
Copyright © 2020 Pischedda et al.

Research Articles: Behavioral/Cognitive

The effect of counterfactual information on
outcome value coding in medial prefrontal and
cingulate cortex: from an absolute to a relative
neural code

https://doi.org/10.1523/JNEUROSCI.1712-19.2020

Cite as:  J. Neurosci 2020; 10.1523/JNEUROSCI.1712-19.2020

Received: 18 July 2019
Revised: 2 January 2020
Accepted: 3 February 2020

This Early Release article has been peer-reviewed and accepted, but has not been through
the composition and copyediting processes. The final version may differ slightly in style or
formatting and will contain links to any extended data.

Alerts:  Sign up at www.jneurosci.org/alerts to receive customized email alerts when the fully
formatted version of this article is published.



 

 1 

TITLE PAGE  1 

TITLE  2 

The effect of counterfactual information on outcome value coding 3 

in medial prefrontal and cingulate cortex: from an absolute to a 4 

relative neural code. 5 

 6 

RUNNING TITLE  7 

Multiple Neural Codings of Outcome Value 8 

 9 

Doris Pischedda a,b *, Stefano Palminteri c,d $, Giorgio Coricelli a,e $ 10 

a Center for Mind/Brain Sciences - CIMeC, University of Trento, 38123 Mattarello, Italy 11 

b NeuroMI - Milan Center for Neuroscience, 20126 Milan, Italy 12 

c Human Reinforcement Learning team, Laboratoire de Neurosciences Cognitives et 13 

Computationnelles, Institut National de la Santé et de la Recherche Médicale, 75005 14 

Paris, France  15 

d Département d’Études Cognitives, École Normale Supérieure, 75005 Paris, France. 16 

e Department of Economics, University of Southern California, 90089 Los Angeles, CA, 17 

USA. 18 

 19 

$ G.C. and S.P. contributed equally to this work 20 

 21 

* Corresponding author: 22 

Doris Pischedda 23 



 

 2 

Bernstein Center for Computational Neuroscience, Charité - Universitätsmedizin Berlin, 24 

Philippstraße 13, Haus 6, 10115 Berlin, Germany 25 

E-mail: doris.pischedda@charite.de 26 

 27 

NUMBER OF PAGES: 34 28 

NUMBER OF FIGURES: 4 29 

NUMBER OF WORDS IN THE ABSTRACT: 250 30 

NUMBER OF WORDS IN THE SIGNIFICANCE STATEMENT: 105 31 

NUMBER OF WORDS IN THE INTRODUCTION: 648 32 

NUMBER OF WORDS IN THE DISCUSSION: 1467 33 

  34 

ACKNOWLEDGMENTS 35 

This research was supported by a European Research Council Consolidator Grant 36 

“Transfer Learning within and between brains” (TRANSFER-LEARNING; agreement No. 37 

617629). D.P. is currently supported by the Deutsche Forschungsgemeinschaft (DFG, 38 

German Research Foundation) under Germany’s Excellence Strategy “Science of 39 

Intelligence” (EXC 2002/1; project number 390523135). S.P. is supported by an ATIP-40 

Avenir grant (R16069JS), the Programme Emergence(s) de la Ville de Paris, the Fyssen 41 

Foundation and the Fondation Schlumberger pour l’Education et la Recherche (FSER).  42 

 43 

CONFLICT OF INTEREST 44 

The authors declare no competing financial interests.  45 

 46 

AUTHOR CONTRIBUTIONS 47 

D.P., S.P., and G.C. designed research; D.P. analyzed data; S.P. and G.C. provided input on 48 



 

 3 

data analysis; D.P. wrote the first draft of the paper; D.P. wrote the paper; D.P., S.P., and 49 

G.C. edited the paper. 50 

 51 

 52 



 

 1 

ABSTRACT  53 

Adaptive coding of stimuli in visual cortex is well documented in perception, where 54 

it supports efficient encoding over a broad range of possible percepts. Recently, a 55 

similar neural mechanism has been reported also in value-based decision, where it 56 

allows optimal encoding of vast ranges of values in PFC: neuronal response to value 57 

depends on the choice context (relative coding), rather than being invariant across 58 

contexts (absolute coding). Additionally, value learning is sensitive to the amount of 59 

feedback information: providing complete feedback (both obtained and forgone 60 

outcomes) instead of partial feedback (only obtained outcome) improves learning. 61 

However, it is unclear whether relative coding occurs in all PFC regions and how it is 62 

affected by feedback information. We systematically investigated univariate and 63 

multivariate feedback encoding in various PFC regions and compared three modes of 64 

neural coding: absolute, partially-adaptive and fully-adaptive. 65 

Twenty-eight human participants (both sexes) performed a learning task while 66 

undergoing fMRI scanning. On each trial, they chose between two symbols associated 67 

with a certain outcome. Then, the decision outcome was revealed. Notably, in half of the 68 

trials participants received partial feedback, while in the other half they got complete 69 

feedback. We used univariate and multivariate analysis to explore value encoding in 70 

different feedback conditions. 71 

We found that both obtained and forgone outcomes were encoded in mPFC, but 72 

with opposite sign in ventral and dorsal subdivisions. Moreover, we showed that 73 

increasing feedback information induced a switch from absolute to relative coding. Our 74 

results suggest that complete feedback information promotes context-dependent 75 

outcome encoding.   76 
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SIGNIFICANCE STATEMENT  77 

This study offers a systematic investigation of the effect of the amount of feedback 78 

information (partial vs. complete) on univariate and multivariate outcome value 79 

encoding, within multiple regions in mPFC/ACC critical for value-based decisions and 80 

behavioural adaptation. Moreover, we provide the first comparison of three possible 81 

models of neural coding (i.e., absolute, partially-adaptive, and fully-adaptive coding) of 82 

value signal in mPFC by using commensurable measures of model accuracy. Taken 83 

together, our results help build a more comprehensive picture of how the human brain 84 

encodes and processes outcome value. In particular, our results suggest that 85 

simultaneous presentation of obtained and foregone outcomes promotes relative value 86 

representation.  87 
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INTRODUCTION  88 

