Research Articles: Development/Plasticity/Repair

Age-dependent remarkable regenerative potential of the dentate gyrus provided by intrinsic stem cells

https://doi.org/10.1523/JNEUROSCI.1010-19.2019

Cite as: J. Neurosci 2020; 10.1523/JNEUROSCI.1010-19.2019

Received: 5 May 2019 Revised: 11 December 2019 Accepted: 12 December 2019

This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data.

Alerts: Sign up at www.jneurosci.org/alerts to receive customized email alerts when the fully formatted version of this article is published.

Copyright © 2020 the authors

Age-dependent remarkable regenerative potential of the dentate gyrus provided by intrinsic	1
stem cells	2
Abbreviated title: Dentate gyrus regeneration after massive destruction	3
Tamar Licht ^{1,3#} , Tirzah Kreisel ^{1,2} , Yoav Biala ³ , Sandesh Mohan ³ , Yoel Yaari ^{3,} Andrey Anisimov ⁴ ,	4
Kari Alitalo ⁴ and Eli Keshet ^{1#}	5
1 Dept. of Developmental Biology and Cancer Research, Faculty of Medicine, the Hebrew	6
University, Jerusalem 91120 Israel.	7
² Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University	8
Givat Ram, Jerusalem 91904.	9
³ Dept. of Medical Neurobiology, Faculty of Medicine, the Hebrew University, Jerusalem 91120	10
Israel.	11
⁴ Translational Cancer Biology Program, Research Programs Unit, Faculty of Medicine,	12
University of Helsinki, Finland FI-00014	13
# Corresponding authors	14
Tamar Licht: mail: <u>tamarli@ekmd.huji.ac.il</u> . Phone 972544703220. Fax 97226757195	15
Eli Keshet: <u>elik@ekmd.huji.ac.il</u> . Phone 972524634418. Fax 97226757195	16
No. of pages: 36	17
No. of figures: 10	18
No. of tables: 1	19
Words in abstract: 216	20
Words in introduction: 631	21
Words in discussion: 880	22
The authors declare no competing financial interests.	23

Acknowledgments	25
This work was supported by a European Council Research (ERC) grant; project VASNICHE	26
(Grant # <u>322692</u>). We thank Steffen Jung (The Weizmann Institute), Grigori Enikolopov (CSHL),	27
Rudolf Jaenisch (MIT) for mice and Alissa Greenwald and Brachi Wolf (HU) for assistance.	28
	29
	30
Abstract	31
Multiple insults to the brain lead to neuronal cell death, thus raising the question to what	32
extent can lost neurons be replenished by adult neurogenesis. Here we focused on the	33
hippocampus and especially the dentate gyrus (DG), a vulnerable brain region and one of the	34
two sites where adult neuronal stem cells (NSCs) reside. While adult hippocampal	35
neurogenesis was extensively studied with regard to its contribution to cognitive	36
enhancement, we focused on their underestimated capability to repair a massively injured,	37
nonfunctional DG. To address this issue, we inflicted substantial DG-specific damage in mice of	38
either sex either by diphtheria toxin-based ablation of >50% of mature DG granule cells (GCs)	39
or by prolonged brain-specific VEGF overexpression culminating in extensive, highly selective	40
loss of DG GCs (thereby also reinforcing the notion of selective DG vulnerability). The	41
neurogenic system promoted effective regeneration by increasing NSCs proliferation/survival	42
rates, restoring a nearly original DG mass, promoting proper rewiring of regenerated neurons	43
to their afferent and efferent partners and regaining of lost spatial memory. Notably,	44
concomitantly with the natural age-related decline in the levels of neurogenesis, the	45
regenerative capacity of the hippocampus also subsided with age. The study thus revealed an	46

unappreciated regenerative potential of the young DG and suggests hippocampal NSCs as a	47
critical reservoir enabling recovery from catastrophic DG damage.	48
	49
Significance statement	50
Adult hippocampal neurogenesis has been extensively studied in the context of its role in	51
cognitive enhancement but whether, and to what extent can dentate gyrus (DG)-resident	52
neural stem cells drive regeneration of an injured DG has remained unclear. Here we show	53
that DG neurogenesis act to replace lost neurons and restore lost functions even following	54
massive (>50%) neuronal loss. Age-related decline of neurogenesis is paralleled by a	55
progressive decline of regenerative capacity. Considering also the exceptional vulnerability o	f 56
the DG to insults, these findings provide a further rationale for maintaining DG neurogenesis	57
in adult life.	58
	59

Introduction

	Stem cells in adult organs are engaged in homeostatic maintenance of the tissue, both in
	balancing normal cell turnover, as well as in tissue repair following injury.
	In the brain, neural stem cells (NSCs) mostly reside in two locales: the sub-ventricular zone
	(SVZ) and the hippocampal dentate gyrus (DG). The major role of SVZ NSCs is the
\mathbf{O}	replenishment of olfactory bulb interneurons in compensation for their normal turnover. SVZ-
S S	born neuroblasts migrate rostrally to the olfactory bulb via a designated route known as the
	rostral migratory stream (RMS). While it was shown that SVZ-born neurons can use
ືດ	alternative routes and home to injured brain areas in models of stroke and ischemia
$\overline{\mathbf{S}}$	(Nakatomi et al., 2002; Zhang et al., 2004; Grade et al., 2013), it is unclear whether they also
	contribute to functional repair (Inta and Gass, 2015; Lu et al., 2017).
O	DG-resident NSCs are engaged in constitutive production of new neurons in rodents and
L L	potentially also in humans (Eriksson et al., 1998; Spalding et al., 2013; Boldrini et al., 2018)
	that integrate within the existing network of DG granule cells (GCs) (van Praag et al., 2002)
\mathbb{O}	where they contribute to memory and mood processes (Aimone et al., 2011; Toda et al.,
ŭ	2018). Although neurogenic response was documented in experimental animal models of
Accepted Manuscrip	injury and epilepsy (Gould and Tanapat, 1997; Gray and Sundstrom, 1998; Jessberger et al.,
	2007; Cho et al., 2015; Yu et al., 2016), the natural role of NSCs in functional DG repair
OSCI	following injury is grossly underappreciated. This issue is of particular significance given the
Ő	vulnerability of the hippocampus, in general, and of GCs in particular, to damaging insults.
	Owing to the low excitability of GCs and their natural role in moderation of excitatory signals
	(Heinemann et al., 1992; Krook-Magnuson et al., 2015), their loss is a major cause of temporal
~	lobe epilepsy, a pathology further aggravating selective GC loss and often culminating in DG
JNeur	degeneration (Houser, 1992; Steward, 1994). Examining whether DG NSCs are capable of
	driving functional DG repair in epilepsy models has been hampered by the continual nature of

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

4

the damage counteracting the repair process (Hattiangady et al., 2004). Likewise, DG

neurogenesis induced by Kainic acid was shown to be associated with ac	ccelerated NSC	88
depletion and astrocytic differentiation rather than neuron production (Sierra et al., 2015).	89
The exceptional vulnerability of the DG is also evidenced in other humar	n pathologies such as	90
frontotemporal lobe degeneration, Alzheimer's disease and adrenal insu	ufficiency (Maehlen	91
and Torvik, 1990; Armstrong et al., 2012; Collins et al., 2012; Kovacs et a	ıl., 2013; Takeda and	92
Tamano, 2018) and in rodent models of these and other pathologies tha	at are often associated	93
with enhanced neurogenesis (Spanswick et al., 2007; Spanswick et al., 20	011; Watanabe et al.,	94
2016; Choi et al., 2017; Tu et al., 2018; Wang et al., 2018).		95
To examine the regenerative potential of the DG we used two independ	dent ways for	96
conditional infliction of GC-specific massive cell death, importantly, und	er conditions sparing	97
NSCs. In the first model, diphtheria toxin (DT) injected to adult mice exp	pressing DT receptors	98
exclusively in GCs leads to selective elimination of >50% of GCs. In the se	econd model, a	99
comparable GC-specific loss is caused by conditionally-induced prolonge	ed (>3 months)	100
overexpression of VEGF. Importantly, the damaging insult in this tetracy	cline-regulated VEGF	101
system can be terminated at will, thus providing a unique opportunity to	o uncouple the	102
processes of DG injury and repair. Here we uncovered a remarkable reg	enerative capacity of	103
the DG, not only with respect to replenishing lost neurons but also with	respect to proper re-	104
wiring and restoration of lost cognitive functions. We further show that	regeneration is driven	105
by DG NSCs and that progressive neurogenesis decline with age (Kuhn e	t al., 1996; Ben	106
Abdallah et al., 2010; Encinas et al., 2011) is accompanied by a progressi	ive diminishment of	107
the regenerative potential.		108
		109
Materials and Methods		110
Mice		111

All animal procedures were approved by the animal care and use committee of the Hebrew112University. Transgenic mouse lines that were used in this study: CamkIIα-tTA, Ai9, Pomc-Cre, iDTR, 113

and Gli1-cre ^{ERT2} lines were purchased from the Jackson Laboratories (strains 016198, 007909,	114
010714, 007900, 007913). pTET-VEGF $_{164}$ and pTET-sVEGFR1 responder lines were as described	115
previously (Licht et al., 2011). Nestin-GFP line was obtained from Prof. Grigori Enikolopov, CSHL	116
(Mignone et al., 2004). pTET-GFP line was obtained from R. Jaenisch, MIT (Beard et al., 2006).	117
Both males and females were used. For switching-off VEGF, water was supplemented by 500mg/L	. 118
tetracycline (Bio Basic Canada Inc. #TB0504) and 3% sucrose. For switching on the transgene,	119
tetracycline-supplemented water was replaced by fresh water for the desired time. CldU (MP	120
Biomedicals #02105478 100mg/kg) or IdU (Sigma I7125, 100mg/kg) were injected	121
intraperitoneally (i.p.) 3 times at 8hr intervals at the indicated time points. Tamoxifen (Sigma	122
T5648, 40mg/ml in sunflower seed oil) was administered orally once daily for 5 days at a dose of	123
~8mg/animal. TRITC-labeled 10kD dextran (Molecular Probes #1817) was injected intracardially at	t 124
100gr/kg 2 min before sacrifice. Animals were grown in SPF housing conditions with irradiated	125
rodent food and water/tetracycline ad libitum. Breeding cages for the VEGF system include males	126
heterozygous for pTET-VEGF ₁₆₄ , CamkII α -tTA and Ai9/nestin-GFP alleles and females heterozygous	\$ 127
for CamkII α -tTA and Gli1- creERT2/nestin-GFP (maternal imprinting of the pTET-VEGF164 allele	128
results in high mortality upon VEGF induction). Mice that inherited the CamkII α -tTA alone served	129
as controls for CamkII α -tTA; pTET-VEGF164 double transgenic littermates. All animals in	130
experiments (controls and VEGF) were kept in the same cage and received the same treatment.	131
Litters of either sex were used.	132
	133

Intrahippocampal injections

134

Mice were anesthetized with an i.p injection of Ketamine/Xylazine followed by Isoflurane 135 inhalation. The head was placed in a stereotactic apparatus (Stoelting Co.) and a burr hole was 136 drilled at the injection site using the following coordinates relative to Bregma (in mm): AP: -2.5, 137 ML: -1.4, DV: -2. Injections were conducted using a 10µl syringe (Hamilton) and a thin 33-gauge 138 metal needle (WPI). DT (Merck Millipore, # 322326, 5µg/ml) or AAV-VEGF (3E+06vp/µl (Kivela et 139 al., 2019)) were dissolved in saline and 1µl was delivered at a flow rate of 0.4µl/min. After 140 injection, the needle was left in place for 5 additional minutes and then slowly withdrawn. For 141 bilateral injections (ML: ±1.4), a 0.7µl of DT in each hemisphere was administered. All mice 142 received DT injections while mice inherited iDTR alone served as controls. For AAV experiment, an 143 empty AAV vector served as control. 144

Electrophysiology

145 146

Mice were decapitated under Isoflurane anesthesia and coronal hippocampal slices (350 μ m)	147
were prepared with a vibratome and transferred to a storage chamber perfused with	148
oxygenated (95% O_2 and 5% CO_2) artificial cerebrospinal fluid (aCSF) at room temperature	149
(containing (mM): NaCl 130; KCl 3.5; MgSO ₄ 1; CaCl ₂ 1.6; NaHCO ₃ 24; and D-glucose, 10). For	150
recording, slices were placed one at a time in an interface chamber and superfused (flow rate	151
1 ml/min) with warmed (35°C) oxygenated aCSF. The temperature was measured with a	152
thermal probe juxtaposed to the slice and maintained at 35°C with a feedback controller (NPI,	153
Tamm, Germany). Bipolar tungsten (115 μ m) electrodes (FHC, Inc.) connected to a stimulator	154
by an isolation unit were used for focal stimulation (1–20 V, 50 μs) of afferent fibers of	155
Perforant path axons. Extracellular recordings were performed with glass electrodes	156
contained 3M NaCl (5–10 M Ω), at the upper blade of the granule cell layer (GCL). An amplifier	157
(EXT-10C, NPI electronic GmbH, Tamm, Germany) was used, allowing measurement of field	158
potentials of cell populations. The extracellular signals were digitized at a sampling rate of 10	159
kHz and stored by a personal computer using a data acquisition system (Digidata 1322A) and	160
pCLAMP9 software (Molecular Devices, CA). Each focal stimulation was performed 3-5 times,	161
averaged, and the peak amplitude of the population spike was measured (from baseline to	162
peak population spike).	163
	164

Radial arm water maze

This protocol, testing for current working memory, was adapted from (Alamed et al., 2006;	166
Fujisaki et al., 2014). The radial arm water maze apparatus of a circular pool (1M in diameter)	167
with six 19cm wide arms radiating out from the central circular area. Visual cues were	168
included in the test room. The experiment was conducted for 5 consecutive days. Escape	169
transparent Plexiglas platform (16X16X20cm) was placed on a different arm each day (the	170
platform location does not change over one day), forcing the mice to use their memory to	171
solve the task. At the beginning of each acquisition trial, the animal was placed in a different	172
arm out of the remaining arms not containing the escape platform on that day.	173
During each trial, the animal was allowed to swim into all arms until finding the platform.	174
If during a 1 min trial the platform was not found, the mouse was gently guided through the	175
water to the platform and was allowed to stay there for 10 sec. 30 min after finishing the 4 $^{ m th}$	176
trial, each animal underwent a fifth trial with the start arm the same as that of trial 4.	177
The fifth trial on the fifth day was the "memory retention" trial, in which the number of errors	178
to reach the platform were calculated. Each error was defined as either a) Swimming into an	179
arm that does not contain the platform that day (1 error for every wrong arm entrance) b)	180
Entering the goal arm without boarding the platform c) Spending 20 sec or more continuously	181
in the central zone without any arm selection.	182
All trails were recorded and analyzed using EthoVision XT10 software (Noldus).	183
	184
Immunohistochemistry	185
Brains were fixed by immersion in 4% PFA for 5 hrs., incubated in 30% sucrose, embedded in	186
OCT Tissue-Tec and cryosectioned to $50\mu m$ floating sections. Coronal slices from all aspects of	187
the rostral-caudal axis were examined.	188
Staining was done as described (Licht et al., 2010) with the following: anti-CldU (Serotec 1:400	189
PRID: AB_323427), anti-IDU (BD 1:200 PRID: AB_400326), anti laminin (Neomarkers 1:400	190

