses in many brain regions in the semantic system, including lateral temporal cortex (LTC), 933 
ventral temporal cortex (VTC), lateral parietal cortex (LPC), medial parietal cortex (MPC), and prefrontal cortex (PFC) in 934 
both modalities. In contrast, voxels in the early sensory regions such as the primary auditory cortex and early visual cortex 935 
are not well predicted.c. Log transformed density plot of the listening (x-axis) versus reading (y-axis) model prediction 936 
accuracy. Purple points indicate all voxels. Darker colors indicate a higher number of voxels in the corresponding bin. 937 
Voxels with listening prediction accuracy < 0.17 and reading prediction accuracy < 0.19 are not significant. Most voxels 938 
are equally well predicted in listening and reading indicating that these voxels represent semantic information 939 
independent of the presentation modality. 940 
Figure 3: Semantic model prediction accuracy across all participants in standard brain space. Voxelwise 941 
modeling was used to asses semantic model prediction accuracy in the listening and reading modalities for all nine 942 
participants as described in Figure 2a and Figure 2b. Prediction accuracies computed in individual subject’s space were 943 
then projected into a standard MNI brain space. a. Average listening prediction accuracy across nine participants was 944 
computed for each MNI voxel in the standard brain space and is mapped onto the cortical surface of the MNI brain. 945 
Average prediction accuracy is given by the color scale. Voxels that are well predicted appear brighter. Across all 946 
participants the estimated semantic model weights in the listening modality accurately predict BOLD responses in many 947 
brain regions in the semantic system, including lateral temporal cortex (LTC), ventral temporal cortex (VTC), lateral 948 
parietal cortex (LPC), medial parietal cortex (MPC), and prefrontal cortex (PFC). (LH: Left hemisphere, RH: Right 949 
hemisphere, EVC, early visual cortex; AC: auditory cortexc; LTC, lateral temporal cortex, VTC, ventral temporal cortex; 950 
LPC, lateral parietal cortex; MPC, medial parietal cortex; PFC, prefrontal cortex) b. Average reading prediction accuracy 951 
across nine participants was computed for each MNI voxel in the standard brain space and is mapped onto the cortical 952 
surface of the MNI brain. The format is the same as in a. Across all participants, estimated semantic model weights in the 953 
reading modality accurately predict BOLD responses in the semantic system. c. Significant prediction accuracy in each 954 
voxel in the listening modality was determined in the subject space and then projected to the standard MNI brain space. 955 
The number of subjects with significant semantic model prediction accuracy for a given MNI voxel is then mapped onto 956 
the cortical surface of the MNI brain. Number of participants is given by the color scale shown at bottom. Dark red voxels 957 
are significantly well predicted in all participants. Dark blue voxels are not significantly predicted in any participant. d. 958 
Significant prediction accuracy in each voxel in the reading modality was determined in the subject space and then 959 
projected to the standard MNI brain space. The number of subjects with significant semantic model prediction accuracy 960 
for a given MNI voxel is then mapped onto the cortical surface of the MNI brain. The format is the same as in c. Most of 961 
the voxels in the semantic system are significantly predicted by all participants in both modalities. 962 
Figure 4: Semantic tuning maps for listening and reading. The semantic maps for both modalities are displayed 963 
on the cortical surface of one participant. a. Voxelwise model weights for the listening sessions were projected into a 964 
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semantic space created by performing principal component analysis on estimated semantic model weights acquired 965 
during a listening experiment published earlier (Huth et al., 2016). Each voxel is colored according to its projection onto 966 
the first (red), second (blue) or third (green) semantic PC. The color wheel legend at center indicates the associated 967 
semantic concepts. Voxels whose within-modality prediction was not statistically significant are shown in gray (p>0.05, 968 
FDR corrected; LH, left hemisphere; RH, right hemisphere; EVC, early visual cortex; AC: auditory cortex; LTC, lateral 969 
temporal cortex, VTC, ventral temporal cortex; LPC, lateral parietal cortex; MPC, medial parietal cortex; PFC, prefrontal 970 
cortex). b. Voxelwise model weights for the reading sessions projected into the semantic space, and colored using the 971 
same procedure as in a. Comparison of panels a and b reveals that semantically selective voxels are tuned for similar 972 
semantic concepts during both listening and reading.  973 
Figure 5: Similarity between listening and reading semantic PC projections. The correlation coefficient 974 
between listening and reading semantic PC projections are shown for the first ten semantic PCs and each individual 975 
participant separately. Each colored diamond shape indicate one participant and the mean correlation coefficient across 976 
participants is indicated by the black solid line. Error bars are standard error of the mean across the correlation 977 
coefficients for all participants. The colored dotted lines at the bottom indicate chance level correlation for each semantic 978 
PC and participant as computed by a permutation test. At least the first five semantic PC projections are significantly 979 
correlated between listening and reading. This shows that the individual dimensions of the semantic maps in Figure 4 980 
where the first three semantic PCs are displayed are similar across the two modalities. 981 
Figure 6: Voxelwise similarity of semantic tuning across listening and reading. Semantic model weights 982 