Despite high variation in incoming information from the surrounding environment, 89 

humans perceive consistency in it. For example, an object can be seen in very different 90 

contexts (e.g., in daylight or in darkness), where its physical properties (e.g., color) vary 91 

greatly. Nonetheless, we perceive them as stable. To achieve this invariance, neurons 92 

adjust their sensitivity to the context characteristics through normalization, that is, they 93 

rescale their response to object properties relative to the specific context, instead of 94 

responding in absolute terms. These context effects allow efficient coding of broad 95 

ranges of sensory input and are well documented in perception (see, e.g., Carandini and 96 

Heeger, 2012; Louie and Glimcher, 2012). Recently, context-dependence and 97 

normalization were reported also in value-based decision, in both monkeys (Padoa-98 

Schioppa, 2009; Bermudez and Schultz, 2010; Kobayashi et al., 2010; Rustichini et al., 99 

2017; Conen and Padoa-Schioppa, 2019) and humans (Nieuwenhuis et al., 2005; Elliott 100 

et al., 2008; Cox and Kable, 2014; Burke et al., 2016; see Louie and De Martino, 2014 for 101 

a review), allowing optimal responses to vast ranges of values in PFC. Specifically, 102 

neurons seem to rescale their firing to adapt to the decision context (relative coding) so 103 

that their response to a specific value depends on the choice context (e.g., reward vs. 104 

punishment), rather than being invariant (absolute coding). Additionally, studies on 105 

value-based decision showed that feedback information affects value learning so that 106 

providing complete feedback (both obtained and foregone – counterfactual – choice 107 

outcomes) instead of partial feedback (only the obtained outcome) improves learning 108 

(Palminteri et al., 2015, 2017; Bavard et al., 2018). However, it is unclear (1) whether 109 

relative coding occurs in all PFC regions and (2) whether and how it is affected by 110 

feedback information.  111 
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Evidence for relative coding has been found in various PFC regions, such as mPFC, 112 

orbitofrontal cortex (OFC), and cingulate cortex (e.g., Nieuwenhuis et al., 2005; Elliott et 113 

al., 2008; Bunzeck et al., 2010; Cox and Kable, 2014), mainly with univariate fMRI 114 

analysis. This analysis identifies areas where neural response to value is consistent 115 

across voxels and participants. However, recordings from individual neurons showed 116 

that neuronal subpopulations in PFC exhibit opposite responses to value (e.g., Padoa-117 

Schioppa and Assad, 2006; Schoenbaum et al., 2007; Kennerley and Wallis, 2009), thus 118 

questioning the ability of univariate analysis to capture all effects of interest. The 119 

introduction of multivariate methods (Haxby et al., 2001) that can detect value 120 

information encoded heterogeneously in brain activity patterns distributed across the 121 

brain, allowed to extend univariate results and answer questions related to the specific 122 

coding mechanisms the brain uses to encode value (Kahnt, 2018). Although with these 123 

techniques scientists could decode various value signals in the human brain (e.g., 124 

Clithero et al., 2009; Kahnt et al., 2010; Vickery et al., 2011; Wisniewski et al., 2015; 125 

Howard et al., 2016; Yan et al., 2016), the exact neural code that it uses to represent 126 

value is seldom investigated. The only decoding study in humans that investigated how 127 

outcome value adaptation occurs in the brain (Burke et al., 2016) considered only 128 

obtained outcomes. Moreover, despite the authors tested different possible types of 129 

adaptation in both univariate and multivariate signals, they employed methods that are 130 

hardly comparable. 131 

To help build a more exhaustive picture, we designed an analysis plan to investigate 132 

outcome value processing and encoding in multiple regions in mPFC/OFC and cingulate 133 

cortex (see “Evaluating differences between output types”). The aim of the study is 134 

threefold: (1) to systematically evaluate univariate and multivariate effects in these 135 

regions, (2) to compare different coding models of outcome value encoding, and (3) to 136 
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assess the effect of feedback information on value representation. We hypothesize that 137 

counterfactual information will produce rescaling of value signal depending on the 138 

context, such that the value of a neutral outcome becomes positive in a loss context (as 139 

absence of punishment) and negative in a gain context (as absence of reward), thus 140 

inducing relative coding of value signals. 141 

 142 

MATERIALS AND METHODS 143 

Participants 144 

Twenty-eight participants took part in the experiment (16 females and 12 males; 145 

age 25.6 ± 5.4 years). All participants were right-handed, did not report any psychiatric 146 

or neurological history, and had normal or corrected-to-normal vision. The ethics 147 

committee of the University of Trento approved the study and participants provided 148 

written informed consent before their inclusion in the study. They received monetary 149 

payment, calculated as a show-up fee plus the total amount of money they won during 150 

the experiment. 151 

Experimental design, stimuli, and procedure 152 

Participants performed an instrumental learning task while undergoing fMRI 153 

scanning. At the beginning of the experimental session, they received written 154 

instructions and the task was further explained orally, if necessary. Participants were 155 

requested to maximize their payoff, considering that both reward seeking and 156 

punishment avoidance were equally important strategies and that only factual (but not 157 

counterfactual, see below) outcomes would be used to calculate their total earnings. 158 

After the instruction phase, participants performed a training session to practice the 159 

task before entering the fMRI scanner. After practice, they performed four learning runs 160 
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in the scanner. Participants were presented with a pair of abstract symbols belonging to 161 

the Agathodaimon alphabet. For each run, we used eight different symbols arranged in 162 

four pairs to produce four choice contexts (i.e., reward/partial, reward/complete, 163 

punishment/partial, and punishment/complet e). The contexts were defined based on 164 

the possible outcome (either reward - winning 0.5€ vs. 0€ - or punishment - losing 0.5€ 165 

vs. 0€) and the feedback provided (either partial - only the outcome of the chosen 166 

option - or complete - the outcomes of both the chosen and the unchosen options). The 167 

contexts were characterized by a fixed pair of symbols within the same run but the pairs 168 

associated with each context differed among runs. Each symbol in one pair was 169 

associated with the possible outcomes with complementary probability (0.75/0.25 for 170 

reward and 0.25/0.75 for punishment). Participants performed 96 trials (24 repetitions 171 

of the four experimental conditions) during each scanning run. 172 

Examples of trials with either partial (top rows) or complete (bottom rows) 173 

feedback information are shown in Figure 1. At the beginning of each trial, a pair of 174 

symbols was shown (with each symbol randomly presented either on the left or on the 175 

right of a central fixation cross). Participants had to choose one of the symbols and to 176 

press the corresponding button with their left or right thumb, within 3,000ms. 177 

