

Research Report: Regular Manuscript

Genetic Architecture and Molecular Neuropathology of Human Cocaine Addiction

https://doi.org/10.1523/JNEUROSCI.2879-19.2020

Cite as: J. Neurosci 2020; 10.1523/JNEUROSCI.2879-19.2020

Received: 3 December 2019 Revised: 4 May 2020 Accepted: 10 May 2020

This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data.

Alerts: Sign up at www.jneurosci.org/alerts to receive customized email alerts when the fully formatted version of this article is published.

Copyright © 2020 the authors

Genetic Architecture and Molecular Neuropathology of Human Cocaine Addiction

Spencer B. Huggett^{1,2} and Michael C. Stallings^{1,2}

- 1. Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, USA
- 2. Institute for Behavioral Genetics, University of Colorado Boulder, CO, USA

Corresponding Author: Spencer B. Huggett

Emails: sphu3837@colorado.edu & Michael.Stallings@colorado.edu

Abstract: # of words - 250

Introduction: # of words - 650

Discussion: # of words - 1,446

of pages (text) - 24

of tables: 2; # of figures: 7

Acknowledgements

We would like to acknowledge the funding that supported this work from the National Institute of Health (T32 DA 17637-14) and National Institute on Drug Abuse (DA035804). We appreciate Dr. Joel Gelernter and Dr. Henry Kranzler for giving us access to their genome-wide association summary statistics on cocaine dependence and the Gene Expression Omnibus (GEO) for providing open access to the single-cell RNA-sequencing data used in this study.

Conflict of Interest¹

Keywords: Cocaine dependence, Cocaine use disorder, Genome-wide association study (GWAS), RNA sequencing, Multi-Ancestry, GWAS Follow-up

¹The authors declare no competing financial interests¹

Genetic Architecture and Molecular Neuropathology of Human Cocaine Addiction

Spencer B. Huggett^{1,2} and Michael C. Stallings^{1,2}

¹Department of Psychology and Neuroscience, University of Colorado ²Institute for Behavioral Genetics, University of Colorado Supported in part by: NIDA P60 DA11015

Abstract

We integrated genomic and bioinformatic analyses, utilizing data from the 1 2 largest genome-wide association study (GWAS) of cocaine dependence (CD; 3 n=6,546; 82.37% with CD; 57.39% male) and the largest post-mortem gene-4 expression sample of individuals with cocaine use disorder (CUD; n=36; 51.35% 5 with CUD; 100% male). Our genome-wide analyses identified one novel gene (NDUFB9) associated with the genetic predisposition to CD in African-Americans. 6 7 The genetic architecture of CD was similar across ancestries. Individual genes 8 associated with CD demonstrated modest overlap across European and African-9 Americans, but the genetic liability to CD converged on many similar tissue types 10 (brain, heart, blood, liver) across ancestries. In a separate sample, we investigated the neuronal gene expression associated with CUD by using RNA sequencing of 11 12 dorsal-lateral pre-frontal cortex neurons. We identified 133 genes differentially expressed between CUD cases and cocaine-free controls, including previously 13 implicated candidates for cocaine use/addiction (FOSB, ARC, KCNJ9/GIRK3, NR4A2, 14 15 *JUNB* and *MECP2*). Differential expression analyses significantly correlated across 16 European and African-Americans. While genes significantly associated with CD via 17 genome-wide methods were not differentially expressed, two of these genes 18 (*NDUFB9* and *C1qL2*) were part of a robust gene co-expression network associated 19 with CUD involved in neurotransmission (GABA, acetylcholine, serotonin and dopamine) and drug addiction. We then used a "guilt-by-association" approach to 20 21 unravel the biological relevance of *NDUFB9* and *C1qL2* in the context of CD. In sum, our study furthers the understanding of the genetic architecture and molecular 22 23 neuropathology of human cocaine addiction and provides a framework for 24 translating biological meaning to otherwise obscure genome-wide associations.

Significance Statement:

Our study: **1)** further clarifies the genetic and neurobiological contributions to cocaine addiction, **2)** provides a rapid approach for generating testable hypotheses for specific candidates identified by genome-wide research and **3)** investigates the cross-ancestral biological contributions to cocaine use disorder/dependence for individuals of European- and African-American ancestries.