estimated during listening and reading were correlated for each voxel separately. a. Correlation coefficient between 983 
listening and reading model weights are shown on the flattened cortical surface of one participant. Red voxels are those 984 
that are semantically selective in both modalities. Blue voxels are those that are semantically selective in listening, but not 985 
reading. Green voxels are those that are semantically selective in reading, but not listening. Gray voxels are not 986 
semantically selective in either modality. Color saturation describes the strength of voxel weight correlations. The stronger 987 
the color the higher is the correlation between listening and reading model weights. Voxels in the semantic system have 988 
similar semantic tuning across all the semantic features. (LH, left hemisphere; RH, right hemisphere; NS, not significant; 989 
EVC, early visual cortex; AC: auditory cortex; LTC, lateral temporal cortex, VTC, ventral temporal cortex; LPC, lateral 990 
parietal cortex; MPC, medial parietal cortex; PFC, prefrontal cortex) This suggests that across the 985 semantic features 991 
semantic information is represented similarly in both modalities in the semantic system. b. The relation between within-992 
modality model prediction accuracy and semantic tuning. Listening (x-axis) versus reading (y-axis) prediction accuracy is 993 
shown in a scatterplot where each point corresponds to a single voxel in panel a. The correlation between the listening and 994 
reading model weights is indicated by color saturation and is the same as in panel a. Semantic tuning is more similar for 995 
voxels that are semantically selective in both modalities (red) than for those that are selective in one modality only (blue 996 
and green). Gray voxels are not semantically selective in either modality. This suggests that voxels that are well predicted 997 
in both modalities represent similar semantic information. 998 
Figure 7: Semantically amodal voxels as shown by cross-modal predictions (Listening predicting 999 
Reading) in all participants. Estimated semantic model weights in the listening modality were used to predict BOLD 000 
activity to the held-out validation story in the reading modality. a. Accuracy of voxelwise models estimated during 001 
listening predicting reading responses, shown on the same participant’s flattened cortical surface as in Figure 2. Prediction 002 
accuracy is given by the color scale. Voxels that are well predicted appear yellow or white, voxel predictions that are not 003 
statistically significant are shown in gray (p>0.05, FDR corrected; LH, left hemisphere; RH, right hemisphere; NS, not 004 
significant; Si: Subject i; EVC, early visual cortex; AC: auditory cortex; LTC, lateral temporal cortex, VTC, ventral temporal 005 
cortex; LPC, lateral parietal cortex; MPC, medial parietal cortex; PFC, prefrontal cortex). b. Accuracy of voxelwise models 006 
estimated during listening predicting reading responses, shown for all other participants. The format is the same as panel 007 
a. The semantic model estimated in listening accurately predicts voxel responses in reading within the semantic system 008 
including bilateral temporal (LTC, VTC), parietal (LPC, MPC), and prefrontal cortices (PFC). 009 
Figure 8: Semantically amodal voxels as shown by cross-modal predictions (Reading predicting 010 
Listening) in all participants. Estimated semantic model weights in the reading modality were used to predict BOLD 011 
activity to the held-out validation story in the listening modality. a. Accuracy of voxelwise models estimated during 012 
reading predicting listening responses, shown on the same participant’s flattened cortical surface as in Figure 2. Prediction 013 
accuracy is given by the color scale. Voxels that are well predicted appear yellow or white, voxel predictions that are not 014 
statistically significant are shown in gray (p>0.05, FDR corrected; LH, left hemisphere; RH, right hemisphere; NS, not 015 
significant; Si: Subject i; EVC, early visual cortex; AC: auditory cortex; LTC, lateral temporal cortex, VTC, ventral temporal 016 
cortex; LPC, lateral parietal cortex; MPC, medial parietal cortex; PFC, prefrontal cortex). b. Accuracy of voxelwise models 017 
estimated during reading predicting listening responses, shown for all other participants. The format is the same as panel 018 
a. The semantic model estimated in reading accurately predicts voxel responses in listening within the semantic system 019 
including bilateral temporal (LTC, VTC), parietal (LPC, MPC), and prefrontal cortices (PFC). 020 
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Figure 9: Semantically amodal voxels for all participants. Comparison of voxels that are well predicted across 021 
modalities versus within modalities. a. The average cross-modality prediction accuracy and the maximum of the within-022 
modality prediction accuracy per voxel are both plotted on the flattened cortical surface of the same participant’s flattened 023 
cortical surface as in Figure 2. (L2R: Listening predicting Reading, R2L: Reading predicting Listening; L2L: Listening 024 
predicting Listening, R2R: Reading predicting Reading; Si: Subject i; LH, left hemisphere; RH, right hemisphere; NS, not 025 
significant).Orange voxels are well predicted only within-modality. White voxels are well predicted both within and across 026 
modality (in most of the semantic system). Blue voxels are well predicted only across modality. Voxels that are not 027 
significant in within- or cross-modality predictions are shown in gray. b. The same comparison is plotted for all other 028 
participants. The format is the same as panel a. Voxels within the semantic system represent semantic information 029 
independent of modality. 030 
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