Afterward, a red pointer was displayed under the selected option for 500ms, which was 178 

then replaced by its outcome (+0.5€, 0.0€, or -0.5€) shown for 3,000ms. In complete 179 

feedback trials, the outcome of the unchosen option (i.e., counterfactual) was displayed 180 

as well. The next trial followed after about 1,000ms (jittered, minimum 500ms and 181 

maximum 1,500ms) during which a fixation screen was shown. Presentation order of 182 

the different pairs of symbols and the position of each symbol in the pair was pseudo-183 

randomized and unpredictable so that each symbol was displayed an equal number of 184 

times to either side of the screen. 185 



 

 7 

At the end of the four experimental runs and while the anatomical image was 186 

acquired, participants performed a post-learning evaluation of option value. We do not 187 

describe this task here since the data were not used for the analyses described in this 188 

paper. For details, please see the original article (Palminteri et al., 2015). 189 

Image acquisition and preprocessing 190 

fMRI images were recorded using a 4T Bruker MedSpec Biospin MR scanner 191 

(CIMeC, Trento, Italy) equipped with an eight-channel head coil. For each of the 4 192 

scanning runs, we collected 338 T2*-weighted EPI volumes. Each image consisted of 47 193 

slices recorded in ascending interleaved order with acquisition parameters as follows: 194 

TR 2,200ms, TE 21ms, FA 75°, FOV 192mm, matrix size 64 × 64, yielding an in-plane 195 

voxel resolution of 3mm3 with voxel size of 3mm × 3mm × 2.3mm. A T1-weighted 196 

anatomical sequence was recorded as well, with imaging parameters: TR 2,700ms, TE 197 

4.18ms, FA 7°, matrix size 224 × 256 × 176, with a voxel resolution of 1mm3. 198 

We used SPM12 (RRID:SCR_007037) to pre-process and analyze the fMRI data. 199 

During pre-processing, the images were realigned and slice-time corrected, low-200 

frequency noise was removed using a high-pass filter with a cutoff  period of 128s 201 

(Worsley and Friston, 1995), and an autoregressive AR model was fitted to the residuals 202 

to allow for temporal autocorrelations (Friston et al., 2002). The anatomical image was 203 

segmented using the template tissue probability maps in SPM12 and used as a reference 204 

to coregister the functional images. To perform the univariate analyses, fMRI images 205 

were also smoothed (FWHM 6mm) and normalized to MNI space. For the multi-voxel 206 

pattern analysis (MVPA), the images were neither normalized nor smoothed to preserve 207 

fine-grained patterns of brain activity.  208 
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Statistical analyses 209 

fMRI data from this experiment has been previously analyzed with a model-based 210 

procedure to test the hypothesis that successful avoidance of punishment is reframed as 211 

a positive outcome and that neural activity in brain regions within the valuation system 212 

is better accounted by a relative model of value representation as compared with an 213 

absolute model (Palminteri et al., 2015). An additional aim of the previous analyses was 214 

to assess neural encoding of choice and outcome in those different regions as a function 215 

of task context. 216 

The analyses described in this manuscript differ in either the method used (MVPA) 217 

or the question asked (whether and how outcome representation changes as a function 218 

of the available information). 219 

Behavioral analyses. For the sake of clarity and completeness, we report behavioral 220 

results (see Figure 2) from the original paper (Palminteri et al., 2015). We used one 221 

sample t-tests to assess learning in the different experimental conditions (i.e., to 222 

compare the actual correct choice rate with the value expected by chance). To assess 223 

possible effects of context (i.e., reward vs. punishment) and feedback information (i.e., 224 

partial vs. complete) on either accuracy or reaction times (RT), we performed linear 225 

mixed-effects model (LMM) analysis with accuracy (or RT) as predicted value and 226 

context and feedback information as fixed effects. As random effect, we introduced 227 

intercepts for each participant, thus allowing inter-subject variability in behavioral 228 

responses. 229 

Evaluating differences between output types  230 

ROI selection. The first aim of the present study was to assess univariate and 231 

multivariate effects of outcome encoding in mPFC and cingulate cortex and to identify 232 
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possible differences between distinct outcome conditions (see “Experimental design, 233 

stimuli, and procedure”). In particular, we aimed to test whether the regions along the 234 

dorsal/ventral axis of mPFC were sensitive to outcome processing or encoded 235 

information about outcome value for the three outcome types we investigated. To avoid 236 

circular inference (Kriegeskorte et al., 2009), we selected an independent set of ROIs 237 

from the Brainnetome Atlas (Fan et al., 2016; RRID:SCR_014091). We included nine 238 

areas along mPFC/OFC and cingulate cortex in the set of selected ROIs (see Figure 3A), 239 

since these areas have been previously implicated in reward processing, especially 240 

when choice outcome is revealed (Knutson et al., 2003; Diekhof et al., 2012; Clithero and 241 

Rangel, 2014) as compared to, for example, ventral striatum, which seems to be more 242 

strongly (or equally) activated during outcome anticipation (Knutson et al., 2001; 243 

Rangel et al., 2008; Diekhof et al., 2012; Stott and Redish, 2014; Oldham et al., 2018) and 244 

to reflect prediction error rather than value (Hare et al., 2008; Rohe et al., 2012). 245 