PRID: AB_60397), anti-DCX (Millipore 1:3000 PRID: AB_2230227) and anti-CD31 (BD 1:50 PRID: 191 AB_393571), anti NeuN (Cell Signaling 1:600 PRID: AB_2630395), anti ZnT3 (1:600, #AZT-013, 192 Alomone labs) anti cleaved caspase 3 (1:200, Cell signaling PRID:AB 2341188), anti GFAP 193 (1:500, Dako PRID: AB 10013482), anti Iba1 (1:200, Wako PRID: AB 2665520), anti HB-EGF for 194 DTR (R&D, 1:200 PRID: AB_354429). Cy5 anti guinea-pig, Cy5 anti rat, Cy2 and Cy3 anti rabbit, 195 Cy2 and Cy3-anti mouse were all obtained from Jackson Immunoresearch (dilution 1:400). 196 Sections were mounted with Permafluor mounting medium (Thermo Scientific, TA-030-FM) 197 with Dapi (Sigma, D9542). 198 Confocal microscopy was done using Olympus FV-1000 on 10X, 20X and X60 lenses and 1.46µm 199

distance between confocal z-slices. Low magnification images were acquired using Nikon SMZ-25 200 stereoscope. At least 7 sections per animal from all hippocampal areas at the rostral-caudal axis 201 were counted. Measurements were done using Olympus FV-1000 viewer. 202

203

DG size quantification

204

Measurements of the DG were performed as shown in Fig 1H. Coronal slices representing all area	s 205
of the hippocampus at the anterior-posterior axis were counted. GCL area was measured using	206
X10 NeuN-stained sections by enclosing the GCL (using Olympus FV-1000 viewer) only in images	207
including the GCL in full. DG height (Fig. 1H top, yellow) was measured as the distance in μ m	208
from the dorsal border with stratum lacunosum to the ventral border with the thalamus (yellow	209
line in image). Measurements were done perpendicular to the center of the dorsal	210
(suprapyramidal) blade. GCL thickness (Fig. 1 H top, white) was measured at the center of the	211
dorsal blade (white line). MF thickness (Fig. 1H bottom) was measured at the dorsal portion of	212
CA3, at the level of the GCL dorsal blade ending (see red line in image). CA1 height (Fig. 4C) was	213
measured from the dorsal border with the corpus callosum to the ventral border with stratum	214
laconosum, perpendicular to the center of the pyramidal cell layer. Cells in the borders of ROI	215
were included in analysis. All quantifications were done by a blind experimenter.	216

Cell density quantification	218
Since the total volume of the GCL was significantly lower in VEGF/DTR ^{pomc} animals, cell numbers	219
were normalized per SGZ area in 3d images, as this parameter did not change significantly in	220
treated animals. The length of the SGZ (inner part of GCL) in every image was measured by	221
Olympus FV-1000 viewer software using the Dapi channel. The area calculation was achieved by	222
multiplying in the number of slices per image (usually 10-15) and the distance between slices	223
(1.46 μ m). Quantification of cells within this area (DCX, CldU or IdU) was done manually using the	224
same software by a blind experimenter.	225
To measure NeuN cell density, we encircled an area of $0.01 \mu m^2$ using Olympus FV-1000 viewer	226
software and counted manually NeuN+ cells within the area in a single slice. Cells in the borders o	f 227
the ROI were included in the analysis in all images.	228
	229
Microvascular density (MVD) quantification	230
Z-stacks were processed by Bitplane IMARIS 7.6.3 software. An area of 318X318X22.5 μ m,	231
including the hilus, GCL, and molecular layer, was analyzed. Surface function of the channel	232
including blood vessel staining was conducted and the total volume was measured by IMARIS	233
software (Detailed-average values-volume-sum). The ratio between blood vessel volume and the	234
total ROI was calculated.	235
	236
Even with entry and statistical analysis	237
Experimental design and statistical analysis	257
Both males and females (from 1 or more litters per experiment) were used. The numbers of	238
animals in each experiment, statistical tests and statistical values are summarized in Table 1.	239
Graphs include the value per each animal and the mean \pm SEM. Statistical comparisons were	240
computed using SPSS 19.0 software and consisted of <i>t</i> -tests, one-way, two-way and repeated	241

measure analyses of variance (ANOVAs), followed by the Tukey post hoc analyses. Prior to 242

statistical parametric tests, normality and homoscedasticity were assessed using the Shapiro-	243
Wilk test and Levene's Test for Equality of Variances.	244
	245
	246
	240
	247
Results	248
Specific ablation of DG neurons in a Diphtheria-toxin-based inducible system.	249
With the aim of inflicting substantial neuronal loss, specifically of mature GCs, we used	250
diphtheria toxin-based transgenic system in which Cre recombinase activity is driven by a	251
POMC promoter previously shown to be specifically expressed in DG neurons (McHugh et al.,	252
2007). Preparatory experiments using Ai9 TdTomato reporter validated that within the brain,	253
POMC-Cre indeed drives expression of the reporter transgene robustly in the DG (see Fig. 1A	254
for a scheme of transgenes used and Fig. 1B for results). Because the regenerative capacity of	255
the DG assumedly relies on DG-resident NSCs, it was crucial to show that NSCs will be	256
excluded from POMC-Cre-driven targeted transgenes. Visualizing NSCs with the aid of	257
transgenic Nestin-GFP reporter, known to highlight radial glia-like (RGL) NSCs (Mignone et al.,	258
2004), confirmed that this was indeed the case (Fig. 1 <i>B</i> , right). Co-staining hippocampal	259
sections for Doublecortin (DCX) to highlight differentiated neuroblasts showed that	260
neuroblasts are also negative for Ai9 TdTomato (Fig. 1C), thereby securing that, unlike	261
previously used DT-based neuronal ablation system causing widespread neuronal death	262
(Yamasaki et al., 2007; Myczek et al., 2014), only mature GCs would be subjected to ablation	263
with the aid of POMC-driven Cre recombinase.	264
To ablate GCs, POMC-Cre mice were crossed to mice harboring a Cre-inducible Diphtheria	265
toxin receptor (iDTR) transgene (Fig. 1 <i>D</i>) and double transgenic mice (dubbed DTR ^{pomc} mice)	266

were challenged with Diphtheria toxin (DT) using unilateral intra-hippocampal stereotactic DT	267
injection. Massive death of DG neurons was evidenced already by 5 days post-DT injection	268
(5dpi), marked by DG-specific immunoreactivity for cleaved Caspase-3. Noteworthy, cleaved	269
caspase-3 was not only detected in GC cell bodies but mostly in their dendrites extending to	270
the adjacent molecular layer (ML) (Fig. 1 <i>E</i> left). Apparent clustering of microglia in the granule	271
cell layer (GCL) provided additional, indirect evidence for DG-specific cell damage (Fig. 1E,	272
right).	273
The magnitude of the neuronal deficit was evaluated at 20 dpi where a marked reduction in	274
overall DG cellularity was evident and calculated to comprise more than half of DG neurons	275
(Fig. 1F left and middle and Fig. 1H for quantification). Mossy fiber (MF), the axonal tract	276
extended by GCs, highlighted by immunostaining for the Zinc transporter ZnT3 (Palmiter et al.,	277
1996), was also greatly reduced (Fig. 1 <i>G</i> , <i>H</i>).	278
	279
DG-resident NSCs drive full re-gain of lost neurons	280
DG-resident NSCs drive full re-gain of lost neurons The DT-based system of selective GC ablation described above provided us with a suitable	280 281
The DT-based system of selective GC ablation described above provided us with a suitable	281
The DT-based system of selective GC ablation described above provided us with a suitable platform for examining whether, and to what extent the DG can recover from such massive	281 282
The DT-based system of selective GC ablation described above provided us with a suitable platform for examining whether, and to what extent the DG can recover from such massive damage. To determine whether the substantial neuronal loss evidenced at 20 dpi can be	281 282 283
The DT-based system of selective GC ablation described above provided us with a suitable platform for examining whether, and to what extent the DG can recover from such massive damage. To determine whether the substantial neuronal loss evidenced at 20 dpi can be repaired, and in order to allow sufficient time for regeneration, DT-treated brains of littermate	281 282 283 284
The DT-based system of selective GC ablation described above provided us with a suitable platform for examining whether, and to what extent the DG can recover from such massive damage. To determine whether the substantial neuronal loss evidenced at 20 dpi can be repaired, and in order to allow sufficient time for regeneration, DT-treated brains of littermate mice were retrieved for analysis 70 days later (i.e., at 90 dpi). Remarkably, the neuronal deficit	281 282 283 284 285
The DT-based system of selective GC ablation described above provided us with a suitable platform for examining whether, and to what extent the DG can recover from such massive damage. To determine whether the substantial neuronal loss evidenced at 20 dpi can be repaired, and in order to allow sufficient time for regeneration, DT-treated brains of littermate mice were retrieved for analysis 70 days later (i.e., at 90 dpi). Remarkably, the neuronal deficit was found to be nearly fully rectified and the intact DG cellularity restored. This was	281 282 283 284 285 286
The DT-based system of selective GC ablation described above provided us with a suitable platform for examining whether, and to what extent the DG can recover from such massive damage. To determine whether the substantial neuronal loss evidenced at 20 dpi can be repaired, and in order to allow sufficient time for regeneration, DT-treated brains of littermate mice were retrieved for analysis 70 days later (i.e., at 90 dpi). Remarkably, the neuronal deficit was found to be nearly fully rectified and the intact DG cellularity restored. This was evidenced in the restoration of normal DG height, GCL thickness, recovery of the MF and	281 282 283 284 285 286 287
The DT-based system of selective GC ablation described above provided us with a suitable platform for examining whether, and to what extent the DG can recover from such massive damage. To determine whether the substantial neuronal loss evidenced at 20 dpi can be repaired, and in order to allow sufficient time for regeneration, DT-treated brains of littermate mice were retrieved for analysis 70 days later (i.e., at 90 dpi). Remarkably, the neuronal deficit was found to be nearly fully rectified and the intact DG cellularity restored. This was evidenced in the restoration of normal DG height, GCL thickness, recovery of the MF and regaining the initial number of NeuN-positive DG neurons (Fig. 1 <i>F-H</i>).	281 282 283 284 285 286 287 288
The DT-based system of selective GC ablation described above provided us with a suitable platform for examining whether, and to what extent the DG can recover from such massive damage. To determine whether the substantial neuronal loss evidenced at 20 dpi can be repaired, and in order to allow sufficient time for regeneration, DT-treated brains of littermate mice were retrieved for analysis 70 days later (i.e., at 90 dpi). Remarkably, the neuronal deficit was found to be nearly fully rectified and the intact DG cellularity restored. This was evidenced in the restoration of normal DG height, GCL thickness, recovery of the MF and regaining the initial number of NeuN-positive DG neurons (Fig. 1 <i>F-H</i>). To determine whether this regenerative capacity is driven by resident NSCs, brains were	281 282 283 284 285 286 287 288 289

neuronal loss, the number of Nestin-GFP ⁺ NSCs was not reduced (Fig. 2 <i>B</i>). Morphologically,	293
RGL-type NSCs in DTR ^{pomc} mice appeared to possess a major apical shaft and to lose the fine	294
tree-like apical processes, a configuration previously shown to represent a reactive NSCs	295
morphology (Sierra et al., 2015; Licht et al., 2016) (Fig. 2 <i>B</i> , bottom). To follow the fate of	296
dividing cells, the thymidine analog Chloro-deoxyuridine (CldU) was injected at 15-16 dpi, i.e.,	297
4-5 days before brain retrieval. Intensive cell labeling was detected in the GCL of DTR ^{pomc} mice	298
compared to the low basal neurogenic level observed in control mice (Fig. 2C). A significant	299
fraction of NSCs was labeled with CldU (cells identified as $\text{GFP}^+/\text{CldU}^+$) (Fig. 2 <i>D</i> , <i>F</i>). Further	300
support to the contention that regeneration is driven by local NSCs comes from the	301
observation of discernible 'clones' composed of progenitors (cells with no radial shaft)	302
clustered around a proliferating RGL-type NSC, all positive for CldU (Fig. 2D right). The total	303
number of DCX+ neuroblasts, as well as the number of early neuroblasts (co-labeled with	304
CldU), were also higher in DTR ^{pomc} mice (Fig. 2 <i>E,F</i>). Active neuroblasts appeared to lose their	305
typical morphology and to cluster at aberrant locales (Fig. 2E), as was shown for epilepsy	306
models (Jessberger et al., 2007). To show that neuroblasts eventually differentiate into	307
mature neurons, CldU was pulse-labeled at 60dpi and CldU * /NeuN * mature neurons were	308
enumerated at 90 dpi (Fig. 2G). Results confirmed a dramatic increase in newly-added mature	309
neurons in the regenerated DG (Fig. 2H). Taken together, these findings attest to the ability of	310
DG NSCs to drive full recovery of the DG following a massive injury. It should be noted,	311
however, that even though normal cellularity was achieved at 90 dpi, cleaved-caspase 3 and	312
activated microglia were still evident in the DG, indicative of ongoing injury (Fig. 2/). We,	313
therefore, sought an additional system where the damage and regeneration phases are	314
completely uncoupled.	315
	316

Inflicting DG-specific neuronal loss by long-term exposure to ectopic VEGF

	To corroborate that the DG can recover from extensive damage associated with massive
	neuronal loss, we examined its regenerative potential following a DG-specific injury of a
	different nature.
ţ	To this end, we used a transgenic platform allowing for brain-specific induction of ectopic
	VEGF in a conditional and reversible manner. Briefly, the system used was a bi-transgenic
	mouse system composed of a tetracycline-regulated, CamkIIa promoter-trans-activator
S	(CamkII α -tTA 'driving' transgene (Mayford et al., 1996) and a tet-VEGF165 'responder'
n	transgene (Fig. 3A). This system was previously used by us to uncover a role for VEGF in
J D	reversible modulations of neuronal plasticity (Licht et al., 2011) and a role in the enhancer
19	of adult hippocampal neurogenesis (Licht et al., 2016), but was later found to be associate
2	with a substantial DG-specific damage whenever ectopic VEGF over-expression continued
ci Accepted Manuscript	a period exceeding two months. In our previous studies, VEGF was induced for up to one
	month, a period proven sufficient for eliciting sustained neurogenic enhancement, and the
D	de-induced, conditions under which no hippocampal damage could be detected (Licht et a
Ð	2016).
Ö	Here, VEGF induction was extended for a period of several months, conditions under whic
	excessive VEGF led to not only angiogenic and neurogenic responses but was also associat
	with substantial selective DG damage underscoring the exceptional vulnerability of the DG
	(see below).
S	
2 C	The nature and selectivity of DG injury
D	To evaluate the magnitude of VEGF-induced damage, VEGF was induced in mature 2 mont
	old CamkIIa-tTA: tet-VEGF double transgenic mice and continuously kept in the 'VEGF-ON'
JNeuros	mode. Brains retrieved at monthly intervals (Fig. 3B) were sectioned and immunostained f
	the neuroblast marker DCX (Fig. 3 <i>C</i>) and for the pan-neuronal marker NeuN (Fig. 3 <i>D</i>). Resu