25 Introduction

Neuroscience research has facilitated the identification of genes studied in 26 hypothesis-driven human genetic research, often called "candidate gene studies." 27 28 The candidate gene literature proposes numerous genetic associations with cocaine use/addiction from genomic variants within genes from neurotransmitter systems. 29 However, some experts question the validity of candidate gene research due to a 30 lack of reproducibility (Colhoun et al. 2003; Munafo, 2009) and encourage the use of 31 32 hypothesis-free genome-wide methods. Genome-wide association studies (GWASs) have identified thousands of 33 34 genetic variants associated with human traits. However, linking molecular 35 mechanisms to GWAS findings is challenging. Significant GWAS results do not generally conform to a priori candidate genes and often tag non-protein coding 36 genomic regions (Maurano et al. 2012). Therefore individual gene variants from 37 38 GWASs are rarely interpreted with concrete mechanisms. Experimental laboratory 39 studies have unraveled mechanisms for a few GWAS findings (Claussnitzer et al. 2015; Sekar et al. 2016), but these studies are expensive and time intensive, so it is 40 not feasible to apply this line of research for all GWAS findings. Systematic 41 42 approaches are needed to prioritize individual genes from GWASs for follow-up

- 43 investigation in specific tissues or cell types. Another important caveat of GWAS
- 44 research is that most findings are based on individuals of European

45 ancestry/ethnicity (Martin et al. 2019), highlighting a priority to investigate the

46 genetic basis of traits among non-Europeans.

47	GWASs have discovered four significant genes contributing to predisposition
48	to cocaine dependence (CD; DSM-IV): FAM53B, KCTD20, STK38 and C1qL2 (Gelernter
49	et al. 2014; Huggett & Stallings, 2019). The relevance of these genes with CD is not
50	fully understood. Follow-up investigation in mice revealed that Fam53b might
51	influence cocaine self-administration via midbrain co-expression with <i>Cyfip2</i>
52	(Dickson et al. 2016), a gene, which influences cocaine-induced sensitization (Kumar
53	et al. 2013). Similarly, our previous work found that <i>KCTD20</i> was associated with
54	human cocaine abuse/dependence through a hippocampal gene co-expression
55	network implicated in synaptic plasticity (Huggett & Stallings, 2019). This work
56	provides a "guilt-by-association" approach to infer the role of newly associated
57	disease genes and helps contextualize and interpret otherwise ambiguous genetic
58	associations. Given the surplus of publically available bioinformatic data, systems-
59	based computational follow-up may be a fruitful line of inquiry that could help
60	translate biological meaning to obscure genetic associations.
61	Despite the rising rates of cocaine and drug-related overdoses in the United
62	States (US; NIDA, 2018) post-mortem brain data on substance use disorders remain
63	limited. The largest cocaine-related human brain sample used RNA-sequencing
64	(RNA-seq) on dorsolateral PFC (dlPFC) neurons from individuals of mixed
65	ancestries (Ribeiro et al. 2017). The PFC is a critical region for the neuropathology
66	of cocaine addiction and plays a role in decision-making, salience attribution and
67	promotes inhibitory control over drug addiction (Goldstein et al. 2011). Rodent
68	models suggest that PFC glutamate neurons provide "top-down" control of reward
69	circuitry and increase motivation to seek/use cocaine (Kalivas et al. 2005), but little

91

92

	dwns/http-seq cocanie nuggett & stannigs o
70	is known regarding the neuro-adaptations underlying PFC dysfunction in human
71	cocaine addicts. Ribeiro et al. identified associations of various immediate early
72	genes (FOS, JUN and JUNB) with dlPFC neuro-adaptations of cocaine use disorder
73	(CUD; DSM-V) and found one gene co-expression network associated with CUD that
74	was enriched for neuroplasticity processes and GWAS associations for Body-Mass
75	index and obesity. Notably, while, genome-wide research has begun to disentangle
76	the genetic architecture of human traits across ancestries (Peterson et al. 2019), we
77	are aware of no transcriptome-wide studies characterizing potential
78	similarities/differences across ancestries/ethnicities. Future research is warranted
79	to clarify the links between the genetic risk for substance abuse and the
80	neurobiological characteristics of the addicted brain, while also investigating how
81	gene expression generalizes across ethnicities.
82	This study aimed to unravel the genetic architecture and molecular
83	neuropathology of human cocaine addiction. Integrating genomic and bioinformatic
84	methods, we identified specific genes and tissues associated with the predisposition
85	to CD and characterized PFC neuro-adaptations associated with CUD. We translated
86	findings across ancestries and methods and sought to make human genetic findings
87	more relevant for neuroscientists.
88	Materials and Methods
89	Genome-wide Analyses
90	Sample