Univariate analyses. Realigned, slice-time corrected, smoothed, and normalized 246 

images were used to obtain parameter estimates for the GLM. The GLM was set up to 247 

assess processing and encoding of outcome value in trials with either partial or 248 

complete information (see “Experimental design, stimuli, and procedure” for details on 249 

the different information conditions). Twelve regressors were included in the model, 250 

corresponding to the four possible outcomes (i.e., +0.5€, +0.0€, -0.0€, and -0.5€) for 251 

each of the three outcome types (i.e., partial factual, complete factual, and complete 252 

counterfactual). We defined the time vectors for the twelve regressors using the onset 253 

time of the outcome screen presentation; all regressors were convolved with the 254 

canonical HRF function to compute the GLM. The estimates were linearly combined to 255 

contrast the conditions of interest: estimates for negative outcomes (i.e., +0.0€ and -256 
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0.5€) were subtracted from those for positive outcomes (i.e., +0.5€ and -0.0€) for each 257 

outcome type.  258 

Multivariate analyses. Realigned and slice-time corrected images were used to 259 

estimate run-wise correlation coefficients for the GLM (see above). We employed MVPA 260 

with an ROI-based approach to determine which brain regions contained information 261 

about outcome value. Three decoding analyses were performed: the purpose of the first 262 

one was to identify brain regions encoding information about outcome value in trials 263 

with partial feedback, the second one aimed at identifying brain regions containing 264 

information about factual outcome value in trials with complete feedback, and the goal 265 

of the last analysis was to establish whether any region in the brain contained 266 

information about the counterfactual outcome. All analyses decoded between positive 267 

and negative outcomes (i.e., +0.5€/-0.0€ vs. +0.0€/-0.5€, see “Experimental design, 268 

stimuli, and procedure”) using the parameter estimates from the GLM (see above). 269 

Decoding analyses tested whether patterns of neural activity within each ROI contained 270 

information allowing for distin guishing between two task conditions (e.g., a positive and 271 

a negative outcome). We performed pairwise decoding between positive and negative 272 

outcomes. For each selected ROI and for each of the four fMRI runs, we extracted 273 

parameter estimates for the four experimental conditions (i.e., for +0.5€, +0.0€, -0.0€, 274 

and -0.5€ outcomes) for the outcome type of interest. A total of 16 pattern vectors (one 275 

for each of the 4 conditions and for each of the 4 runs) were available for each 276 

participant. For each decoding analysis, the pattern vectors of the pair under evaluation 277 

were assigned to independent training and test sets, to avoid overfitting (Duda et al., 278 

2000). We implemented a leave-one-run-out cross-validation procedure, where data 279 

from each run were assigned, in turn, to the test set and data from the remaining three 280 

runs were used to train a support vector classifier (Müller et al., 2001; Cox and Savoy, 281 



 

 11 

2003; here, regularization parameter C = 1) to distinguish between the two conditions 282 

of interest. The trained classifier was applied to data from the test set and its 283 

classification accuracy was calculated as the ratio between the number of correct 284 

classifications and the number of all classifications that were performed. The resulting 285 

classification accuracy reflects how well the classifier distinguished between the two 286 

conditions of interest in the specified ROI. For each of the three analyses, the decoding 287 

procedure was repeated using all possible condition pairs as classes for the 288 

classification. Accuracies resulting from each pairwise classification were averaged, 289 

yielding an accuracy value for each ROI, participant, and analysis. We used shuffle tests 290 

with all possible permutations of the condition labels to calculate the actual chance 291 

level. To assess statistical significance, we randomly sampled from the results of the 292 

permutations and calculated second level statistics by comparing actual accuracies with 293 

the distribution of accuracies obtained from 106 resamplings. All decoding analyses 294 

were performed using The Decoding Toolbox (TDT Hebart et al., 2015; 295 

RRID:SCR_017424).  296 

ROI analyses. We employed ROI analyses to assess the effect of different types of 297 

outcomes at the neural level in the set of selected ROIs. For each participant and for 298 

each analysis (see above), we used the mean contrast effect (or decoding accuracy) for 299 

each ROI. Then, we used LMMs to assess the effect of outcome type and ROI on the 300 

extracted mean estimates (see “Univariate and multivariate effects of outcome valence” 301 

for details on the single analyses). We ran LMM analyses using R 3.2.3 302 

(RRID:SCR_001905) and the lme4 package (Bates et al., 2015; RRID:SCR_015654). We 303 

favored LMMs over repeated-measures ANOVA because they take into account subjects’ 304 

sensitivity to different experimental conditions beyond individual variability in mean 305 

responses. Thus, LMMs are more powerful than repeated-measures ANOVA (Barr et al., 306 
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2013). Statistical significance of the tests was calculated with likelihood ratio tests of 307 

the model with the effect of interest against the model without that effect (Barr et al., 308 

2013). Post hoc tests comparing different levels of the factors and interactions showing 309 

a significant effect were performed using the emmeans package (Lenth, 2018). To 310 

maintain the alpha level at the intended value of 0.05, we performed pairwise 311 

comparisons with the Tukey HSD test (Tukey, 1949) and chose the Holm’s method 312 

(Holm, 1979) to correct for multiple comparisons and control the family-wise error rate 313 

while maintaining high statistical power. 314 

Comparing different value coding models 315 

The second goal of this study was to assess how the human brain encodes outcome 316 

value. Specifically, we aimed to test whether outcomes are represented using an 317 

absolute, a partially-adaptive, or a fully-adaptive code (see Figure 4A). To this purpose, 318 

we implemented different support vector regression (SVR) analyses (see Kahnt et al., 319 

2011 for a detailed description) that captured the characteristics of each of the 320 

theoretical models. Different from the classification approach described in “Evaluating 321 

differences between output types”, we used the local patterns of brain activity 322 

associated with multiple predictors (i.e., the four possible outcomes: +0.5€, +0.0€, -0.0€, 323 

and -0.5€) to predict a continuous variable (i.e., the outcome value as assumed by the 324 

theoretical model). We adopted a leave-one-run-out cross-validation procedure (see 325 

“Evaluating differences between output types”) to assure independence between train 326 

and test sets (Mitchell, 1997). For each ROI, we calculated the prediction accuracy of the 327 

SVR model using the Fisher’s Z-transformed correlation coefficient between the 328 

predicted outcome values and the actual values in the test set. The SVR analyses were 329 

implemented using TDT (Hebart et al., 2015; RRID:SCR_017424). 330 
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The first analysis aimed to identify brain regions representing value with an 331 

absolute code. Under absolute value coding, neural patterns of brain activity should 332 

reflect the magnitude of the reward, irrespective of the context (see Figure 4A, left 333 

panel). Thus, local pattern of brain activity encoding neutral outcomes in the reward 334 

(i.e., +0.0€) and in the punishment (i.e., -0.0€) contexts should be equivalent; in 335 

addition, they should be different from neural patterns encoding both the best (i.e., 336 

+0.5€) and the worst (i.e., -0.5€) outcome. To identify brain regions showing neural 337 

activity patterns in line with this model, we used a SVR model where we set three 338 

different outcome values: one value (i.e., 0) for both the neutral outcomes, one value 339 