VEGF in a conditional and reversible manner. Briefly, the system used was a bi-transgenic
mouse system composed of a tetracycline-regulated, Camkll α promoter-trans-activator
(CamkII α -tTA 'driving' transgene (Mayford et al., 1996) and a tet-VEGF ₁₆₅ 'responder'
transgene (Fig. 3A). This system was previously used by us to uncover a role for VEGF in
reversible modulations of neuronal plasticity (Licht et al., 2011) and a role in the enhancemen
of adult hippocampal neurogenesis (Licht et al., 2016), but was later found to be associated
with a substantial DG-specific damage whenever ectopic VEGF over-expression continued for
a period exceeding two months. In our previous studies, VEGF was induced for up to one
month, a period proven sufficient for eliciting sustained neurogenic enhancement, and then
de-induced, conditions under which no hippocampal damage could be detected (Licht et al.,

Here, VEGF induction was extended for a period of several months, conditions under which 333 excessive VEGF led to not only angiogenic and neurogenic responses but was also associated 334 with substantial selective DG damage underscoring the exceptional vulnerability of the DG 335 (see below). 336

338

337

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

role in the enhancement

To evaluate the magnitude of VEGF-induced damage, VEGF was induced in mature 2 month-	339
old CamkII α -tTA: tet-VEGF double transgenic mice and continuously kept in the 'VEGF-ON'	340
mode. Brains retrieved at monthly intervals (Fig. 3B) were sectioned and immunostained for	341
the neuroblast marker DCX (Fig. 3C) and for the pan-neuronal marker NeuN (Fig. 3D). Results	342
showed an enhanced neurogenic response that persists for several months (when natural	343

neurogenesis subsided with age) and ceased only by 7 months from the onset of VEGF	344
overexpression (Fig. 3C). Concomitantly, there was a substantial, progressive reduction in the	345
number of detectable mature DG neurons (Fig. 3D).	346
We wished to examine whether the detrimental response to VEGF is region-specific. With the	347
aid of tet-GFP responder mouse (Fig. 4A), we aimed to examine the expression pattern	348
dictated by the CamKII α -tTA driver line. We were able to demonstrate a higher GFP expression	349
in the CA1 in comparison with the DG (right). Similarly, using the TET-VEGF as a responder line	350
(induced for 4 months), we showed that endothelial cells of the CA1 and the DG were equally	351
responsive to VEGF - as judged by a comparable angiogenic response elicited by VEGF in both	352
DG and CA1 (Fig. 4B). However, only the former showed clear evidence of neuronal damage	353
due to the observation that the CA1 pyramidal cell density and height did not decrease (Fig.	354
4C). These findings reinforce the notion of exceptional DG vulnerability in comparison to	355
other regions of the hippocampus. A further indication for the DG-specific VEGF-induced	356
toxicity was apparent DG-restricted caspase-3 activation (Fig. 4D top, shown for the whole	357
brain) and, indirectly, also DG-specific astrogliosis and microgliosis manifested in clustering of	358
astrocytes and microglia in the injured DG but not in the CA1 (Fig. 4D middle and bottom).	359
The kinetics of activation cleaved caspase 3, astrocytes and microglia after 1 and 3 months of	360
VEGF induction are presented in Fig. 4E. While caspase 3 and astrocytes are highly activated	361
only at 3 months from VEGF induction, microglia are activated at an earlier time point. Active	362
microglia populate the DG specifically, as early as 3 days from VEGF induction (Kreisel et al.,	363
2018) and may serve as the trigger for the selective response of the DG to VEGF.	364
VEGF is known as a neuroprotective agent (Jin et al., 2000; Oosthuyse et al., 2001). Here we	365
show that under certain conditions, VEGF could become neurotoxic. The mechanism for GCs-	366
selective neurotoxicity is not clear. The possibility that DG degeneration is secondary to	367
excessive VEGF-induced vascular leakage was ruled out this option by showing that blood	368
vessels in the DG are not leaky (Fig. 5A). Likewise, the possibility that the CamkII α -tTA	369

transgene employed may on its own induce DG degeneration (Sirerol-Piquer et al., 2011; Han	370
et al., 2012; Melnikova et al., 2016; Watanabe et al., 2016; Kukreja et al., 2018) was ruled out	371
by showing that without the VEGF-responder transgene no damage was incurred (Fig. 5 <i>B-D</i>).	372
Also, DG degeneration and enhanced ectopic neurogenesis were reproduced using	373
Intrahippocampal injection of VEGF-encoding Adeno-associated virus (AAV) (Fig. 5 <i>E</i>).	374

Re-gain of normal DG cellularity and morphological features following VEGF withdrawal.	376
In light of our findings that DG regeneration in the DT model relies on NSC-driven	377
neurogenesis (Fig. 2), together with findings that DG neurogenesis in rodents precipitously	378
declines with age (Ben Abdallah et al., 2010; Encinas et al., 2011), the time point of 3 months	379
post-VEGF induction was selected as the 'baseline' for repair (Fig. 6). As in the DTR ^{pomc} model,	380
neuronal loss was measured as reduced GCL thickness, reduced density of NeuN $^{\scriptscriptstyle +}$ neurons, DG	381
height (which includes also the space occupied by GC dendrites and axons) and MF thickness.	382
Three months after continual VEGF exposure, GCL thickness was reduced by more than 60%	383
and the density of GCL cell bodies and the total height of the DG by 40% (Fig. 6 <i>B,D</i>). The	384
thickness of the MF layer (visualized by ZnT3 immunostaining) was also dramatically reduced	385
(Fig. 6 <i>C,D</i>).	386
(Fig. 6 <i>C,D</i>). To examine the regenerative potential of the injured DG, the damaging insult was terminated	386 387
To examine the regenerative potential of the injured DG, the damaging insult was terminated	387
To examine the regenerative potential of the injured DG, the damaging insult was terminated by 'switching-off' VEGF (re-addition of tetracycline to the drinking water). On the basis of our	387 388
To examine the regenerative potential of the injured DG, the damaging insult was terminated by 'switching-off' VEGF (re-addition of tetracycline to the drinking water). On the basis of our previous studies showing that VEGF levels in brain parenchyma return to basal low levels	387 388 389
To examine the regenerative potential of the injured DG, the damaging insult was terminated by 'switching-off' VEGF (re-addition of tetracycline to the drinking water). On the basis of our previous studies showing that VEGF levels in brain parenchyma return to basal low levels within a couple of weeks from tetracycline addition (Licht et al., 2011), and to allow sufficient	387 388 389 390
To examine the regenerative potential of the injured DG, the damaging insult was terminated by 'switching-off' VEGF (re-addition of tetracycline to the drinking water). On the basis of our previous studies showing that VEGF levels in brain parenchyma return to basal low levels within a couple of weeks from tetracycline addition (Licht et al., 2011), and to allow sufficient time for regeneration, brains were retrieved for analysis 3 months after VEGF de-induction	387 388 389 390 391
To examine the regenerative potential of the injured DG, the damaging insult was terminated by 'switching-off' VEGF (re-addition of tetracycline to the drinking water). On the basis of our previous studies showing that VEGF levels in brain parenchyma return to basal low levels within a couple of weeks from tetracycline addition (Licht et al., 2011), and to allow sufficient time for regeneration, brains were retrieved for analysis 3 months after VEGF de-induction (on>off, Fig. 6A). As shown in Fig. 6B-D, the neuronal deficit was repaired in the majority of	387 388 389 390 391 392

at different time points during recovery. The graph presented in Fig. 3D is shown again with396the on>off group (Fig. 6E). All damage-associated markers (e.g cleaved-caspase 3, active397microglia and astrogliosis) were barely detected after 3 months of VEGF withdrawal (Fig. 4E,398bottom).399

Changes in neurogenesis rate and differentiation during degeneration and regeneration	401
VEGF-induced neurogenesis during degeneration (3m on) and regeneration (3m on/2m off)	402
was examined at the level of NSCs with the aid of Nestin-GFP mice. Iodo-deoxyuridine	403
(Melander et al.) was injected 1-2 days before brain retrieval (Fig. 7A). While the total	404
numbers of NSCs were slightly reduced in the degenerated DG (Fig. 7B and Fig. 7D, left), the	405
numbers of active (IdU+) NSCs were significantly higher in both 'on' and 'on>off' groups (Fig.	406
7C,D). In the control DG, NSCs appear as typical tree-like cells and their apical processes are	407
associated with blood vessels (Fig. 7 <i>B</i> , bottom images) (see further data for NSC-BV	408
association in (Licht and Keshet, 2015; Moss et al., 2016)). In both 'on' and 'on>off' groups,	409
NSCs acquire a modified morphology, lose the majority of the apical fine processes (their	410
apical major shaft still in contact with blood vessels) (Fig. 7 <i>B</i> , insets and Fig. 7 <i>C</i>) and also send	411
some cellular projections into the hilus (Fig. 7C). Modification of NSCs morphology was	412
reported earlier to be associated with Kainic-acid treatment (reactive-type NSCs) (Sierra et al.,	413
2015).	414
To reconcile the seemingly paradoxical situation of a higher rate of neuroblast production and	415
yet progressive decrease in the number of mature DG neurons, we measured the fraction of	416
newborn neuroblasts eventually differentiating into mature neurons. To this end, 3 months	417
from the onset of VEGF induction mice were pulse-labeled with CldU and sacrificed 3 weeks	418
thereafter in order to allow sufficient time for newborn neuroblasts to differentiate into	419
mature NeuN+ neurons (Fig. 8A,B). Unlike a higher (~5 fold) rate of NSCs divisions (Fig. 7D) and	420
similar increase in neuroblast production (DCX $^{+}$ cells, Fig. 8C), the number of newly-added	421

mature neurons was marginal (1.37-fold more $CldU^{+}/NeuN^{+}$ cells in 3m on mice, Fig. 8B),	422
suggestive of non-productive neurogenesis in which only a minor fraction of neuroblasts	423
eventually mature. Another indication of aberrant neurogenesis was that resembling the	424
situation in epilepsy models, (Jessberger et al., 2007; Cho et al., 2015), DCX^+ cells were found	425
in ectopic locations such as in the inner molecular layer and the hilus (Fig. 8C, insets).	426
Interestingly, neurogenesis during the repair phase continued at the same high rate observed	427
prior to VEGF de-induction, quantified through enumeration of both proliferating NSCs and	428
DCX^{+} neuroblasts as 4-fold higher than neurogenesis in non-injured littermate controls (Fig. 7D	429
and Fig. 8C, respectively). However, unlike non-productive neurogenesis under prolonged,	430
ongoing VEGF over-expression, neuroblasts generated during the repair period survived and	431
successfully differentiated to mature NeuN * neurons. This was evidenced in a ~4-fold increase	432
of CldU+NeuN+ cells compared to control or VEGF-on animals (Fig. 8B).	433
We measured the numbers of 3-weeks old DCX cells (CldU ⁺ DCX ⁺), a population of late	434
neuroblasts entering the final step of differentiation (Fig. 8D). This population was	435
proportional to the total numbers of DCX cells in all groups, leading to the conclusion that	436
newborn GCs are eliminated in the VEGF-on group subsequent to the $DCX^{^+}$ stage.	437
An additional indication that prolonged VEGF exposure results in aberrant neurogenesis was	438
obtained by following NSC descendants using lineage tracing. Briefly, NSCs were marked by	439
crossing Gli1-Cre ^{ERT2} mice (Ahn and Joyner, 2004) with a floxed- Ai9 TdTomato reporter mice	440
and bred onto the VEGF switchable system (Fig. 8 <i>E-H</i>). NSCs and their descendants were then	441
visualized at different time points post VEGF induction and tamoxifen administration (short	442
tamoxifen pulse highlight NSCs while longer tamoxifen pulses highlight their descendants).	443
Results showed that while at 1.5 months after VEGF induction, newborn GCs with normal	444
appearance were still observed (Fig. 8G, section iii), 1.5 months later, normal GCs were no	445
longer detected. Instead, cells projecting to unusual areas and abnormal cells devoid of	446
dendritic spines and even cells with no projections were evident (Fig. 8G section iv). Also,	447

NSCs discernible by their radial morphology acquire the modified morphology in the sense of	448
losing the apical fine processes and projecting some distal processes into the hilus in addition	449
to the molecular layer to where they are normally directed (Fig. 8G, sections iii, v, vii, and Fig.	450
7C). Newly-formed GCs in the regenerated DG, visualized through lineage tracing as above,	451
were shown to have normal morphology marked by proper development of dendritic spines,	452
indicative of synapse formation (Fig. 8G sections vi, vii). We summarized the relative numbers	453
of NSC/GC normal and abnormal morphology of every experimental group in Fig. 8 <i>H</i> .	454
Together, findings suggest that neurogenesis in the repair phase is productive and has the	455
capability of replacing lost neurons by the addition of newborn GC.	456
	457
DG regeneration is marked by the restoration of functional GCs connectivity and re-gain of	458

impaired learning and memory.