6

which was based on data from 3,370 African-Americans (44.18% female; $M_{\rm age}$ =

We used case-control GWAS summary statistics from Gelernter et al. 2014,

93	41.71) and 3,176 European-Americans (40.96% female; $M_{age} = 37.35$). Participants
94	were a part of the Study of Addiction: Genetics and Environment (SAGE) or
95	recruited via clinical settings in the northeastern US. Genome-wide analyses were
96	performed separately by ancestry to account for population stratification. GWAS
97	summary statistics corrected for relatedness via generalized estimating equations
98	and adjusted for 3 ancestral principal components, age and sex, but not co-occurring
99	substance abuse nor other psychiatric co-morbidities. All participants reported
100	trying cocaine and 90.39% of African-Americans and 73.96% of European-
101	Americans had a lifetime diagnosis of CD (3+ Symptoms of DSM-IV criteria). In a
102	portion of this sample, measurements of CD yielded high internal reliability ${\rm k}$ > 0.80
103	(Pierucci-Lagha et al. 2005), indicating reliable trait measurement. Stringent quality
104	control was applied to the genotypic data of all subjects and imputation was
105	performed using the 1000 Genomes reference panel.
106	Experimental Design and Analysis:
107	Gene-Based Associations
108	To detect specific protein-coding genes underlying the predisposition of CD,
109	we conducted Multi-marker Analysis of GenoMic Annotation (de Leeuw et al. 2015;
110	MAGMA, v1.06) gene-based association tests by submitting summary statistics to
111	the Functional Mapping and Annotation (FUMA, v1.1.2) GWAS pipeline (Watanabe
112	et al. 2017). Contrary to GWAS, which performs millions of regressions for all
113	common gene variants across the genome, gene-based associations perform one
114	regression per protein-coding gene and therefore reduce the multiple testing
115	burdens of GWAS and offer more interpretable results. Most protein-coding genes

116	have a multitude of gene variants. MAGMA gene-based tests use a principal
117	components analysis to reduce the numerous variants for a certain gene into a
118	single signal, which is then associated with the trait (de Leeuw et al. 2015). Our
119	gene-based analyses included all single nucleotide polymorphisms within protein-
120	coding regions of the genome (Ensembl v85) that had a minor allele frequency > 1%.
121	In total, our gene-based tests included 18,122 genes for the African-American
122	sample and 18,220 genes in European-American sample (18,903 shared genes). We
123	compared the results of our previously published gene-based test of CD in
124	European-Americans (Huggett & Stallings, 2019) to the African-American sample
125	and used a Bonferonni correction for multiple testing to determine genome-wide
126	significance ($p < 2.7e-6$). Note that this standard Bonferronni p -value correction
127	(FUMA default) demarks a less significant threshold than the original GWAS
128	(Gelernter et al. 2014; p < 5.0e-8) due to the reduction of tests performed (~18,000 $$
129	versus ~9 million).
130	To interrogate specific alleles underlying the genetic predisposition to CD, we
131	investigated specific single nucleotide polymorphisms (SNPs) driving genome-wide
132	significant associations. First, we reported the lead SNP from each genomic region,
133	the total SNPs within each gene as well as the number of parameters for each gene,
134	which reflects independent linkage disequilibrium blocks within genes. 'Causal'
135	SNPs are more likely to confer a biological consequence in protein or transcript

136 function. Leveraging DNA sequencing data from 71,702 individuals, we queried the