(i.e., 2) for the best outcome, and one value (i.e., -2) for the worst outcome.  340 

In the second analysis, we tested whether any brain regions encoded outcome value 341 

in a fully-adaptive way. If a region encoded outcomes with a fully-adaptive code, good 342 

and bad outcomes should be represented in the same way, irrespective of the context in 343 

which they occur (see Figure 4A, right panel). Thus, neural patterns encoding the good 344 

outcome in the reward context (i.e., +0.5€) and in the punishment context (i.e., -0.0€) 345 

should be equivalent; similarly, brain activity patterns representing the bad outcome in 346 

the punishment context (i.e., -0.5€) and in the reward context (i.e., +0.0€) should be 347 

identical. To assess whether neural activity patterns encoded outcome value according 348 

to the fully-adaptive coding model, we performed SVR assigning the same outcome 349 

value (i.e., 2) to both the good outcomes (i.e., +0.5€ and -0.0€) and a different value (i.e., 350 

-2) to both the bad outcomes (i.e., +0.0€ and -0.5€).  351 

Finally, a third analysis assessed partially-adaptive coding of outcome value. If the 352 

human brain represented outcomes with a code that is just partially-adaptive, the value 353 

of the good outcome in the punishment context (i.e., -0.0€) should not be as high as the 354 

value of the good outcome in the reward context (i.e., +0.5€) and the value of the bad 355 
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outcome in the reward context (i.e., +0.0€) should not be as low as the value of the bad 356 

outcome in the punishment context (i.e., -0.5€). However, the value attributed to the 357 

null outcome (i.e., 0.0€) should be higher in the punishment context as compared to the 358 

reward context, since the absence of punishment is a more positive outcome than the 359 

absence of reward, as expected by the partially-adaptive coding model (see Figure 4A, 360 

middle panel). To test whether local patterns of brain activity reflected a partially-361 

adaptive coding, we set a SVR model in which different values were assigned to each of 362 

the possible outcomes (i.e., 2 and 1 to the good outcomes and -1 and -2 to the bad 363 

outcomes).  364 

The three SVR analyses were performed on data from each pre-selected ROI (see 365 

“Evaluating differences between output types”), yielding to a prediction accuracy value 366 

for each participant, model, analysis, and ROI. We used LMM and likelihood ratio tests 367 

(see “Evaluating differences between output types”) to assess the effect of coding model, 368 

outcome type, and ROI on prediction accuracy (see “Revealing the neural code 369 

underlying outcome valence representation” for details of each analysis). 370 

Code Accessibility  371 

All analyses were performed using in-house developed code and implemented 372 

either in MATLAB (RRID:SCR_001622) or R (RRID:SCR_001905). All code is available 373 

through GitLab: https://gitlab.com/doris.pischedda/value_normalization.git. 374 

 375 

RESULTS 376 

Behavioral results  377 

An extensive description of the behavioral results from this experiment can be 378 

found in the original paper (Palminteri et al., 2015). Here, we report only a summary of 379 
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them, together with the findings of the neuroimaging analyses described in the previous 380 

section (see “Statistical analyses”), to provide a full picture of the results of the 381 

experiment. 382 

Mean accuracy and RT in the different experimental conditions are shown in Figure 383 

2. Behavioral data provide evidence for learning, as the percentage of correct responses 384 

for participants was significantly higher than what would be expected by chance (i.e., 385 

50%) in all contexts (all Ts > 7.4, all ps < 6 x 10-8). Linear mixed-effects model (LMM) 386 

analyses (see “Statistical analyses” for details) showed a main effect of feedback 387 

information on accuracy (�V2(1) = 34.4, p = 3 x 10-8) but not on RT (p = .08) and a main 388 

effect of context and an interaction effect of context and information on RT (�V2(1) = 34.8, 389 

p = 4 x 10-9 and �V2(1) = 5.3, p = .021, respectively), but not on accuracy (p = .35 and p = 390 

.70, respectively). Post hoc test showed higher accuracy when feedback information was 391 

complete as compared to when it was partial (p < .0001) and slower RT when partial 392 

rather than complete feedback was provided (p = .004), but only in punishment trials. 393 

Overall, the behavioral results suggest that people learn similarly in reward and 394 

punishment contexts and can integrate counterfactual information to improve their 395 

performance. 396 

Univariate and multivariate effects of outcome valence 397 

The first aim of the analyses described in this manuscript was to investigate where 398 

the human brain represents information about outcome value during a learning task 399 

including both reward and punishment contexts and where either partial or complete 400 

feedback was provided. In particular, we explored both univariate and multivariate 401 

effects of outcome type in a set of preselected regions along the dorsal/ventral axis of 402 

mPFC to confirm their role in processing/encoding of outcome value. As our analyses 403 
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rely on both differences between positive and negative outcomes and monetary gain 404 

and losses (see Statistical analyses), we describe our results in terms of outcome 405 

valence rather than value (see, e.g., Kahnt et al., 2014 for extensive discussion). 406 

To assess possible differences in univariate effects between different outcome types 407 

and ROIs, we performed an LMM analysis modeling brain signal change as predicted 408 

value and outcome type and ROI as fixed effects. We considered intercepts for each 409 

participant as random effect, thus allowing inter-subject variability in mean brain 410 

activation. Results are shown in Figure 3B. Both the ROI and the outcome type x ROI 411 

interaction had a significant effect on signal change (�V2(8) = 36.7, p = 1.3 x 10-5 and 412 

�V2(16) = 96.8, p = 1.4 x 10-13, respectively). Instead, the main effect of outcome type on 413 

the neural signal was not significant (�V2(2) = 0, p = 1). Post hoc tests performed using 414 

the Tukey HSD test (corrected for multiple comparisons with the Holm’s method) 415 

revealed higher univariate effects for factual than for counterfactual outcomes (all ps < 416 

.035) and no difference for factual outcomes between the partial and the complete 417 

feedback condition (all ps > .44) in all regions, except in middle (mSFG) and dorsal 418 