We have shown that newborn GCs during regeneration ('on>off') have a properly-oriented MF	460
and dendrites comprising dendritic spines, indicative of new synapse formation (Fig. 8G	461
sections vi, vii). To determine whether regenerated GCs (as in the protocol illustrated in Fig.	462
9A) re-establish lost functional connections, we examined perforant path connectivity, i.e., the	463
pathway connecting afferent entorhinal cortex with the DG and also constituting the major	464
input pathway to the DG. To this end, afferent fibers of the perforant path were stimulated in	465
acute coronal hippocampal slices and excitatory postsynaptic potential (EPSP) was recorded in	466
GCs located at the upper blade of the DG (Fig. 9B). A typical 1.5mV EPSP measured in the non-	467
injured DG was found to be reduced to 0.2 mV by the end of the 3-month exposure to VEGF,	468
indicating a barely functional perforant path. Regeneration led to partial but highly significant	469
perforant path recovery measured as 0.6mV EPSP and a response curve resembling intact DG	470
(Fig. 9 <i>C,D</i>). Together with findings that all measured EPSP responses were inhibited by the	471
glutamatergic inhibitors APV and CNQX (data not shown), we conclude that regenerated DG	472
GCs establish functional glutamatergic synapses with entorhinal cortex neurons.	473

Anticipating that a DG damage of the magnitude shown in the 'VEGF-on' mice will lead to a	474
significant cognitive deficit, we examined whether the anticipated cognitive loss is rectifiable	475
by DG regeneration. To this end, mice were subjected to a radial arm water maze (RAWM)	476
test (Alamed et al., 2006; Fujisaki et al., 2014). Briefly, mice were first trained daily for 5	477
consecutive days to locate a submerged platform hidden in one of the arms and their learning	478
and memory skills were tested by determining the number of trial-and-error attempts	479
required to find the hidden platform. Each mouse was trained and tested three times: before	480
VEGF induction, 3 months post-VEGF induction ('VEGF on') and 3 months after VEGF de-	481
induction ('VEGF on>off') (Fig. 9E). While there was no difference between control and VEGF	482
groups at baseline, VEGF-induced DG damage led to learning/memory impairment, reflected	483
by more erroneous attempts before finding the platform. Following regeneration, impaired	484
learning/memory was fully rectified, equalizing the performance of most treated mice to that	485
of untreated littermates (Fig. 9F). The 5-day training progress for each one of the time points	486
is presented in Fig. 9G. These results suggest that newly-born neurons produced during the	487
repair phase may be functional, at least with respect to spatial learning and memory.	488

Regenerative potential of the DG is lost in old mice490

Considering that hippocampal neurogenesis in rodents precipitously declines with age 491 reaching a negligible level by the age of 9-12 months (Kuhn et al., 1996; Ben Abdallah et al., 492 2010; Encinas et al., 2011; Licht et al., 2016), it was of interest to determine whether 493 regenerative potential also declines with age. To this end, VEGF induction and subsequent de-494 induction (for a period of 3 months each) were delayed such that the onset of VEGF induction 495 was postponed to the age of 6 or 12 months (implying that regeneration was examined in 12 496 and 18 month-old mice, respectively, instead of in 8 month-old mice, as before (Fig. 10A)). 497 It was first required I to ensure that a comparable DG injury is also elicited at older ages, i.e., 498 that VEGF inducibility and responsiveness are not blunted with age. Preparatory experiments 499

showed that, at least with respect to the angiogenic response of VEGF, the aged (18m)	500
hippocampus is as responsive as the young hippocampus (Fig. 10B). More directly, evaluation	501
of the DG damage inflicted by VEGF exposure revealed a comparable decrease in DG	502
cellularity and size in young and old mice (Fig. 10 <i>B-F</i>). Twelve-month-old mice were still	503
capable of mounting an efficient repair, evidenced by restoration of DG cellularity, size, and	504
presence of the MF axonal layer in the majority of animals (but not all) (Fig. 10 <i>B,E,F</i>). In	505
contrast, 18 month-old mice appeared to have completely lost their regenerative capacity	506
evidenced by a dramatically-reduced production of both DCX+ neuroblasts and NeuN+	507
neurons (Fig. 10 <i>C,D</i>) and undetectable ZnT3+ MF (Fig. 10 <i>B,E</i>). Cognitive decline and	508
restoration could not be measured in this group of animals measured in this age group due to	509
their deteriorated physical state precluding RAWM testing. These findings thus indicate that,	510
in parallel to the age-related decay of DG neurogenesis, there is also a progressive loss in DG	511
repair capability.	512

514

Discussion

The functional significance of adult hippocampal neurogenesis has been the subject for 515 intensive research in the last three decades, with most studies attributing to added 516 hippocampal neurons a role in learning and memory enhancement, depression and social 517 behavior (Lee and Agoston, 2010; Marin-Burgin and Schinder, 2012; Toda and Gage, 2017). 518 Little is known, however, whether the capacity of neuron production during adult life also 519 serves the purpose of post-injury regeneration (Peng and Bonaguidi, 2018). The proposition of 520 adult neurogenesis designated for regeneration was addressed through inflicting substantial 521 DG-restricted damage using two unrelated methods and monitoring subsequent DG 522 regeneration. Importantly, in the two model systems used, namely DT-aided GC ablation and 523

massive GC loss following sustained overexpression of ectopic VEGF, DG cellularity was	524
dramatically reduced while NSCs were fully spared.	525
An intrinsic mechanism to cope with neuronal damage is of particular significance in the case	526
of the DG given its exceptional vulnerability to many insults such as virus-induced encephalitis	527
(Wu et al., 2013), exposure to chemicals (Bruccoleri et al., 1998; Choi et al., 2014; Choi et al.,	528
2017) adrenalectomy/adrenal insufficiency (Spanswick et al., 2007; Spanswick et al., 2011;	529
Izumida et al., 2017) Alzheimer's disease and frontotemporal lobe degeneration (Small et al.,	530
2011; Armstrong et al., 2012; Adler et al., 2018). Our study adds yet another example for a	531
selective DG vulnerability, namely, selective apoptosis of DG neurons following prolonged	532
exposure to ectopic VEGF (a situation that can be physiologically relevant in the case of CNS	533
tumors).	534
Could it be then that the DG neurogenic system serves as a backup system for homeostatic	535
maintenance for this vulnerable organ? This would provide an additional rationale for the	536
continued presence of NSCs in this specific locale. Notably, in comparison with the situation in	537
mice where NSC-driven neurogenesis subsides with age, some findings show evidence for	538
remaining neurogenesis in the adult human DG (Eriksson et al., 1998; Spalding et al., 2013;	539
Boldrini et al., 2018), giving the option for a repair in old age.	540
Currently, we do not know why prolonged exposure to ectopic VEGF leads to hippocampal	541
injury and, particularly, why the damage is restricted to DG GCs. Possible mechanisms of	542
VEGF-induced neurotoxicity to be considered include: 1) Hyper-excitability and resultant	543
glutamate toxicity due to increased LTP response, previously shown by us to be enhanced by	544
VEGF in a reversible manner (Licht et al., 2011), a possibility also compatible with findings that	545
NMDA receptor modulations in the hippocampus were shown to induce DG-specific	546
degeneration while sparing the CA1 (Watanabe et al., 2016). 2) DG-specific damage could, in	547
principle, be attributed to detrimental effects of ectopic neurogenesis (Cho et al., 2015). This	548
possibility is, however, less likely considering that VEGF induces GCs death in aged mice	549

(where neurogenesis is negligible) 3) DG selectivity of VEGF-induced damage might also be 550 related to VEGF-induced microglia activation which we found to be specific to the DG and 551 precedes angiogenesis (Kreisel et al., 2018). Other possible explanations linked to the 552 experimental tet system used were tested and precluded (Fig. 5). Regardless of the 553 mechanism(s) underlying VEGF-induced neurotoxicity, both the magnitude of damage and its 554 DG-restricted nature have provided us with a suitable platform for monitoring regeneration. 555 Attesting for the remarkable regenerative potential of the DG was a significant restoration of 556 DG cellularity (although not always achieving full recovery), proper rewiring of regenerated 557 neurons and re-acquisition of lost spatial memory. The latter, however, was only 558 demonstrated in the model of VEGF-induced DG injury, because in the DTR^{pomc} model, injured 559 mice were still performing as well as untreated mice. 560 How the damage is sensed and the nature of factors triggering DG regeneration remains to be 561 examined. Intriguingly, DG neurogenesis can be elicited not only in response to local signals 562 but also in response to remote signals evidenced by a neurogenic response in the non-injured 563 contralateral DG and even upon injury of other brain regions such as following a traumatic 564 brain injury or cortical stroke (Jin et al., 2001; Zepeda et al., 2013; Wang et al., 2015). 565 Interestingly, in our regeneration models, the addition of newborn neurons fully replaced lost 566 GCs but the regenerated DG did not exceed its normal cellularity suggesting that a size control 567 568 mechanism may exist. The study shows that DG regeneration is solely driven by resident NSCs, thus anticipating (and 569 indeed shown) that age-related NSC exhaustion will be reflected in age-related loss of 570 regenerative potential. The ability to promote marked regeneration of DG morphology and 571 functions by intrinsic stem cells is unique particularly when considering that SVZ-born NSCs, 572 while capable of homing to remote injured brain areas (Nakatomi et al., 2002; Zhang et al., 573 2004; Grade et al., 2013) do not properly integrate and contribute to functional repair (Gould 574 and Tanapat, 1997; Grade et al., 2013; Inta and Gass, 2015; Madathil and Saatman, 2015). One 575

notable difference in this regard is that, in the case of the hippocampus, newborn neurons	576
remain in the boundaries of the DG and their integration in the existing network takes place	577
within their natural microenvironment.	578
Demonstrating selective DG vulnerability and the ability of DG NSCs to promote repair	579
highlights the regenerative designation of DG neurogenesis in the same line with its roles in	580
learning and memory and gives an explanation for its presence particularly in this unique brain	581
compartment.	582
	583
	584
References	585
Adler DH et al. (2018) Characterizing the human hippocampus in aging and Alzheimer's disease using a computational atlas derived from ex vivo MRI and histology. Proc Natl	586 587
Acad Sci U S A 115:4252-4257. Ahn S, Joyner AL (2004) Dynamic changes in the response of cells to positive hedgehog signaling during mouse limb patterning. Cell 118:505-516.	588 589 590
Aimone JB, Deng W, Gage FH (2011) Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation. Neuron 70:589-596.	591 592
Alamed J, Wilcock DM, Diamond DM, Gordon MN, Morgan D (2006) Two-day radial-arm water maze learning and memory task; robust resolution of amyloid-related memory deficits in transgenic mice. Nat Protoc 1:1671-1679.	593 594 595
Armstrong RA, Carter D, Cairns NJ (2012) A quantitative study of the neuropathology of 32 sporadic and familial cases of frontotemporal lobar degeneration with TDP-43 proteinopathy (FTLD-TDP). Neuropathol Appl Neurobiol 38:25-38.	595 596 597 598
Beard C, Hochedlinger K, Plath K, Wutz A, Jaenisch R (2006) Efficient method to generate single-copy transgenic mice by site-specific integration in embryonic stem cells. Genesis 44:23-28.	598 599 600 601
Ben Abdallah NMB, Slomianka L, Vyssotski AL, Lipp HP (2010) Early age-related changes in adult hippocampal neurogenesis in C57 mice. Neurobiol Aging 31:151-161.	602 603
Boldrini M, Fulmore CA, Tartt AN, Simeon LR, Pavlova I, Poposka V, Rosoklija GB, Stankov A, Arango V, Dwork AJ, Hen R, Mann JJ (2018) Human Hippocampal Neurogenesis Persists throughout Aging. Cell Stem Cell 22:589-599 e585.	604 605 606
Bruccoleri A, Brown H, Harry GJ (1998) Cellular localization and temporal elevation of tumor necrosis factor-alpha, interleukin-1 alpha, and transforming growth factor-beta 1 mRNA in hippocampal injury response induced by trimethyltin. J Neurochem 71:1577-	607 608 609
1587. Cho KO, Lybrand ZR, Ito N, Brulet R, Tafacory F, Zhang L, Good L, Ure K, Kernie SG, Birnbaum SG, Scharfman HE, Eisch AJ, Hsieh J (2015) Aberrant hippocampal neurogenesis	610 611 612
contributes to epilepsy and associated cognitive decline. Nat Commun 6:6606. Choi BY, Hong DK, Suh SW (2017) ZnT3 Gene Deletion Reduces Colchicine-Induced Dentate Granule Cell Degeneration. Int J Mol Sci 18.	613 614 615

Choi BY, Lee BE, Kim JH, Kim HJ, Sohn M, Song HK, Chung TN, Suh SW (2014) Colchicine induced intraneuronal free zinc accumulation and dentate granule cell degeneration. Metallomics 6:1513-1520.	616 617 618
Collins M, Riascos D, Kovalik T, An J, Krupa K, Hood BL, Conrads TP, Renton AE, Traynor BJ,	619
Bowser R (2012) The RNA-binding motif 45 (RBM45) protein accumulates in inclusion	620
bodies in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) patients. Acta Neuropathol 124:717-732.	621 622
Encinas JM, Michurina TV, Peunova N, Park JH, Tordo J, Peterson DA, Fishell G, Koulakov A,	623
Enikolopov G (2011) Division-coupled astrocytic differentiation and age-related	624
depletion of neural stem cells in the adult hippocampus. Cell Stem Cell 8:566-579.	625
Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH	626
(1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313-1317.	627
Fujisaki K, Tsuruya K, Yamato M, Toyonaga J, Noguchi H, Nakano T, Taniguchi M, Tokumoto M,	628
Hirakata H, Kitazono T (2014) Cerebral oxidative stress induces spatial working	629
memory dysfunction in uremic mice: neuroprotective effect of tempol. Nephrol Dial	630
Transplant 29:529-538.	631
Gould E, Tanapat P (1997) Lesion-induced proliferation of neuronal progenitors in the dentate	632
gyrus of the adult rat. Neuroscience 80:427-436.	633
Grade S, Weng YC, Snapyan M, Kriz J, Malva JO, Saghatelyan A (2013) Brain-derived	634
neurotrophic factor promotes vasculature-associated migration of neuronal	635
precursors toward the ischemic striatum. PLoS One 8:e55039.	636
Gray WP, Sundstrom LE (1998) Kainic acid increases the proliferation of granule cell	637
progenitors in the dentate gyrus of the adult rat. Brain Res 790:52-59.	638
Han HJ, Allen CC, Buchovecky CM, Yetman MJ, Born HA, Marin MA, Rodgers SP, Song BJ, Lu	639
HC, Justice MJ, Probst FJ, Jankowsky JL (2012) Strain background influences	640
neurotoxicity and behavioral abnormalities in mice expressing the tetracycline	641
transactivator. J Neurosci 32:10574-10586.	642
Hattiangady B, Rao MS, Shetty AK (2004) Chronic temporal lobe epilepsy is associated with	643
severely declined dentate neurogenesis in the adult hippocampus. Neurobiol Dis	644
17:473-490.	645
Heinemann U, Beck H, Dreier JP, Ficker E, Stabel J, Zhang CL (1992) The dentate gyrus as a	646
regulated gate for the propagation of epileptiform activity. Epilepsy Res Suppl 7:273-	647
280.	648
Houser CR (1992) Morphological changes in the dentate gyrus in human temporal lobe	649
epilepsy. Epilepsy Res Suppl 7:223-234.	650
Inta D, Gass P (2015) Is forebrain neurogenesis a potential repair mechanism after stroke? J	651
Cereb Blood Flow Metab 35:1220-1221.	652
Izumida H, Takagi H, Fujisawa H, Iwata N, Nakashima K, Takeuchi S, Iwama S, Namba T,	653
Komatu Y, Kaibuchi K, Oiso Y, Arima H, Sugimura Y (2017) NMDA receptor antagonist	654
prevents cell death in the hippocampal dentate gyrus induced by hyponatremia	655
accompanying adrenal insufficiency in rats. Exp Neurol 287:65-74.	656
Jessberger S, Zhao C, Toni N, Clemenson GD, Jr., Li Y, Gage FH (2007) Seizure-associated,	657
aberrant neurogenesis in adult rats characterized with retrovirus-mediated cell	658
labeling. J Neurosci 27:9400-9407.	659
Jin K, Minami M, Lan JQ, Mao XO, Batteur S, Simon RP, Greenberg DA (2001) Neurogenesis in	660
dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia	661
in the rat. Proc Natl Acad Sci U S A 98:4710-4715.	662
Jin KL, Mao XO, Greenberg DA (2000) Vascular endothelial growth factor: Direct	663
neuroprotective effect in in vitro ischemia. P Natl Acad Sci USA 97:10242-10247.	664
Kivela R, Hemanthakumar KA, Vaparanta K, Robciuc M, Izumiya Y, Kidoya H, Takakura N, Peng	665
X, Sawyer DB, Elenius K, Walsh K, Alitalo K (2019) Endothelial Cells Regulate	666