137 Genome Aggregation Database (v3; Karczewski et al. 2019;

138 <u>https://gnomad.broadinstitute.org/</u>) for missense mutations, or SNPs that code for

an amino acid substitution, among genome-wide significant gene-based test results. 139 To determine whether a missense mutation was significantly associated with CD, we 140 141 used a Bonferonni correction for all missense variants within each gene. We also 142 estimated the relationship between particular missense mutations and a gene's lead 143 SNP using LDlink (Machiela & Chanock, 2015; https://ldlink.nci.nih.gov/), which computes linkage disequilibrium between loci by ancestry. 144 Our study then refined the focus of gene-based associations with CD from a 145 146 genome-wide perspective to a candidate systems approach, selecting genes from typically studied neurotransmitter systems. In total, these analyses included 130 147 148 genes from GABA, glutamate, acetylcholine, endocannabanoid, dopamine, 149 epinephrine/norepinephrine and serotonin systems encompassing synthesis, vesicular transport, receptors, degradation and reuptake genes. Since these classical 150 genes rarely surpass conservative genome-wide significance thresholds, we 151 152 assessed whether these hypothesis-driven neurotransmitter genes surpassed a 153 nominally significant *p*-value threshold (p < 0.05) as typically employed in the candidate gene literature. Collapsing across ancestries, we tested whether these 154 candidate neurotransmitter genes were enriched for being nominally associated 155 156 with CD using a Fisher's exact test. 157 **Tissue Enrichment** To identify tissues underlying the genetic pathophysiology of CD, we 158 159 performed tissue enrichment analyses. These analyses assess where genes 160 underlying the predisposition of a trait might be exerting a functional role. Tissue

161 enrichment analyses identify which tissues a list of input genes demonstrate

162	differential expression (up or down-regulated in a tissue compared to all other
163	tissues). We assessed tissue enrichment in 53 tissues from hundreds of healthy
164	human samples (GTEx Consortium, 2013) and performed analyses separately by
165	ethnicity - including genes nominally associated with CD (unadjusted $p < 0.05$; 901
166	genes in African-Americans and 1008 genes in European-Americans). Tissue
167	enrichment analyses used competitive hyper-geometric tests to compare a specific
168	tissue type versus all other tissues and incorporated a Bonferoni multiple testing
169	correction to ascertain significantly enriched tissues ($p < 0.05/53$).
170	Neuron Specific RNA-seq Analyses
171	Sample
172	Next, we performed neuron-specific RNA-sequencing (RNA-seq) analyses
173	using publically available data from the largest post-mortem human brain study on
174	cocaine use (GEO: GSE99349). Cocaine users (n = 19; 100% male; 6 African-
175	Americans, 6 European-Americans and 7 Hispanics or Latinos) died from the toxic
176	effects of chronic cocaine abuse and met criteria for cocaine use disorder (CUD;
177	DSM-V criteria). Age and race matched cocaine-free controls (n = 17; 7 African-

Americans, 4 European-Americans and 6 Hispanics or Latinos) were selected from

179 homicides, accidental or cardiac-related deaths and had negative urine screens for

180 common drugs before death. Cases and controls did not significantly differ on post-

181 mortem index (PMI), RNA integrity (RIN), age, or brain pH level, all |t| > 1.69, all p > 1.69

182 **0.100**.