(dSFG) superior frontal gyrus, where univariate effects were higher for counterfactual 419 

than for factual outcomes (all ps < .008), and in posterior OFC (pOFC), ventral superior 420 

frontal gyrus (vSFG), in dorsal ACC (dACC), and middle cingulate cortex (MCC) where 421 

there was no difference between the three outcome conditions (all ps > .23). Taken 422 

together, the univariate results indicate that, while anterior mPFC regions (except 423 

pOFC) encode factual outcomes (either with partial or complete information) positively 424 

and counterfactual outcomes negatively, the opposite is true for the most posterior 425 

areas (see Figure 3C), suggesting that ventral regions process primarily factual outcome 426 

information while more posterior areas play a main role in counterfactual outcome 427 

processing. 428 
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To evaluate possible differences in multivariate effects between different ROIs and 429 

outcome types, we used an LMM modeling decoding accuracy as predicted value and 430 

ROI and type of outcome as fixed effects. As random effect, we added random intercepts 431 

for participants to account for individual differences in participants’ mean neural 432 

response. Results are shown in Figure 3D. The effect of outcome type on decoding 433 

accuracy was significant (�V2(2) = 17.4, p = .0002), reflecting better decoding for factual 434 

outcome as compared to counterfactual ones. Instead, neither the effect of ROI nor the 435 

outcome type x ROI interaction reached significance (�V2(8) = 10.9, p = .21 and �V2(16) = 436 

8.1, p = .95, respectively). Post hoc tests (with Tukey HSD, corrected for multiple 437 

comparisons with the Holm’s method) showed worse decoding for counterfactual 438 

outcomes than for factual outcomes with either complete (p = .0001) or partial (p = 439 

.019) feedback and no difference in factual outcome encoding between the partial and 440 

complete feedback conditions (p = .13). In summary, multivariate results show that 441 

information about counterfactual outcomes can be decoded in multiple regions of 442 

mPFC, although with lower accuracy than for factual ones. As counterfactual outcomes 443 

are not relevant for the obtained reward and representational strength is stronger for 444 

attended than unattended items (e.g., Christophel et al., 2018), this suggests that they 445 

receive less attention. 446 

Revealing the neural code underlying outcome valence 447 

representation 448 

The main goal of this study was to investigate how the human brain represents 449 

outcome information when the result of the chosen (and unchosen) option is revealed. 450 

To this purpose, we compared three different models of valence coding (i.e., absolute, 451 

partially-adaptive, and fully-adaptive models, see Figure 4A) to assess which one would 452 
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account better for valence representation of the three possible outcomes (i.e., factual 453 

outcome with partial or complete feedback and counterfactual outcome) in the different 454 

ROIs. 455 

To test for possible differences in prediction accuracy (see “Comparing different 456 

value coding models”) among the three coding models for each outcome type and in the 457 

different ROIs, we used an LMM modeling prediction accuracy as the dependent 458 

measure and coding model, outcome type, and ROI as fixed effects. As random effect, we 459 

included intercepts for each participant (see “Univariate and multivariate effects of 460 

outcome valence”) in the model. Mean prediction accuracies for the different conditions 461 

are shown in Figure 4B. The LMM analysis showed a main effect of both outcome type 462 

(�V2(2) = 227.0, p < 2.2 x 10-16) and ROI (�V2(8) = 52.1, p = 1.6 x 10-8), but no effect of 463 

coding model (�V2(2) = 3.7, p = .16). Importantly, there was an effect of the interactions 464 

coding model x type of outcome (�V2(4) = 54.5, p = 4.2 x 10-11, see Figure 4C) and type of 465 

outcome x ROI (�V2(16) = 31.9, p = .01), but no effect of the interactions ROI x coding 466 

model (�V2(16) = 3.0, p = ~1) nor coding model x outcome type x ROI (�V2(32) = 16.2, p = 467 

.99). Post hoc tests (see “Univariate and multivariate effects of outcome valence”) 468 

showed that the absolute model had higher prediction accuracy than both the partially-469 

adaptive (p = .016) and the fully-adaptive (p < .0001) models for factual outcomes with 470 

partial feedback, while for both factual and counterfactual outcomes with complete 471 

feedback the fully-adaptive model was more accurate than the absolute model (p = .001 472 

and p = .004, respectively) and comparable to the partially-adaptive one (p = .35 and p = 473 

.19, respectively). Finally, there was no significant difference in prediction accuracy 474 

between the three outcome conditions in the most ventral region (all ps > .05), while all 475 

pairwise comparisons between outcome conditions were significant in frontopolar 476 

cortex (all ps < .03); in the other regions prediction accuracy was higher for factual than 477 
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for counterfactual outcomes (all ps < .011) but it was similar for the two factual 478 

outcome types (all ps > .08). 479 

To sum up, a formal comparison of three different coding models shows that 480 

outcome information encoding is more in line with absolute coding when only partial 481 

information about the outcome is provided but with fully-adaptive coding when 482 

counterfactual information is also presented. This suggests that making information 483 

about the alternative outcome available changes how the brain represents valence. We 484 

found poor prediction accuracy for all models in the most anterior region of mPFC. This 485 

could suggest that this area may encode outcome valence yet in a different way. 486 

However, we refrain from providing interpretations of differences between different 487 

ROI as accuracy measures depend on additional factors beyond neural encoding which 488 

usually differ between PFC regions (see Etzel et al., 2013; Bhandari et al., 2018 for a 489 

thorough discussion). 490 

 491 

DISCUSSION  492 

We systematically investigated outcome processing and encoding in multiple 493 

subdivisions of mPFC/OFC and cingulate cortex, using different analysis approaches, to 494 

assess (1) univariate and multivariate effects in these regions, (2) possible effects of 495 

feedback information on outcome encoding, and (3) to compare different coding models 496 

of outcome valence. 497 

A first goal of this study was to assess univariate and multivariate effects of 498 

outcome valence and feedback information in different regions in mPFC/OFC and 499 

cingulate cortex. We showed that signal change reflecting differences between good and 500 

bad outcomes was higher for factual than for counterfactual outcomes with no 501 
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difference between the two factual outcomes (with complete or partial feedback) in 502 

aOFC, FPC, and vACC; in dSFG and mSFG the effect was higher for counterfactual than 503 

for factual outcomes, and in the remaining regions, there was no difference between the 504 

three outcome types. Additionally, while factual outcome processing generally 505 

increased activation in anterior ROIs (except pOFC), the same regions were deactivated 506 