Physiological Cardiomyocyte Growth via VEGFR2 -Mediated Paracrine Signaling. Circulation.	667 668
Kovacs GG et al. (2013) Neuropathology of the hippocampus in FTLD-Tau with Pick bodies: a	669
study of the BrainNet Europe Consortium. Neuropathol Appl Neurobiol 39:166-178.	670
Kreisel T, Wolf B, Keshet E, Licht T (2018) Unique role for dentate gyrus microglia in neuroblast	671
survival and in VEGF-induced activation. Glia.	672
Krook-Magnuson E, Armstrong C, Bui A, Lew S, Oijala M, Soltesz I (2015) In vivo evaluation of the dentate gate theory in epilepsy. J Physiol.	673 674
Kuhn HG, DickinsonAnson H, Gage FH (1996) Neurogenesis in the dentate gyrus of the adult	675
rat: Age-related decrease of neuronal progenitor proliferation. Journal of	676
Neuroscience 16:2027-2033.	677
Kukreja L, Shahidehpour R, Kim G, Keegan J, Sadleir KR, Russell T, Csernansky J, Mesulam M,	678
Vassar RJ, Wang L, Dong H, Geula C (2018) Differential Neurotoxicity Related to	679
Tetracycline Transactivator and TDP-43 Expression in Conditional TDP-43 Mouse	680
Model of Frontotemporal Lobar Degeneration. J Neurosci 38:6045-6062.	681
Lee C, Agoston DV (2010) Vascular endothelial growth factor is involved in mediating	682
increased de novo hippocampal neurogenesis in response to traumatic brain injury. J Neurotrauma 27:541-553.	683 684
Licht T, Keshet E (2015) The vascular niche in adult neurogenesis. Mech Dev 138 Pt 1:56-62.	685
Licht T, Eavri R, Goshen I, Shlomai Y, Mizrahi A, Keshet E (2010) VEGF is required for	686
dendritogenesis of newly born olfactory bulb interneurons. Development 137:261-	687
271.	688
Licht T, Goshen I, Avital A, Kreisel T, Zubedat S, Eavri R, Segal M, Yirmiya R, Keshet E (2011)	689
Reversible modulations of neuronal plasticity by VEGF. Proc Natl Acad Sci U S A	690
108:5081-5086.	691
Licht T, Rothe G, Kreisel T, Wolf B, Benny O, Rooney AG, Ffrench-Constant C, Enikolopov G,	692
Keshet E (2016) VEGF preconditioning leads to stem cell remodeling and attenuates	693
age-related decay of adult hippocampal neurogenesis. Proc Natl Acad Sci U S A	694
113:E7828-E7836.	695
Lu J, Manaenko A, Hu Q (2017) Targeting Adult Neurogenesis for Poststroke Therapy. Stem	696
Cells Int 2017:5868632.	697
Madathil SK, Saatman KE (2015) IGF-1/IGF-R Signaling in Traumatic Brain Injury: Impact on Cell	698
Survival, Neurogenesis, and Behavioral Outcome.	699
Maehlen J, Torvik A (1990) Necrosis of granule cells of hippocampus in adrenocortical failure.	700
Acta Neuropathol 80:85-87.	701
Marin-Burgin A, Schinder AF (2012) Requirement of adult-born neurons for hippocampus-	702
dependent learning. Behav Brain Res 227:391-399.	703
Mayford M, Bach ME, Huang YY, Wang L, Hawkins RD, Kandel ER (1996) Control of memory	704
formation through regulated expression of a CaMKII transgene. Science 274:1678-	705
1683. McHugh TJ, Jones MW, Quinn JJ, Balthasar N, Coppari R, Elmquist JK, Lowell BB, Fanselow MS,	706 707
Wilson MA, Tonegawa S (2007) Dentate gyrus NMDA receptors mediate rapid pattern	707
separation in the hippocampal network. Science 317:94-99.	708
Melander A et al. (1999) 35th Annual Meeting of the European Association for the Study of	710
Diabetes : Brussels, Belgium, 28 September-2 October 1999. Diabetologia 42:A1-A330.	711
Melnikova T, Park D, Becker L, Lee D, Cho E, Sayyida N, Tian J, Bandeen-Roche K, Borchelt DR,	712
Savonenko AV (2016) Sex-related dimorphism in dentate gyrus atrophy and behavioral	713
phenotypes in an inducible tTa:APPsi transgenic model of Alzheimer's disease.	714
Neurobiol Dis 96:171-185.	715
	-

Mignone JL, Kukekov V, Chiang AS, Steindler D, Enikolopov G (2004) Neural stem and	716
progenitor cells in nestin-GFP transgenic mice. Journal of Comparative Neurology	717
469:311-324.	718
Moss J, Gebara E, Bushong EA, Sanchez-Pascual I, O'Laoi R, El M'Ghari I, Kocher-Braissant J,	719
Ellisman MH, Toni N (2016) Fine processes of Nestin-GFP-positive radial glia-like stem	720
cells in the adult dentate gyrus ensheathe local synapses and vasculature. Proc Natl	721
Acad Sci U S A 113:E2536-2545.	722
Myczek K, Yeung ST, Castello N, Baglietto-Vargas D, LaFerla FM (2014) Hippocampal adaptive	723
response following extensive neuronal loss in an inducible transgenic mouse model.	724
PLoS One 9:e106009.	725
Nakatomi H, Kuriu T, Okabe S, Yamamoto S, Hatano O, Kawahara N, Tamura A, Kirino T,	726
Nakafuku M (2002) Regeneration of hippocampal pyramidal neurons after ischemic	727
brain injury by recruitment of endogenous neural progenitors. Cell 110:429-441.	
	728
Oosthuyse B et al. (2001) Deletion of the hypoxia-response element in the vascular	729
endothelial growth factor promoter causes motor neuron degeneration. Nature	730
Genetics 28:131-138.	731
Palmiter RD, Cole TB, Quaife CJ, Findley SD (1996) ZnT-3, a putative transporter of zinc into	732
synaptic vesicles. Proc Natl Acad Sci U S A 93:14934-14939.	733
Peng L, Bonaguidi MA (2018) Function and Dysfunction of Adult Hippocampal Neurogenesis in	734
Regeneration and Disease. Am J Pathol 188:23-28.	735
Sierra A, Martin-Suarez S, Valcarcel-Martin R, Pascual-Brazo J, Aelvoet SA, Abiega O, Deudero	736
JJ, Brewster AL, Bernales I, Anderson AE, Baekelandt V, Maletic-Savatic M, Encinas JM	737
(2015) Neuronal hyperactivity accelerates depletion of neural stem cells and impairs	738
hippocampal neurogenesis. Cell Stem Cell 16:488-503.	739
Sirerol-Piquer M, Gomez-Ramos P, Hernandez F, Perez M, Moran MA, Fuster-Matanzo A,	740
Lucas JJ, Avila J, Garcia-Verdugo JM (2011) GSK3beta overexpression induces neuronal	741
death and a depletion of the neurogenic niches in the dentate gyrus. Hippocampus	742
21:910-922.	743
Small SA, Schobel SA, Buxton RB, Witter MP, Barnes CA (2011) A pathophysiological	744
framework of hippocampal dysfunction in ageing and disease. Nat Rev Neurosci	745
12:585-601.	746
Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, Bostrom E,	747
Westerlund I, Vial C, Buchholz BA, Possnert G, Mash DC, Druid H, Frisen J (2013)	748
Dynamics of hippocampal neurogenesis in adult humans. Cell 153:1219-1227.	749
Spanswick SC, Lehmann H, Sutherland RJ (2011) A novel animal model of hippocampal	
	750
cognitive deficits, slow neurodegeneration, and neuroregeneration. J Biomed	751
Biotechnol 2011:527201.	752
Spanswick SC, Epp JR, Keith JR, Sutherland RJ (2007) Adrenalectomy-induced granule cell	753
degeneration in the hippocampus causes spatial memory deficits that are not	754
reversed by chronic treatment with corticosterone or fluoxetine. Hippocampus	755
17:137-146.	756
Steward O (1994) Electroconvulsive seizures upregulate astroglial gene expression selectively	757
in the dentate gyrus. Brain Res Mol Brain Res 25:217-224.	758
Takeda A, Tamano H (2018) Is Vulnerability of the Dentate Gyrus to Aging and Amyloid-beta1-	759
42 Neurotoxicity Linked with Modified Extracellular Zn(2+) Dynamics? Biol Pharm Bull	760
41:995-1000.	761
Toda T, Gage FH (2017) Review: adult neurogenesis contributes to hippocampal plasticity. Cell	762
and Tissue Research.	763
Toda T, Parylak SL, Linker SB, Gage FH (2018) The role of adult hippocampal neurogenesis in	764
brain health and disease. Mol Psychiatry.	765

JNeurosci Accepted Manuscript	 Tu DG, Chang YL, Chou CH, Lin YL, Chiang CC, Chang YY, Chen YC (2018) Preventive effects of taurine against d-galactose-induced cognitive dysfunction and brain damage. Food Funct 9:124-133. van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH (2002) Functional neurogenesis in the adult hippocampus. Nature 415:1030-1034. Wang F, Fangfang Z, Guo X, Chen W, Yao W, Liu H, Lyu C, Zhang Y, Fan C (2018) Effects of volatile organic compounds and carbon monoxide mixtures on learning and memory, oxidative stress, and monoamine neurotransmitters in the brains of mice. Toxicol Ind Health 34:178-187. Wang X, Gao X, Michalski S, Zhao S, Chen J (2015) Traumatic Brain Injury Severity Affects Neurogenesis in Adult Mouse Hippocampus. J Neurotrauma. Watanabe Y, Muller MK, von Engelhardt J, Sprengel R, Seeburg PH, Monyer H (2016) Age-Dependent Degeneration of Mature Dentate Gyrus Granule Cells Following NMDA Receptor Ablation. Front Mol Neurosci 8. Wu YJ, Schulz H, Lin CC, Saar K, Patone G, Fischer H, Hubner N, Heimrich B, Schwemmle M (2013) Borna disease virus-induced neuronal degeneration dependent on host genetic background and prevented by soluble factors. P Natl Acad Sci USA 110:1899-1904. Yamasaki TR, Blurton-Jones M, Morrissette DA, Kitazawa M, Oddo S, LaFerla FM (2007) Neural stem cells improve memory in an inducible mouse model of neuronal loss. J Neurosci 27:11925-11933. Yu TS, Washington PM, Kernie SG (2016) Injury-Induced Neurogenesis: Mechanisms and Relevance. Neuroscientist 22:61-71. Zepeda A, Aguilar-Arredondo A, Michel G, Ramos-Languren LE, Escobar ML, Arias C (2013) Functional recovery of the dentate gruss after a focal lesion is accompanied by structural reorganization in the adult rat. Brain Struct Funct 218:437-453. Zhang R, Zhang Z, Wang L, Wang Y, Gousev A, Zhang L, Ho KL, Monshead C, Chopp M (2004) Activated neural stem cells contribute to stroke-induced neurogenesis and neuroblast migration toward the infa
)S(Figure legends
	Fig. 1.
D D	Diphtheria toxin-mediated specific ablation of DG GCs. A , Protocol for highlighting the pattern
7	of cre-expressing cells in the POMC-Cre transgenic mouse line with the aid of Ai9 reporter
	mouse. B , Pomc-Cre drives TdTomato reporter expression specifically in the DG (yellow
	arrows). Right: NSCs distinguished by their tree-like morphology and highlighted by GFP in the

28

766

767

768

769 770

771

772

773

774

775 776

777

778

779

780

781 782

783

784

785

786

787

788

789

790

791

792 793

	797
Figure legends	798
Fig. 1.	799
Diphtheria toxin-mediated specific ablation of DG GCs. A , Protocol for highlighting the pattern	800
of cre-expressing cells in the POMC-Cre transgenic mouse line with the aid of Ai9 reporter	801
mouse. B , Pomc-Cre drives TdTomato reporter expression specifically in the DG (yellow	802
arrows). Right: NSCs distinguished by their tree-like morphology and highlighted by GFP in the	803
Nestin-GFP line do not co-localize with TdTomato (see arrows in z-projection planes). Scale	804

bars, 1mm (left and middle), 50 μ m (right). C, Pomc-Cre does not drive expression of the	805
TdTomato reporter in DCX ⁺ neuroblasts (arrows). Scale bar, 100 μ m. D , Experimental protocol	806
for Cre-mediated cell ablation using iDTR mice for conditional expression of DTR (DTR ^{pomc}). <i>E</i> ,	807
DT (5ng) was injected to the left hippocampus of DTR^{pomc} mice and brains were retrieved 5	808
days thereafter. Cleaved-caspase 3 immunostaining illustrates a DG-restricted injury (left) and	809
Iba1 immunostaining highlights microglia clustering in the injured GCL of the DG (right). i-	810
ipsilateral. c-contralateral. Scale bar, 1mm (left), 200μm (right). <i>F-G</i> , DT (3ng) was injected	811
bilaterally to the hippocampus of control (iDTR monotransgenic) or DTR ^{pomc} mice and brains	812
were retrieved 20 or 90 days later. A substantial loss of GCs in DTR ^{pomc} mice is indicated at 20	813
dpi by NeuN immunostaining highlighting GC cell bodies (F) and by ZnT3 immunostaining	814
highlighting their MF axons (G.) Near-complete recovery is indicated at 90 dpi. Scale bar,	815
100 μ m. H, DG height (yellow bar), GCL thickness (white bar) and thickness of the MF layer (red	816
bar) used as quantifiable parameters of DG repair (shown in control DG). Scale bar, 100 μ m. I,	817
Quantification of DG regeneration comparing non-injured, injured (at 20 dpi) and repaired (at	818
90 dpi) hippocampi.	819
For statistical details see Table 1.	820
	821

Fig. 2.