183 Data Preparation

10

184	For more details on the sample, tissue preparation, RNA extraction, library
185	construction and RNA-seq protocol see Ribiero et al. (2017). Briefly, dlPFC tissue
186	was extracted from the middle frontal gyrus at the lateral portion of Broadmann's
187	area 46. Fluorescent activated cell sorting dissociated dlPFC cell types and neuronal
188	nuclei were isolated/extracted via the mouse anti-NeuN antibody. RNA isolation
189	was conducted via the Zymo Directzol RNA miniprep kit (Zymo Research; R2050).
190	Indexed libraries were constructed using 10 ng of nuclear RNA from each sample
191	with the Contech SMARTer Stranded Total RNA-seq library preparation kit
192	(Clontech/Takara; 634839). Paired end (2x125) RNA-seq was performed using the
193	Illumina Hiseq-2000 (Liu et al. 2011) and resulted in an average of 50,925,315 read
194	pairs per sample.
195	We pre-processed the RNA-seq data from Ribiero et al. via Trimmomatic v
196	0.36 to eliminate short and low quality reads (Phred score < 20 or < 100 bases) as
197	well as Illumina adapters, which resulted in an average of 30,486,006 read pairs per
198	sample. We then aligned the RNA-seq data to the hg19 reference genome via the
100	
199	Spliced Transcripts Alignment to a Reference (STAR; Dobin et al. 2013). On average
200	Spliced Transcripts Alignment to a Reference (STAR; Dobin et al. 2013). On average we had 26,476,583 (<i>SD</i> = 6,173,119) uniquely mapped read pairs per sample, with a
200	we had 26,476,583 (<i>SD</i> = 6,173,119) uniquely mapped read pairs per sample, with a
200 201	we had 26,476,583 (SD = 6,173,119) uniquely mapped read pairs per sample, with a mean alignment rate of 86.84% (SD = 5.86%) and observed no significant
200 201 202	we had 26,476,583 ($SD = 6,173,119$) uniquely mapped read pairs per sample, with a mean alignment rate of 86.84% ($SD = 5.86\%$) and observed no significant differences in read alignment between cases and controls, $t = 0.668$, $p = 0.509$. Our
200 201 202 203	we had 26,476,583 ($SD = 6,173,119$) uniquely mapped read pairs per sample, with a mean alignment rate of 86.84% ($SD = 5.86\%$) and observed no significant differences in read alignment between cases and controls, $t = 0.668$, $p = 0.509$. Our study used HTseq (Anders et al. 2015) to transfer mapped reads into discrete

206 we defined differentially expressed genes with an adjusted *p*-value threshold of

207	Benjamini-Hochberg False Discovery Rate (BH-FDR) < 0.05. Second, we normalized
208	RNA-seq data with SCnorm – a method that utilizes quantile regression and seems
209	to properly handle data derived from single cell types (Bacher et al. 2017). RNA-seq
210	approaches from a single cell (type) differ from regular RNA-seq due to the presence
211	of technical noise (i.e., zero-inflated read counts of genes not expressed in
212	sequenced cells) and may require sensitive statistical care. To test whether SCnorm
213	increased power, we assessed the number of differentially expressed genes
214	identified from this technique compared to a standard normalization method
215	(DESeq2 scale factors). Without covariates, we found just 6 differentially expressed
216	genes/transcripts ($p_{adj} < 0.05$) using the standard scale factor approach, but
217	identified 250 differentially expressed genes/transcripts ($p_{adj} < 0.05$) via the
218	SCnorm technique. Additionally, we found appreciable evidence for zero-inflated
219	read counts and discovered that SCnorm successfully accommodated for this noise
220	(data available upon request), perhaps stemming from non-neuronal
221	genes/transcripts. Accordingly, the lowest decile of normalized read counts were
222	enriched for cortical astrocytes (p_{adj} = 6.92e-4) and oligodendrocytes (p_{adj} = 0.002),
223	but not cortical neuronal cell types (all $p_{adj} > 0.999$) as observed from a cell specific
224	expression analysis (Doughtrey et al. 2010). Thus, we normalized the RNA-seq data
225	with SCnorm (for our differential expression analyses) as it appeared to properly
226	account for technical artifacts and afforded increased statistical power.
227	Experimental Design and Analysis:

228 Differential Expression

229	We utilized DESeq2 (Love et al. 2014) to assess differentially expressed
230	genes/transcripts and to investigate the association of differential expression
231	analyses across ancestries. We used the full sample to identify differentially
232	expressed genes/transcripts (49,496 total genes/transcripts), which controlled for
233	RIN, PMI, age, race (European-American = -1; Hispanic = 0; African-American = 1),
234	blood alcohol content, smoking status (smokers = 1; non-smokers = 0) and hidden
235	batch effects (2 surrogate variables via the svaseq package; Leek, 2014).
236	To complement our genome-wide analyses, we investigated the association
237	between ancestry specific differential expression results from African-American (n
238	= 13) and European-American $(n = 10)$ subsamples. Due to low sample size for
239	ancestry specific differential expression analyses, we did not control for all possible
240	confounds, but adjusted for two common and salient covariates (PMI and age). Log
241	fold change estimates from differential expression analyses are estimated with noise
242	– especially among lowly expressed genes/transcripts. To accommodate for this
243	error/noise and enable transcriptome-wide investigation (e.g., low and high
244	expressed genes/transcripts), our cross-ancestry RNA-seq analysis focused on test
245	statistics from differential expression analyses (DESeq2 Wald statistics), which
246	account for log fold change effect size and standard error for individual
247	genes/transcripts. Additionally, we selected the genes/transcripts with a
248	differential expression Wald-statistic > 2 in either European- or African-American
249	specific analyses (705 genes/transcripts) and investigated the cross-ancestry
250	correlation of cocaine-related gene/transcripts.
251	Gene Co-expression Networks

252	Next, our study utilized a systems-genetics approach to model clusters of
253	genes derived from correlated RNA expression (gene co-expression networks/gene
254	networks). The reader should note that these analyses do not determine gene co-
255	expression networks a priori, but rather create gene networks from the observed
256	RNA-seq data. Specifically, we conducted a signed weighted gene co-expression
257	network analysis (WGCNA; Langfelder & Hovarth, 2008), using the same input
258	parameters as our previous work (Huggett & Stallings, 2019). Briefly, we filtered
259	genes/transcripts based on expression level, such that we only included
260	genes/transcripts with an average baseline expression > 1 read count per sample,
261	which resulted in a total of 15,178 genes/transcripts for WGCNA modeling. Our
262	WGCNA approach computed Pearson Product-Moment correlations of normalized
263	RNA expression (log ₂ -counts per million) of all WGCNA genes/transcripts with
264	themselves and weighted these correlations by raising them to the (default) power
265	of 12, which satisfied WGCNA distribution assumptions (scale free topology = 0.84).
266	Then, using a dynamic tree-cutting algorithm we split clusters of correlated/co-
267	expressed genes into defined WGCNA gene co-expression networks (minimum
268	module size = 50).
269	To validate our WGCNA gene networks, we utilized a Z-summary module
270	preservation statistic (Langfelder et al. 2011). Z-summary statistics above 10
271	indicate gene networks are highly robust and reproducible and Z-summary
272	statistics greater than 2 suggest WGCNA gene networks are weak to moderately
273	reproducible. Our validation approach was based on previous work (Vanderlinden

et al. 2013) that incorporates within sample and out of sample gene network

275	validation technique. Our within sample gene network validation analysis is
276	indicative of WGCNA network <i>stability</i> and compared the WGCNA networks from
277	the current study to 100 bootstrapped samples from the same dataset (human
278	dlPFC neurons; n = 37). Then to assess whether gene networks were <i>robust</i> in a
279	separate sample, we tested if our constructed WGCNA gene networks were
280	reproducible in an independent sample using RNA-seq data of hippocampal tissue
281	from human cocaine users/addicts and controls (Zhou et al. 2011).
282	Similar to previous research (Ponomarev et al. 2012), we used an effect-size
283	based approach leveraging test statistics from our full sample differential
284	expression analysis (DESeq2 Wald statistics) to associate gene co-expression
285	networks with CUD. That is, we calculated the average absolute value of Wald
286	statistics for all genes/transcripts within each defined gene co-expression network.
287	The directions of associations were determined by assessing whether mean effect
288	sizes for gene networks were positive or negative. We ascertained significant gene
289	networks via 100,000 permutations. That is, our permutations re-sampled the
290	absolute values of Wald statistics from all WGCNA genes to approximate a null
291	distribution. We then derived <i>p</i> -values by determining the probability that a gene
292	co-expression network had an average absolute Wald statistic in relation to what is
293	expected under the null. We defined a significant association of a gene network with
294	CUD, if it survived a Bonferonni correction ($p < 0.05/#$ of WGCNA gene networks)
295	and demonstrated enrichment for differentially expressed genes (FDR < 0.05).
296	Functional Annotation