by counterfactual outcome processing. Deactivation for counterfactual outcome 507 

processing in OFC replicates results from a previous study showing enhanced OFC 508 

activity for counterfactual processing in loss trials and relative deactivation in win trials 509 

in the complete feedback condition (Coricelli et al., 2005). Here, we did not distinguish 510 

between win and loss trials; however, as participants were highly accurate in their 511 

choices (see Figure 2), winning trials were much more frequent, thus, on average, 512 

deactivation should prevail, as we actually observed. As for the multivariate effects, we 513 

found that multivariate decoding was higher for factual than for counterfactual 514 

outcomes. Nevertheless, decoding accuracy for counterfactual outcomes was 515 

significantly higher than chance level, indicating that mPFC regions did encode 516 

counterfactual information. As counterfactual outcomes did not affect participants’ 517 

actual gains/losses (i.e., they were irrelevant for performance) and it has been shown 518 

that decoding accuracy is higher for attended than unattended (i.e., behaviorally 519 

irrelevant) items (e.g., Christophel et al., 2018), it is possible that counterfactual 520 

outcomes received less attention. Although univariate and multivariate results look 521 

slightly different, these differences are not rare (e.g., Mohr et al., 2015; Baggio et al., 522 

2016; see Davis et al., 2014 for a thorough discussion of their interpretation). 523 

Notwithstanding, all regions that were selected showed univariate/multivariate effects, 524 

thus confirming their role in processing/encoding of outcome valence.  525 
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The second aim of the study was to investigate how outcome valence is represented 526 

in the brain. To this purpose, we compared the accuracy of three different coding 527 

models (i.e., absolute, partially-adaptive, and fully-adaptive) in predicting valence 528 

encoding in the different outcome conditions. We found that outcome valence is 529 

represented with different neural codes when either complete or partial feedback is 530 

provided. In particular, while neural coding is better described by absolute coding when 531 

partial feedback is given, relative coding fits the fMRI data better when feedback is 532 

complete. This result is in line with previous research using computational modeling 533 

and showing a better fit of behavioral data for an absolute coding model when only 534 

partial feedback is used, while a relative model fits the data better when complete 535 

feedback trials are also introduced (Bavard et al., 2018). In addition, our results are in 536 

line with previous research providing evidence for absolute coding of value signals in 537 

posterior ventromedial PFC when feedback information is partial (Burke et al., 2016). 538 

Interestingly, this evidence comes from univariate analyses, while the same study 539 

reports evidence for partially-adaptive coding from multivariate results. Burke et al. 540 

(2016) assessed different coding models by using two procedures: cross-set 541 

classification to test for partially-adaptive/absolute and fully-adaptive coding of value 542 

and support vector regression to adjudicate between partially-adaptive and absolute 543 

coding. The first method provides a measure of classification accuracy, while the second 544 

estimates prediction accuracy of the model, which are different measures, both 545 

qualitatively and conceptually. The difference between univariate and multivariate 546 

results may thus be due to comparing heterogeneous measures in the latter analysis. By 547 

using the same measure for all models, we showed that actually an absolute coding 548 

model fits the data better than a partially-adaptive one when feedback is partial. 549 
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The final goal of our research was to clarify how counterfactual information is 550 

represented and processed and to assess whether and how it affects outcome valence 551 

coding. First, we were able to decode counterfactual information from local activity 552 

patterns in the brain regions we considered. Moreover, we showed that counterfactual 553 

information processing reflects into deactivation/activation of the regions in the 554 

network, with an opposite pattern compared to factual information. Thus, 555 

counterfactual outcomes are both represented and processed in these regions. Our 556 

finding that in the most ventral mPFC areas factual outcomes are encoded positively 557 

and counterfactual outcomes are encoded negatively is consistent with previous 558 

evidence (Li and Daw, 2011; Klein et al., 2017). We extend these results by showing that 559 

the pattern is opposite in the dorsal mPFC areas. Finally, we found that presenting 560 

information about the alternative choice outcome affects how the brain encodes 561 

outcome valence, moving from an absolute code when information is partial to a 562 

relative code when information is complete, thus confirming our original hypothesis. 563 

But how does counterfactual information affect behavior? As previous studies showed 564 

that learning is significantly higher when complete information is provided than when 565 

feedback is partial (Palminteri et al., 2015, 2017; Bavard et al., 2018) and we found 566 

evidence for different coding of valence in distinct feedback conditions, the 567 

improvement in learning when complete feedback is given may arise from a more 568 

effective way (relative) of the brain to encode valence in this situation. Presenting 569 

information about the counterfactual outcome might make the context more salient, 570 

inducing a more effective representation of valence (relative instead of absolute). Given 571 

the structure of our task, in trials with complete feedback participants often 572 

experienced trials where factual and counterfactuals outcomes differed. This difference 573 

likely prompted a comparison between the two outcomes, making the value range more 574 
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explicit and possibly inducing coding in terms of context. Although participants learned 575 

the associations between symbols and outcomes (they started choosing the best 576 

symbols more often after learning, see Palminteri et al., 2015) and could in principle 577 

anticipate the counterfactual outcome, they did not seem to represent it. We found 578 

evidence for absolute coding in trials with partial feedback; this result is compatible 579 

with the counterfactual outcome not being represented in this condition, indicating that 580 

a direct comparison between factual and counterfactual outcomes is crucial to 581 

represent valence in relative terms. Importantly, relative coding of valence is not only 582 

efficient, but it also produces behavioral effects: through normalization, neutral 583 

outcomes in the punishment context acquire positive value, thus punishment avoidance 584 

acts as reinforcement for choosing the symbol leading more likely to this outcome. 585 

Indeed, we find better performance in complete information trials when rescaling 586 

should occur (see Figure 2). This process induces symmetry between reward and 587 

punishment learning and can account for asymmetry effects previously reported with 588 

partial feedback (Kubanek et al., 2015). Our results provide evidence for this neural 589 

mechanism that was just hypothesized by testing different learning models (Palminteri 590 

et al., 2015). Although our neural results may also be explained by assuming that 591 

participants implement a Q-learning model in the partial feedback condition and a 592 

policy gradient (or direct comparison) model in the complete feedback condition (Li 593 

and Daw, 2011; Klein et al., 2017), these alternative models are not able to explain the 594 

behavioral patterns of preferences observed in previous studies (Palminteri et al., 2015; 595 