822

Neurogenesis-driven DG regeneration in DTR^{pomc} mice. **A**, DT (3ng) was injected bilaterally to823the hippocampus of control iDTR mice or to DTR^{pomc} mice. Mice also harbored a Nestin-GFP824transgene to highlight NSCs. CldU (100mg/kg 3 i.p injections every 12h) was injected at 15-16825dpi and brains were retrieved at 20dpi. Relevant for **B-F**. **B**, RGL-type NSCs highlighted with826Nestin-GFP (top) together with NeuN* mature neurons and CD31* blood vessels at higher827magnification (Melander et al.). Note the loss of NSCs apical processes (arrows) and massive828mature neurons deficit in DTR^{pomc} mice. Scale bar, 100µm. Right: quantification for NSCs829

density revealed no significant change in their numbers. C, CldU immunostaining highlights	830
intensive GCL-specific cell labeling in DTR ^{pome} DG. Scale bar, 200µm. D , CldU immunostaining	831
together with the visualization of GFP^+ cells highlights active NSCs (RGL (R) and descendants).	832
Right: A particular example of a 'clone' composed of an RGL (R) and assumed daughter	833
progenitors (labeled 1-6) in DTR ^{pome} . Scale bar, 10 μ m. <i>E</i> , CldU and DCX co-staining highlights	834
4-5 days-old early neuroblasts. Right: A representative image in an orthogonal plane showing	835
co-localization of DCX and CldU. F, Quantification of D-E. G, To allow sufficient time for	836
regeneration, brains were retrieved for analysis 90 days post-injection (90 dpi). H,	837
Measurements of differentiation to newly-added neurons by 90 dpi were enumerated	838
through CldU injection 1 month earlier (the time required for newborn neuroblasts to mature)	839
and scoring for double-positive Cldu $^{+}$ /NeuN $^{+}$ cells in the GCL. Scale bar, 100 μ m. <i>I</i> , Brains of	840
DTR ^{pomc} mice retrieved at 90 dpi and stained for cleaved caspase 3 and for DTR (top) and for	841
microglia (Melander et al.) indicate an ongoing DG toxicity 90 days from DT injection. Scale	842
bar, 200μm.	843
For statistical details see Table 1.	844

FIσ	
FIE.	

845

Neurogenesis and DG injury induced by long term VEGF exposure. A, Tetracycline-regulated 847 transgenic system for VEGF expression in the brain. B, VEGF was induced ("on") in adult 848 (2months) mice by tetracycline withdrawal and was kept in the 'on' mode for the indicated 849 periods. Littermates harboring only the driver transgene served as controls. C, VEGF-induced 850 neurogenesis reflected in an increased number of DCX⁺ cells (neuroblasts and immature 851 neurons) in the DG. Bottom: Quantification of DCX⁺ cells in the DG in hippocampi removed at 852 the indicated times post VEGF induction. Note that, on the contrary to natural neurogenic 853 decline in control mice, an elevated neurogenic rate persists throughout the 7 months' period 854 of continuous VEGF exposure. D, NeuN staining (labeling mature neurons) Highlights dramatic 855

Fig. 4.	
---------	--

Global long term VEGF overexpression induces DG-specific injury. A , CamKII α -tTA mouse was	861
crossed to the Tet-GFP responder line to highlight which areas are affected by the transgenic	862
system. GFP in coronal (left) and sagittal (middle) sections is mainly expressed in the	863
hippocampus (Hip), the cerebral peduncles (cpd) and the striatum (STR) and to a lesser extent	864
in the cortex (CTX) and olfactory bulb (OB). Note that within the hippocampus, GFP expression	865
is stronger in the CA1 (right). Scale bar, 1mm. B , Adult (2months) CamKIIα-tTA tet-VEGF mice	866
were subjected to VEGF induction for 4 months. VEGF-induced angiogenesis reflected in	867
microvascular density (MVD) increase in both DG and CA1 regions of the hippocampus. Left:	868
blood vessels highlighted by laminin immunostaining. Scale bar, 200 μ m. Note DG-selective	869
degeneration in the 4m VEGF mouse. Right: MVD quantification in the respective	870
hippocampal region showing equal angiogenic responsiveness to VEGF in both areas. <i>C</i> , The	871
CA1 area of the same mice as in (B) was immunostained for CD31 and NeuN. Scale bar, 50 $\mu m.$	872
Right: quantification. Note that the height of CA1 in VEGF animals is slightly larger than control	873
animals, a potential reflection of extensive blood vessel formation. D , Low magnification	874
images of the whole brain to highlight DG-selectivity of the detrimental response to VEGF.	875
Immunostaining for cleaved-caspase 3 (CC3), Iba1 for microglia and GFAP for astrocytes is	876
shown. The CA1 is indicated by white arrows, DG is indicated by yellow arrows. Scale bars,	877
1mm. <i>E</i> , High magnification images of CC3, Iba1 and GFAP in control animals, 1m VEGF	878
induction, 3m VEGF induction and following additional 3m of VEGF withdrawal (VEGF on>off).	879
The CA1 is indicated by white arrows, the DG is indicated by yellow arrows. Note that similarly	880

Fig. 5.	885
Precluding potential mechanisms for DG-specific damage in the CamkII α -tTA;;tet-VEGF mouse	886
model. A , To test for DG-specific changes in permeability following VEGF induction, Tritc-	887
labeled 10kD dextran (tracer) was injected intracardially 2 minutes before sacrifice. Co-	888
staining with CD31 for endothelial cells demonstrates that dextran labeling is limited to the	889
endothelial lumen. B-D, CamkIIα-tTA mouse line-related toxicity. B , NeuN-stained	890
hippocampal slices of six-months-old mice (from the same litter) are presented. The genotype	891
of each animal is indicated above. Tetracycline was replaced by water at the age of 2 months	892
in all mice. C , CamkII α -tTA driver line was crossed to a tet-GFP responder line. Tetracycline	893
was omitted from drinking water at the age of 2 months to 6 months. Note intact mossy fiber	894
axon indicated by ZnT3 staining. Quantification of DG height and GCL thickness is presented.	895
So significance was found. D_{r} CamkII α -tTA driver line was crossed to a tet-hsVEGFR1 line. This	896
mouse line expresses inducible soluble human VEGF receptor 1 that serves as a "VEGF trap"	897
(Licht et al., 2010). Tetracycline was replaced by water from embryonic day 14.5 to 6 months	898
postnatally. <i>E</i> , Intrahippocampal injection of AAV encoding VEGF induces DG damage which is	899
similar to transgenically-induced VEGF. DCX immunostaining is shown. Note the reduction in	900
GCL thickness (yellow bars) and ectopic neurogenesis.	901
Scale bars, 200µm.	902
For statistical details see Table 1.	903

The injury to the DG following long term VEGF exposure is rectified upon VEGF de-induction.	907
A, Experimental protocol: 'off' group – monotransgenic littermates sacrificed at 5 months; 'on'	908
group - VEGF induced at the age of 2 months and brains retrieved at 5 months; 'on>off' group	909
- VEGF induced at 2 months, de-induced at 5 months and sacrificed at 8 months (on>off). B ,	910
NeuN-immunostained DG sections showing a marked neuronal deficit in 'VEGF on' mice and	911
neuronal re-gain 3 months after VEGF de-induction. Scale bars: 200µm (top), 50µm (Melander	912
et al.). C , ZnT3-stained sections highlighting MF axon of GCs. Scale bar, 100 μ m. D ,	913
Quantification of DG measurements as above indicative of neuronal cell loss and of neuronal	914
re-gain (although not the reaching same values of control). <i>E</i> , Quantification of GCL area	915
(using NeuN-stained sections) as in Fig. 3D , with the addition of the 'on <off' arrow<="" group.="" td=""><td>916</td></off'>	916
indicates time of tetracycline supplementation for the on>off groups.	917
For statistical details see Table 1.	918
	919

921

Fig. 7.

Fig. 6.

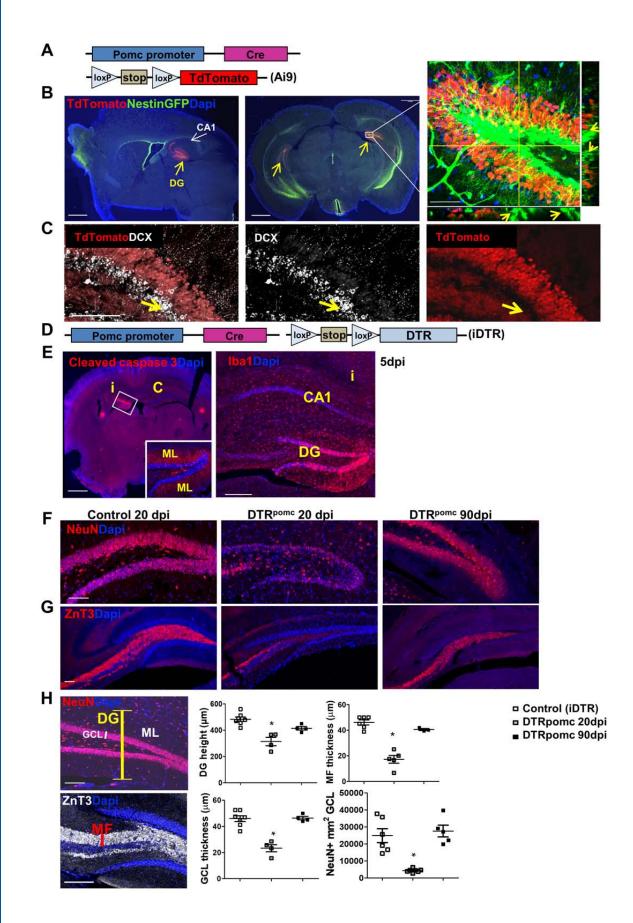
NSCs proliferation during DG degeneration and recovery. A, Nestin-GFP transgenic mice were	922
crossed to the VEGF transgenic system. VEGF was induced for 3 months followed by de-	923
induction of additional 3 months. IdU (100mg/kg) was applied I.P 1-2 days before brain	924
retrieval. B , Slices were co-immunostained for GFP and for Laminin to highlight blood vessels.	925
Scale bar, 200 μ m. Note contact points of NSCs' apical processes with blood vessels (arrows). C,	926
GFP and IdU immunostaining (Scale bar, 20 μ m). ML- molecular layer. H – hilus. Note hilar	927
projections of NSCs in 'VEGF on' animal (Arrows). D , The total numbers of GFP+ NSCs and the	928
fraction of dividing NSCs (IdU+) are quantified. A significant increase in NSC proliferation in	929
both on and on>off groups overrides expected NSC exhaustion.	930
For statistical details see Table 1.	931

Fig. 8.

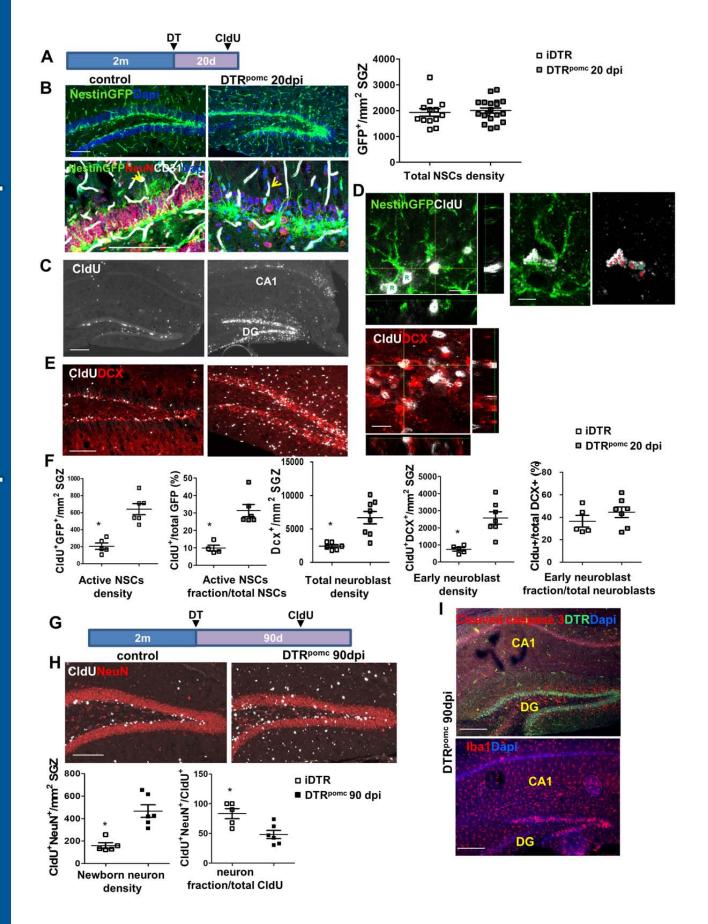
932

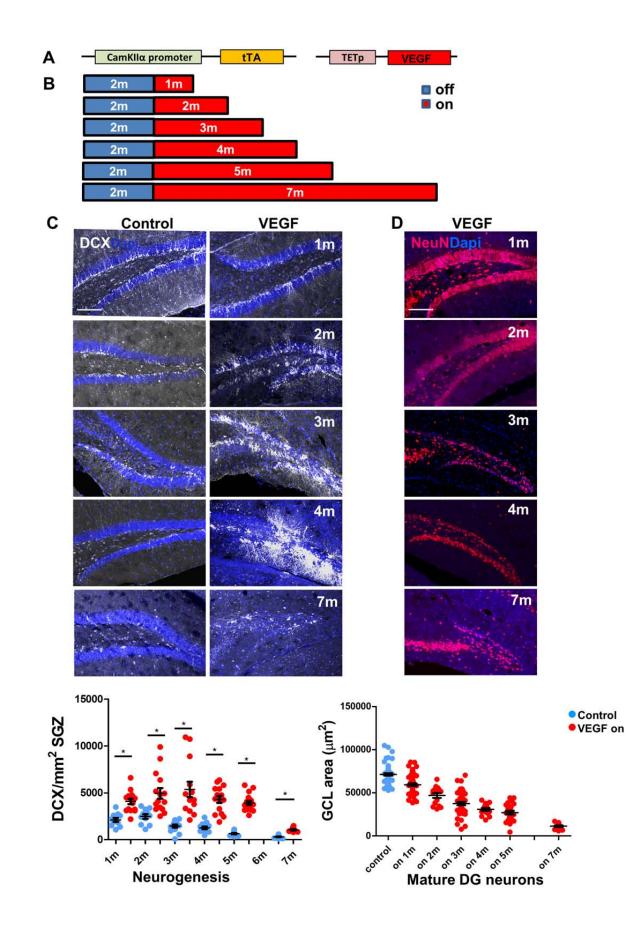
Differentiation and maturation of DG newborn cells during degeneration and regeneration. A,	935
Schedules of VEGF induction and, in turn, de-induction relevant to B-D . CldU was injected (3 IP	936
injections of 100mg/kg every 8 hours) 3 weeks before brain retrieval to allow for sufficient	937
time for newborn cell maturation. B , Left: co-staining for CldU and NeuN highlighting neurons	938
that have been born and differentiated during the preceding 3 weeks. Scale bar, 100 μ m.	939
Right: quantification of CldU ⁺ /NeuN ⁺ cell densities. Note a significant addition of NeuN ⁺ cells	940
following VEGF de-induction but not when VEGF signaling was still ongoing. <i>C</i> , DCX and CD31	941
staining highlighting neuroblasts and blood vessels, respectively. Note ectopic DCX^{\star} cells in the	942
hilus (inset 1) and in the molecular layer (inset 2). Scale bar, 100 μ m. Quantification of CD31 *	943
cells shows that blood vessels added by VEGF persists after its withdrawal (MVD, right) and	944
likewise, quantification of total DCX $^{\scriptscriptstyle +}$ cell numbers shows that neuroblast production remains	945
at approximately the same elevated levels after VEGF withdrawal. D , Co-staining for DCX and	946
CldU to label late (3 weeks-old) neuroblasts, prior to completion of maturation. Quantification	947
of late neuroblast density and percentage on right. <i>E-H</i> , Aberrant aspects of neurogenesis	948
revealed by tracing Gli ⁺ NSC descendants. <i>E</i> , Experimental scheme: Gli1-cre ^{ERT2} and Ai9	949
reporter mice were bred to the VEGF system. <i>F</i> , Animals which inherited all four transgenes	950
were fed by Tamoxifen (8mg, 1/day oral administration for 3 days) Brains were retrieved for	951
analysis according to the scheme. ${m G}$, Representative images of Gli1 $^+$ cells and their	952
descendants with dendrite morphologies better seen in high magnification insets. Note lack of	953
dendritic spines in "VEGF on" dendrites (iv) and their presence in the "VEGF on>off" (vi).	954
Arrows indicate NSCs and adult-born GCs according to the legends in H . ML- molecular layer.	955
H-hilus. Scale bar, 100 μ m. H, Analysis for the percentage of cell types (NSCs and GCs) in each	956
of the experimental protocols.	957