15

297	We functionally annotated our RNA-seq results via the Database for
298	Annotation, Visualization and Integrated Discovery (DAVID v6.8; Huang et al. 2009)
299	and queried for enriched Kyoto Encyclopedia of Genes and Genomes (KEGG)
300	pathways, biological processes (BPs), and/or molecular functions (MFs). To control
301	for false positives, we required significant enrichment to survive correction for
302	multiple testing (FDR < 0.05) and adjusted for the 'background distribution' by
303	incorporating a list of genes that were included for each analysis. We uploaded our
304	results to GeneWeaver (<u>https://www.geneweaver.org/</u> ; Baker et al. 2012), which
305	can be found by searching the reported id numbers (GS#).
306	Results
307	Genome-wide Analyses
308	Gene-Based Associations
308 309	<u>Gene-Based Associations</u> To identify specific genes underlying the predisposition to CD, we conducted
309	To identify specific genes underlying the predisposition to CD, we conducted
309 310	To identify specific genes underlying the predisposition to CD, we conducted gene-based association tests. Figure 1 shows the Miami plot visualizing the results
309 310 311	To identify specific genes underlying the predisposition to CD, we conducted gene-based association tests. Figure 1 shows the Miami plot visualizing the results of our gene-based associations with cocaine dependence (CD) for African- and
309310311312	To identify specific genes underlying the predisposition to CD, we conducted gene-based association tests. Figure 1 shows the Miami plot visualizing the results of our gene-based associations with cocaine dependence (CD) for African- and European-Americans. Extending our previous gene-based associations with CD
 309 310 311 312 313 	To identify specific genes underlying the predisposition to CD, we conducted gene-based association tests. Figure 1 shows the Miami plot visualizing the results of our gene-based associations with cocaine dependence (CD) for African- and European-Americans. Extending our previous gene-based associations with CD among European-Americans (Huggett & Stallings, 2019), we identified one novel
 309 310 311 312 313 314 	To identify specific genes underlying the predisposition to CD, we conducted gene-based association tests. Figure 1 shows the Miami plot visualizing the results of our gene-based associations with cocaine dependence (CD) for African- and European-Americans. Extending our previous gene-based associations with CD among European-Americans (Huggett & Stallings, 2019), we identified one novel genome-wide significant association with CD in African-Americans (<i>p</i> = 8.27e-07),
 309 310 311 312 313 314 315 	To identify specific genes underlying the predisposition to CD, we conducted gene-based association tests. Figure 1 shows the Miami plot visualizing the results of our gene-based associations with cocaine dependence (CD) for African- and European-Americans. Extending our previous gene-based associations with CD among European-Americans (Huggett & Stallings, 2019), we identified one novel genome-wide significant association with CD in African-Americans (<i>p</i> = 8.27e-07), the NADH: ubiquinone oxioreductase subunit B9 gene (<i>NDUFB9</i>), but not in

319 further investigation. To investigate specific loci underlying our genome-wide

320	significant associations, we reported each region's most significant SNP (lead SNP)
321	and examined missense mutations for each gene associated with CD. After
322	correction for multiple testing, we found significant associations between a
323	missense mutation in the NDUFB9 gene (rs34095749) with CD in African-Americans
324	and a missense mutation in the <i>KCTD20</i> gene (rs2239808) with CD in European-
325	Americans (see Table 1).
326	Utilizing a nominally significant threshold ($p < 0.05$), our gene-based test
327	found 901 and 1,008 genes associated with CD in African-Americans (see
328	GS357670) and European-Americans (see GS357669), respectively. We found a
329	small, but significant, association between gene-based associations (Z-statistics)
330	across European and African Americans ($B = 0.017$, s.e. = 0.008, p = 0.024; R^2 =
331	0.0002) and observed 59 genes ($p < 0.05$) that were nominally associated with CD in
332	both ancestries.
333	Next, we investigated gene-based associations with CD for the 130 candidate
334	neurotransmitter system genes commonly studied with cocaine use/addiction. Of
335	these genes, we found ten nominally significant associations with CD from GABA,
336	glutamate, endocannabanoid, serotonin, norepinephrine and acetylcholine genes
337	(see Figure 2). The most significant candidate genetic association with CD (in
338	African-Americans) came from the CHRNB4 gene ($\#_{SNPs} = 422, Z = 4.00, p = 3.199e$ -
339	05), which resides in a validated gene cluster for CD (Gruzca et al. 2008) as well as
340	nicotine dependence (Saccone et al. 2009). Despite dopamine's prominence in the
341	candidate gene literature, we found no dopamine genes to be associated with CD (all

p > 0.108). Candidate neurotransmitter genes were not enriched to be (nominally)

343 associated with CD, OR = 0.73, 95% CI [0.34, 1.40], *p* = 0.465. In other words,

candidate neurotransmitter genes were no more likely to be (nominally) associated
with CD than we would expect by chance.