Bavard et al., 2018). 596 

To summarize, this study offers the first systematic investigation of both univariate 597 

and multivariate effects of different information conditions on outcome valence 598 

encoding within multiple regions of mPFC/OFC and cingulate cortex. In addition, we 599 
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provide the first comparison of three possible coding models (absolute, partially-600 

adaptive, and fully-adaptive) for outcome valence encoding in the human brain by using 601 

comparable measures (i.e., obtained using the same analysis approach) of model 602 

accuracy in predicting the observed fMRI data. Taken together, our results help build a 603 

more comprehensive picture of how the human brain encodes and processes outcome 604 

valence. In particular, our results suggest that outcome valence is represented through 605 

multiple coding mechanisms, flexibly activated depending on the specific choice setting. 606 

We acknowledge some limitations of our study: first, in our experiment, we showed 607 

factual and counterfactual outcomes together, so activity related to either of them is not 608 

temporally separated. Moreover, different from previous studies investigating the pure 609 

representation of other cognitive variables (e.g., Reverberi et al., 2012; Pischedda et al., 610 

2017), we investigated valence representation during outcome receipt, when additional 611 

cognitive processes (e.g., comparison between actual and expected outcome) likely took 612 

place. It should be noted, however, that it is extremely hard to dissociate outcome 613 

representation from the related computations (e.g., prediction error calculation) as 614 

these are triggered upon outcome presentation. Nonetheless, we hope our findings will 615 

stimulate future research to fully understand value-based decision, eventually. 616 
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FIGURE LEGENDS 771 

Figure 1. Experimental paradigm. Examples of experimental trials with either partial (top rows) or 772 

complete (bottom rows) feedback. Outcome types (factual vs. counterfactual) are also specified. From 773 

these two factors (i.e., feedback and outcome type), three different experimental conditions originate: 774 

partial factual, complete factual, and complete counterfactual outcomes. Adapted from Palminteri et al. 775 

(2015 p.3). 776 

 777 

Figure 2. Behavioral results. The graphs on the top row display the correct choice rate in the partial (left) 778 

and complete (right) information conditions for the two contexts. In the bottom row, mean reaction times 779 

in partial (left) and complete (right) information trials are depicted. 780 

 781 

Figure 3. Univariate and multivariate effects in the selected ROIs. (A) The selected ROIs are depicted. 782 

fMRI analyses were conducted on nine preselected anatomical ROIs along the ventral/dorsal axis of 783 

mPFC. The set of ROIs comprises one dorsal, one middle, and one ventral area for each of three target 784 

regions: superior frontal gyrus, orbitofrontal/frontopolar cortex, and cingulate cortex. aOFC = anterior 785 

orbitofrontal cortex; pOFC = posterior orbitofrontal cortex; FPC = frontopolar cortex; vACC = ventral 786 

anterior cingulate cortex; dACC = dorsal anterior cingulate cortex; MCC = middle cingulate cortex; vSFG = 787 

ventral SFG; mSFG = middle SFG; dSFG = dorsal SFG. (B) Results of the univariate analyses on outcome 788 

valence are shown. ROIs on the x-axis are arranged from the most ventral (left) to the most dorsal (right), 789 

according to their mean z-coordinate. The dashed line indicates a null effect. ROIs where there was a 790 

significant difference between counterfactual outcomes and both factual outcomes are highlighted. (C) 791 

Univariate effects are shown only for outcomes in trials with complete feedback. The order of the ROIs on 792 

the x-axis is as in (B). The interaction effect outcome type x ROI was significant, reflecting positive 793 

encoding of value for factual outcomes and negative encoding for counterfactual outcomes in more 794 

anterior mPFC ROIs but the opposite pattern in the dorsal regions. (D) The graph displays the results of 795 

the multivariate analyses on outcome valence. The dashed line marks chance level (rounded-up to 50, 796 

actual chance level calculated with shuffle tests is 49.997). ROIs on the x-axis are arranged as in (B) and 797 

(C). No ROI is highlighted on this graph as neither the main effect of ROI nor the interaction effect 798 
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outcome type x ROI was significant in this analysis. Error bars display SEM. *** = p < .001; ** = p < .01; * = 799 

p < .05.  800 

 801 

Figure 4. Comparison of different value coding models. (A) Three different models for value coding are 802 

shown. Under absolute value coding (left panel), values are represented independent of the context, thus 803 

neural activity patterns encoding the same value in reward and punishment contexts (e.g., +0.0€ and -804 

0.0€) are equivalent. With partially-adaptive coding (middle panel), values are rescaled so that positive 805 

outcomes in punishment contexts (e.g., -0.0€) have a higher value than negative ones in reward contexts 806 

(e.g., +0.0€). Finally, if the code is fully adaptive (right panel) neural patterns encoding a positive outcome 807 

in different contexts are equivalent, but different from those encoding negative outcomes, which are 808 

identical as well. (B) Results of the analysis comparing different value coding models. The absolute coding 809 

model is the best at predicting neural activity patterns representing factual outcome when partial 810 

feedback is provided (left panel) in all ROIs. Instead, for counterfactual outcome value encoding (right 811 

panel) the fully-adaptive coding model is the one with higher prediction accuracy (see “Comparing 812 

different value coding models”). For factual outcome encoding when complete feedback is given (middle 813 

panel), the model with higher prediction accuracy is either the fully-adaptive or the partially-adaptive 814 

one, depending on the ROI. (C) Interaction effect of coding model x type of outcome. The absolute model 815 

had higher prediction accuracy for factual outcomes with partial information than both the partially-816 

adaptive and the fully-adaptive models. Instead, the fully-adaptive model had higher prediction accuracy 817 

than the absolute model for factual and counterfactual outcomes with complete feedback. aOFC = anterior 818 

orbitofrontal cortex; pOFC = posterior orbitofrontal cortex; FPC = frontopolar cortex; vACC = ventral 819 

anterior cingulate cortex; dACC = dorsal anterior cingulate cortex; MCC = middle cingulate cortex; vSFG = 820 

ventral SFG; mSFG = middle SFG; dSFG = dorsal SFG. Error bars represent SEM. *** = p < .001; ** = p < .01. 821 