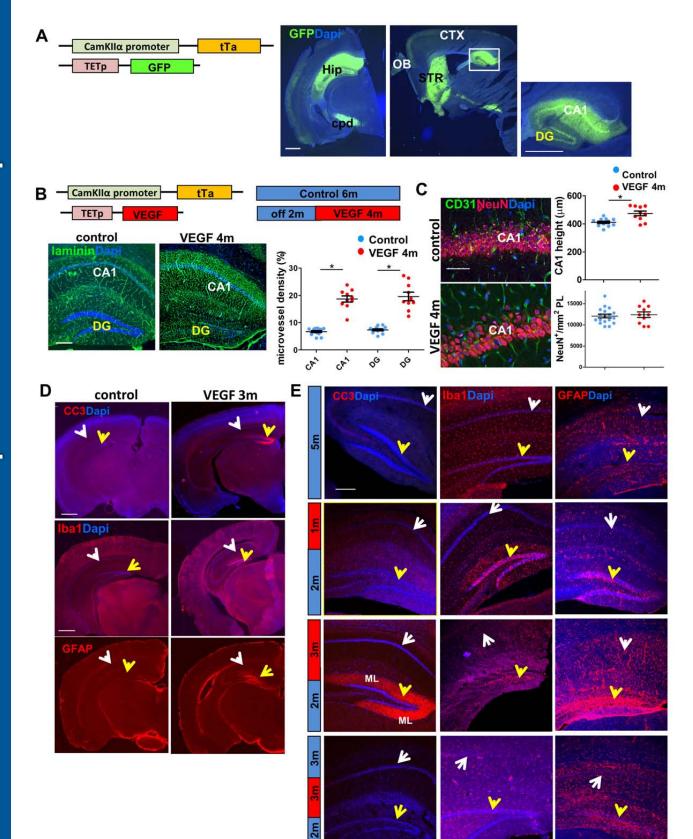
Fig. 9.

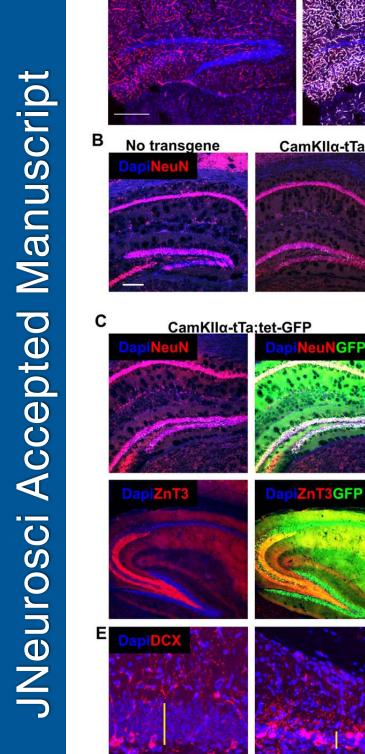

Fig. 10.

Regeneration of Perforant path connectivity and spatial memory. A , Experimental design for	962
B-D. B , Acute coronal slices from 'VEGF on' and 'on>off' mice were stimulated at the afferent	963
fibers of the Perforant path (S) and EPSP was recorded at the upper blade of the GCL (R). <i>C</i> ,	964
Representative traces in control, 'on' and 'on>off' hippocampal slices. D , Peak EPSP amplitude	965
at the stimulation of 16V was measured. <i>E</i> , Radial Arm Water Maze (RAWM) testing. A group	966
of double-transgenic animals and their littermate controls was tested at three-time points:	967
before VEGF induction, 3 months from inducing VEGF and after 3 additional months of de-	968
induction. A significantly higher number of errors to find the platform is found only in the	969
"VEGF on" group. <i>F</i> , Impaired learning in the VEGF-on group is reflected in more erroneous	970
trials before finding the escape platform. 3 months after VEGF de-induction learning abilities	971
are fully restored. <i>G</i> , The numbers of errors during the training period at every time point.	972
For statistical details see Table 1.	973

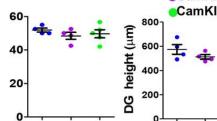



The regenerative potential of the DG is lost in old age. **A**, Experimental protocol: VEGF was977induced at the ages of 6 or 12 months, maintained for 3 months in the 'on' mode and then de-978induced. Brains were retrieved for analysis either by the end of the induction period (for979measuring incurred damage) or 3 months after de-induction (i.e., when mice are 12- and 18980months old, respectively) for measuring the extent of structural repair. **B**, Immunostaining for981ZnT3 and CD31. Right: MVD quantification for 18 months old animals. Note that old mice982


display angiogenic response to VEGF similarly to young mice. C , Immunostaining for DCX and	983
NeuN. DCX cell density quantification is presented on the right. D, CldU was injected 3 weeks	984
before sacrifice and CldU ⁺ /NeuN ⁺ cells were visualized (left images) and quantified (right). <i>E</i> ,	985
High power field of CA3 ZnT3 staining. MF thickness (quantified in right) was measured as in	986
Fig. 1H. F , G NeuN staining (C, D) was used to measure GCL thickness (F) and DG height (G) as	987
in Fig. 2 <i>B</i> .	988
Scale bars, 100μm.	989
For statistical details see Table 1.	990
	991
	992
Table legends	993
	994
Table 1.	995
Statistical analysis for all quantifications. The number of animals, statistical tests, statistical	996
power and p-values are presented.	997

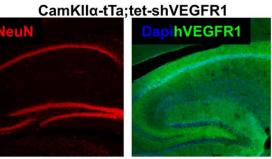


JNeurosci Accepted Manuscript

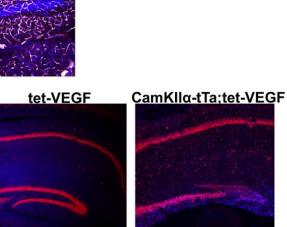


Α

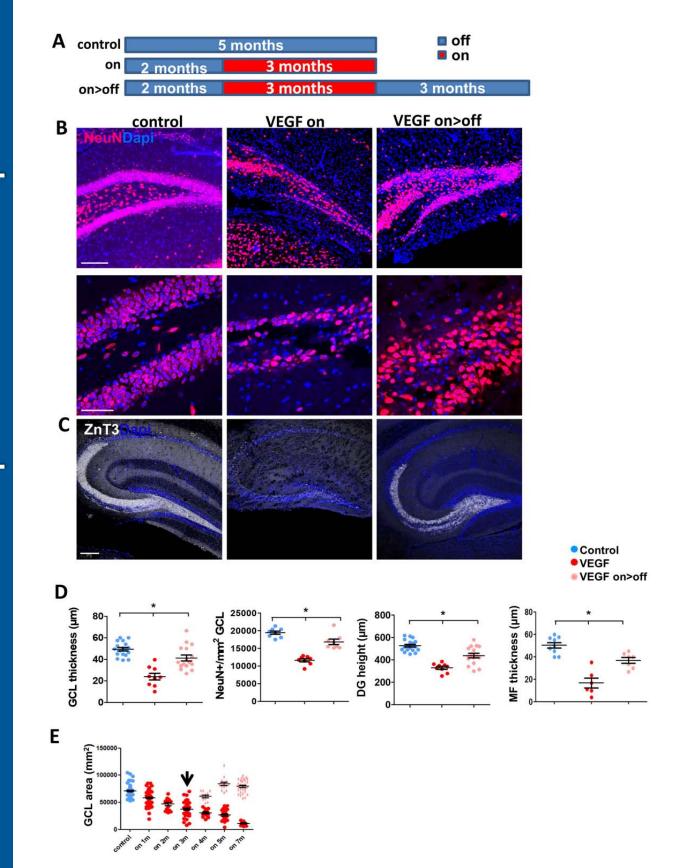
Dapi

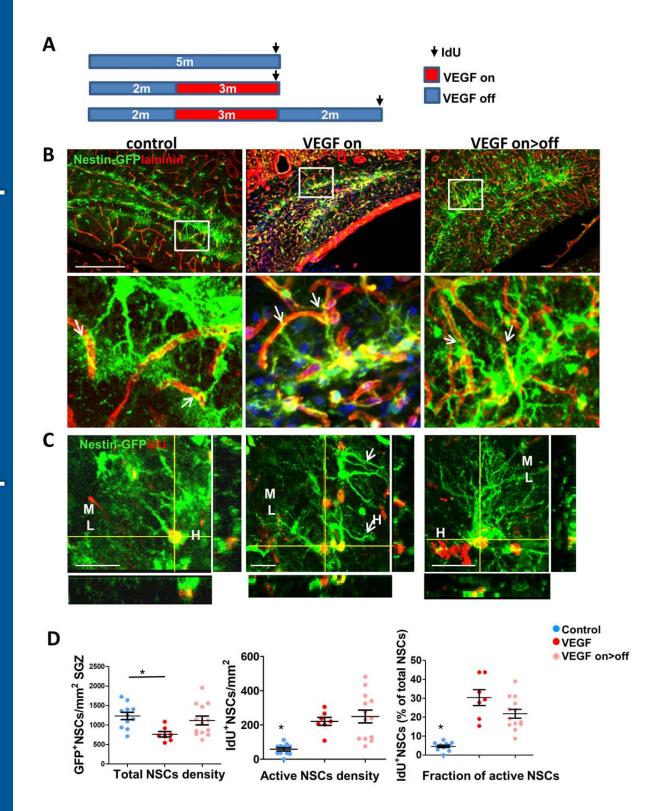

AAV VEGF

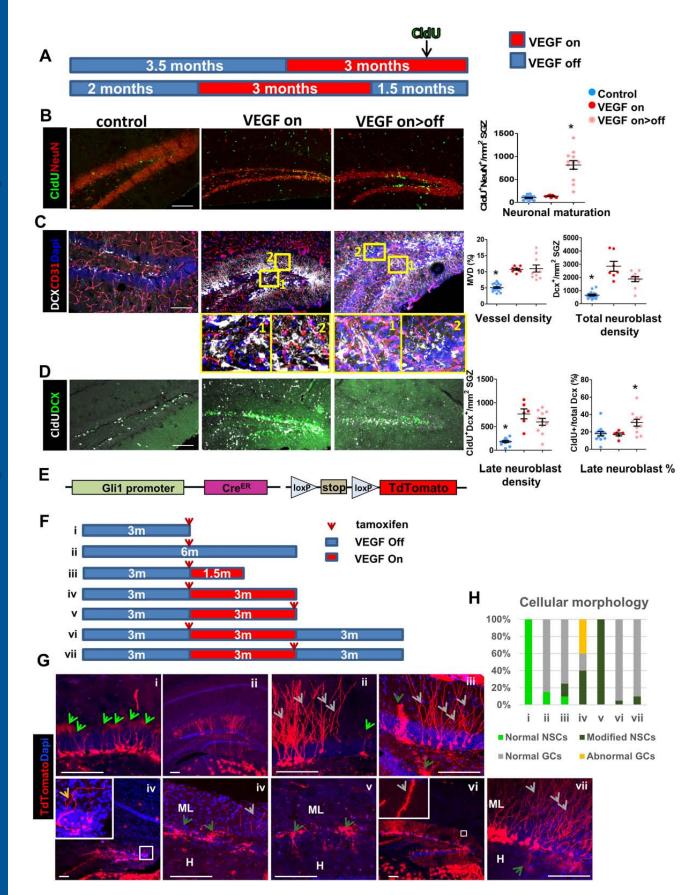
No transgene CamKllα-tTa

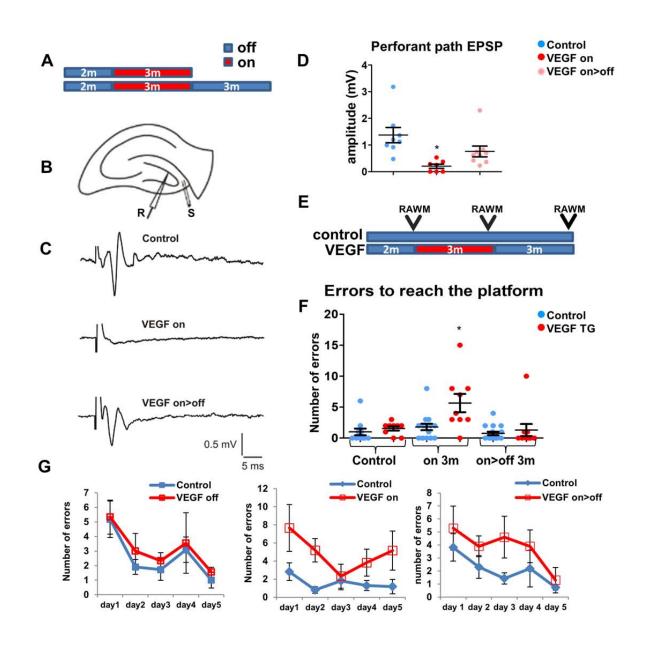

GCL thickness (µm)

D


CamKllα-tTa tet-GFP


÷




CD31

Empty AAV vector

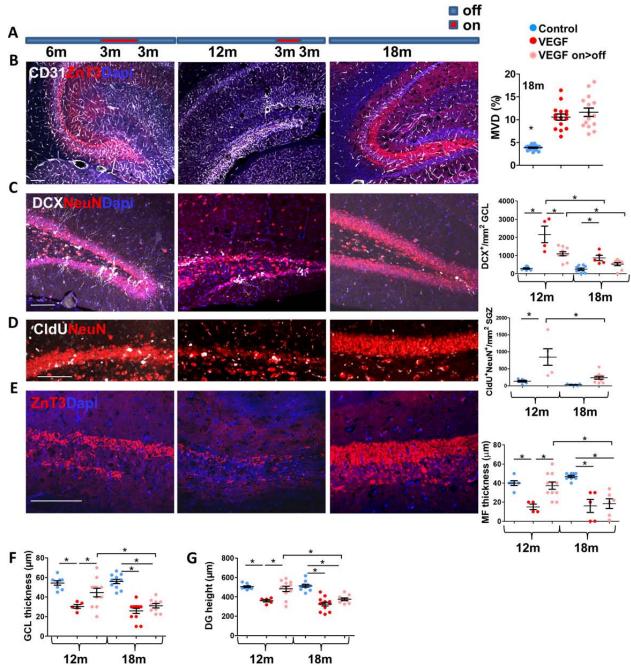


Figure	N	statistical test	F values main effect/T value	P value main effect	P value post hoc
1H DG height	Control: 6 20dpi: 7 90dpi: 5	1-way ANOVA	F(2,12)=16.508	p=3.58*10 ⁻⁴	20dpi vs. Control: p=2.54*10 ⁻⁴ 20dpi Vs. 90dpi: p=0.027
1H GCL thickness:	Control: 6 20dpi: 7 90dpi: 5	1-way ANOVA	F(2,12)=28.8	p=2.62*10 ⁻⁵	20dpi vs. Control: p=3.84*10 ⁻⁵ . 20dpi Vs. 90dpi; p=1.02*10 ⁻⁴ .
1H MF thickness	Control: 6 20dpi: 5 90dpi: 3	1-way ANOVA	F(2,11)=44.908	p=5.11*10 ⁻⁶	20dpi vs. Control: p=4.61*10 ⁻⁶ 20 dpi Vs. 90dpi: p=1.92*10 ⁻⁴
1H NeuN density	Control: 6 20dpi: 7 90dpi: 5	1-way ANOVA	F(2,12)=20.67	p=0.0002	20dpi vs. Control: p=0.004 20dpi vs 90dpi: p=0.0026
2B	Control: 10 20dpi: 13	t-test	T(21)=0.4254	p=0.6747	
2F active NSCs density	Control: 5 20dpi: 6	t-test	T(9)=5.800	p=0.0007	
2F Active NSCs fraction	Control: 5 20dpi: 6	t-test	T(9)=5.542	p=0.0015	
2F Total neuroblas t density	Control: 5 20dpi: 6	t-test	T(9)=4.516	p=0.0027	
2F Early neuroblas ts density	Control: 5 20dpi: 7	t-test	T(10)=4.883	p=0.0028	
2F early neuroblas ts fraction	Control: 5 20dpi: 7	t-test	T(10)=1.140	p=0.837	
2H Newborn neuron density	Control: 5 90dpi: 6	t-test	T(9)=4.977	p=0.0025	
2H Neuron fraction/t otal CldU	Control: 5 90dpi: 6	t-test	T(9)=3.208	p=0.0125	
3C	<u>1m:</u> Control: 11 VEGF: 15 <u>2m:</u>	2-way ANOVA	Treatment: F(1,158)=169.19 Time: F(5,158)=20.067	Treatment P=9.26*10 ⁻²⁷ Time: P=1.82*10 ⁻	Control vs. VEGF: 1 month: p=5.82*10 ⁻⁴ 2 months
	Control: 11 VEGF: 15 3m:		time-treatment interaction (control/VEGF)*time: F(5,158)=5.384	Interaction: p=1.339*10 ⁻⁴	p=5.11*10 ⁻⁴ 3 months: p=0.008 4 months:

	Control: 14	1			p=9.48*10 ⁻⁹
	VEGF: 13				5 months:
	<u>4m:</u>				p=1.74*10 ⁻⁶
	Control: 13				7 months:
	VEGF: 15				p=3.17*10 ⁻⁷
	<u>5m:</u>				
	Control: 15				
	VEGF: 18				
	<u>7m:</u>				
	Control: 11				
	VEGF: 11				
20			5/6 225) 22 222	4.20*40-6	
3D	Control: 60	1-way	F(6,225)=88.892	p=1.39*10 ⁻⁶	Control vs.
	1m: 61	ANOVA			2m:
	2m: 15				p=4.2*10 ⁻⁰⁶
	3m: 46				Control vs.
	4m: 16				3m:
	5m: 18				p=1.45*10 ⁻²²
	7m: 11				Control vs.
					4m:
					p=1.53*10 ⁻¹⁹
					Control vs.
					5m:
					p=8.32*10 ⁻¹⁸
					Control vs.
					7m:
					p=5.75*10 ⁻³⁴
4B	Control: 13	t-test	CA1: T(21) =-10.752	CA1: p=9.21*10	
	VEGF: 10		DG: T(21)=-8.237	10	
				DG: P=7.39*10 ⁻⁸	
4C	Control: 12	t-test	CA1 neuron density: T(20)= -	CA1 neuron	
	VEGF: 10		0.047	density: P=0.7	
			CA1 height: T(20)=-3.63	CA1 height:	
				p=0.002	
5C	No transgene:	1-way	GCL thickness: F(2,12)=0.6605	GCL thickness:	
	4	ANOVA		p=0.5378	
	tTa only: 4		DG height: F(2,12)=1.906	DG height:	
	tTa-tetGFP: 5			P=0.199	
6D	Control: 8	1-way	F(2, 21)= 61.526	p=1.655*10 ⁻⁹	Control Vs VEGF On:
NeuN	VEGF on: 8	ANOVA			p=6.279*10 ⁻⁹
density	VEGF on>off:				Control vs VEGF
actioncy	8				On>off: p=2.11*10 ⁻⁶
					VEGF On vs VEGF
					On>off: p=0.002
6D	Control: 18	1-way	F(2,40)=23.589	P=1.7*10 ⁻⁷	Control Vs VEGF On:
GCL	VEGF on: 9	ANOVA		-	p=6.279*10 ⁻⁹
	VEGF on>off:				Control vs VEGF
thickness	16				On>off: $p=2.11*10^{-6}$
					VEGF on vs VEGF
					On>off: p=0.002
6D	Control: 18	1-way	F(2,40)=30.116	P=1.04*10 ⁻⁸	Control Vs VEGF on:
	VEGF on: 9	ANOVA	1(2,40)-30.110	r-1.04 10	$p=1.15*10^{-8}$
DG height	VL01 011. 9	ANOVA			h-1.12 10

	VEGF on>off: 16				Control Vs. VEGF on>off: p=0.01. VEGF on Vs. VEGF on>off: p=4.76*10 ⁻⁴
6D MF thickness	Control: 9 VEGF on: 9 VEGF on>off: 7	1-way ANOVA	F(2,19)=28.35	p=1.9*10 ⁻⁶	Control vs On: p=1.18*10 ⁻⁶ Control vs on>off: p=0.014 On vs On>off: p=0.01
6E	Same as 3D On>off 1m: 12 On>off 2m: 16	2-way ANOVA	Treatment: F(2,161)=207.169	Treatment: p=2.99*10 ⁻⁴⁵	Control vs 3m on>1m off: 4.83*10 ⁻
	On>off 3m: 30		Time: F(2,161)=11.382	Time: p=2.37*10 ⁻	Control vs 3m on>3m off: p=1.65*10 ⁻⁴
			Interaction: F(2,161)=27.373	Interaction: p=5.84*10 ⁻¹¹	5m on vs.3m on>2m off: p=4.83*10 ⁻¹³ 7m on vs. 3m on>3m off: p=4.82*10 ⁻¹³
7D Total NSC density	Control: 11 VEGF on: 7 VEGF on>off: 13	1-way ANOVA	F(2, 28)=27.632	p=0.22	Control Vs VEGF On: p=0.019
7D active NSC density	Control: 11 VEGF on: 7 VEGF on>off: 13	1-way ANOVA	F(2,28)= 13.39	p=0.0002	Control Vs VEGF On: p=0.0002 Control Vs VEGF On>off: p=0.0002
7D fraction of active NSC	Control: 11 VEGF on: 7 VEGF on>off: 13	1-way ANOVA	F(2,28)=4.379	p=2.26*10 ⁻⁷	Control Vs VEGF On: p= $4.24*10^{-7}$. Control Vs VEGF On Off: p= $2.03*10^{-5}$
8B	Control: 15 VEGF on: 7 VEGF on>off: 12	1-way ANOVA	F(2, 31)=50.405	p=1.8*10 ⁻¹⁰	Control vs. VEGF On>off p=5.47*10 ⁻⁹ VEGF on vs. VEGF On>off: p=9.53*10 ⁻⁸
8C MVD	Control: 19 VEGF on: 8 VEGF on>off: 10	1-way ANOVA	F(2, 34)= 154.153	p=1.84*10 ⁻⁹	Control Vs VEGF On: p=3.33*10 ⁻⁷ Control vs VEGF on>off: p=3.47*10 ⁻⁸
8C total neuroblas t density	Control: 19 VEGF on: 7 VEGF on>off: 10	1-way ANOVA	F(2, 32)= 58.735	p=1.9*10 ⁻¹¹	Control Vs VEGF On: p=5.208*10 ⁻⁹ Control vs VEGF on>off: p=2.12*10 ⁻⁸
8D late neuroblas t density	Control: 14 VEGF on: 6 VEGF on>off: 11	1-way ANOVA	F(2,28)=26.836	p=3.09*10 ⁻⁷	Control vs. VEGF on p= $1.59*10^{-6}$ Control vs. VEGF on>off p= $1.69*10^{-5}$
8D late neuroblas	Control: 14 VEGF on: 6	1-way ANOVA	F(2,28)=6.084	p=0.006	Control vs. VEGF on>off p=0.01

t %	VEGF on>off: 11				VEGF on vs. VEGF on>off p=0.031
9D	Control: 8 VEGF on: 7 VEGF on>off: 9	1-way ANOVA	F(2,21)=6.808	p=0.005	Control vs. VEGF On: p=0.004 VEGF On>off vs. VEGF on: p=0.028
9F	Control: 15 VEGF: 9	2-way ANOVA	Treatment: F(1,64)=10.785 Time: F(2,64)=10.987 Time by treatment interaction F(2,64)=4.198	Treatment: p=0.002 Time: p=7.9*10 ⁻⁵ Interaction: p=0.019	Control vs VEGF on: p=0.004
10B	Control: 18 VEGF on: 15 VEGF on>off: 15	1-way ANOVA	F(2, 45)=47.84	p=7.27*10 ⁻¹²	Control vs VEGF On: p=8.08*10 ⁻⁹ Control vs VEGF On>off: p=5.15*10 ⁻⁹
10C 12m	Control: 7 VEGF on: 4 VEGF on>off: 10	1-way ANOVA	F(2,29)=34.5	P=1.55*10 ⁻⁵	Control Vs VEGF On: p=1.02*10 ⁻⁵ ; control vs. VEGF On>off: 0.005 VEGF On Vs. VEGF On>off: p=0.003
10C 18m	Control: 10 VEGF on: 5 VEGF on>off: 9	1-way ANOVA	F(2,21)=11.07	P=0.001	Control Vs VEGF On: p=3.93*10 ⁻⁴ Control Vs. VEGF On>off: p=0.048
10C	12m vs 18m	2-way ANOVA	Treatment: F(2,39)=53.71 Age: F(1,39)=31.749 Interaction: F(2,39)=9.031	Treatment: $p=1.5*10^{-9}$ Age: $p=1.66*10^{-6}$ interaction: p=0.001	VEGF On 12m vs VEGF on 18m: p=4.4*10 ⁻⁵ VEGF On>off 12m vs VEGF on>off 18m: p=0.015
10D	12m: Control: 6 VEGF on>off: 5 18m: Control: 7 VEGF on>off: 11	2-way ANOVA	Treatment: F(1,25)=25.164 Age: F(1,25)=15.171 Interaction: F(1,25)=7.44	Treatment: p=3.57*10 ⁻⁵ Age: p=0.001 Interaction: p=0.011	12m Control vs. On>off: p=2.31*10 ⁻⁴ 12m On>off vs 18m On>off: p=3.83*10 ⁻⁴
10E 12m	Control: 6 VEGF on: 4 VEGF on>off: 11	1-way ANOVA	F(2,18)=8.338	p=0.003	Control Vs VEGF On: p=0.04 VEGF On Vs VEGF On-off :p=0.04
10E 18m	Control: 9 VEGF on: 5 VEGF on>off: 6	1-way ANOVA	F(2,17)=20.527	p=2.9*10 ⁻⁵	Control Vs VEGF On: p=1.37*10 ⁻⁵ Control Vs VEGF On-off: p=1.85*10 ⁻⁴
10E	12m vs 18m	2-way ANOVA	Treatment: F(2,53)=34.516	Treatment: p=2.25*10 ⁻¹⁰ Age: p=0.032	On>off 12m vs On>off 18m: p=0.0148

			Age: F(1,53)=3.672 Interaction: F(2,53)=3.166	interaction: p=0.021	
10F 12m	Control: 8 VEGF on: 5 VEGF on>off: 11	1-way ANOVA	F(2,21)=7.61	P=0.003	Control Vs VEGF On: p=0.002
10F 18m	Control: 11 VEGF on: 12 VEGF on>off: 9	1-way ANOVA	F(2,29)=46.408	P=9.16*10 ⁻¹⁰	Control Vs VEGF On: p=6.43*10 ⁻⁹ Control Vs. VEGF On>off: p=3.06*10 ⁻⁷
10F	12m vs 18m	2-way ANOVA	Treatment: F(2,50)=36.843 Age: F(1,50)=4.529 Interaction: F(2,50)=3.192	Treatment: p=1.466*10 ⁻¹⁰ Age: p=0.038 interaction: p=0.05	On>off 12m Vs On>off 18; p=0.025
10G 12m	Control: 8 VEGF on: 5 VEGF on>off: 11	1-way ANOVA	F(2,21)=8.175	P=0.002	Control Vs VEGF On: p=0.003 VEGF On Vs. VEGF On>off: p=0.007
10G 18m	Control: 11 VEGF on: 12 VEGF on>off: 9	1-way ANOVA	F(2,29)=34.5	P=2.14*10 ⁻⁸	Control Vs VEGF On: p=2.36*10 ⁻⁸ Control Vs. VEGF On>off: p=1.62*10 ⁻⁵
10G	12m vs 18m	2-way ANOVA	Treatment: F(2,50)=30.784 Age F(1,50)=7.067 Interaction: F(2,50)=4.568	Treatment: p=1.93*10 ⁻⁹ Age: p=0.011 interaction: p=0.015	On>off 12m vs On>off 18m: p=0.0035