346 <u>Tissue Enrichment</u>

To find tissues implicated in the genetic etiology of CD, we performed tissue 347 specificity/enrichment analyses of the genes nominally associated with CD. Genes 348 nominally associated with CD were enriched among numerous tissue types (see 349 350 Figure 3). Despite minimal overlap of individual genes associated with CD across ancestries, 70.37% of significantly enriched tissues in African-Americans were also 351 352 significantly enriched in European-Americans ($p_{adi} < 0.05$). Tissue overlap across 353 ancestry exceeded what we would expect by chance alone, OR = 3.65, 95% CI [1.05, 13.70], p = 0.029. The replicated tissue types across ancestries tag plausibly 354 implicated tissues in the genetic etiology of CD, including: heart, liver, blood and 355 356 most brain regions and highlight various tissues for follow-up investigation. 357 Neuron Specific RNA-seq Analyses **Differential Expression** 358 To follow-up genome-wide associations with CD, we used publically available 359 360 data from dlPFC neurons from individuals with cocaine use disorder (CUD; n = 19) and cocaine-free controls (n=17; Ribeiro et al. 2017). After successful data 361 normalization and adjustment for covariates, we found 133 differentially expressed 362 363 genes/transcripts (all $p_{adi} < 0.05$; see **Figure 4** and GS357661). Similar to Ribeiro et 364 al. 2017, 42.86% of differentially expressed genes/transcripts were non-coding, and 365 of these, pseudogenes were the most abundant - including 15 pseudogenes of

366	mitochondrial inner membrane genes. Given that most non-coding transcripts lack
367	detailed functional characterization, perhaps it is not surprising that differentially
368	expressed genes/transcripts were not enriched for any KEGG pathways, BPs or MFs,
369	all $p_{adj} > 0.089$, although we did identify some typical candidates for cocaine
370	use/dependence. That is, consistent with previous research, we found increased
371	expression of <i>FOSB</i> (Larson et al. 2010), <i>JUNB</i> (Guez-Barber et al. 2011), ARC (Zavala
372	et al. 2008; Salery et al. 2017), <i>MECP2 (</i> Im et al. 2010; Deng et al. 2014), <i>NR4A2</i>
373	(Lopez et al. 2019), <i>KCNJ9/GIRK3</i> (Rifkin et al. 2018; McCAll et al. 2019), <i>MAPK1</i>
374	(Cahill et al. 2016) and CAMK2N1 (Ribeiro et al. 2018). These genes represent
375	various "immediate early genes" whose expression is induced by cocaine,
376	intracellular signaling cascades that modulate neural responsiveness, and nuclear
377	epigenetic transcripts that perturb the expression of numerous genes. No genome-
378	wide significant association with CD (FAM53B, C1qL2, KCTD20, STK38 or NDUFB9)
379	was significantly differentially expressed in dlPFC neurons, all $\mid \log_2$ fold change \mid <
380	0.411, all $p > 0.026$, all $p_{adj} > 0.341$.
381	To complement our genome-wide analyses, we explored whether neuro-
382	transcriptomic associations with CUD generalized across European- and African-
383	Americans. After covariate adjustment, we found one gene that was significantly
384	differentially expressed in European-Americans ($PAX8-AS1$, log_2 fold change = -7.90,
385	p_{adj} = 4.36e-5). In African-Americans, we found 37 significant differentially
386	expressed genes – the most significant was the $CHRNG$ gene (log ₂ fold change =

387 30.00, p_{adj} = 4.29e-30). While the top associations were different across ancestry, we

388 found that the transcriptome-wide differential expression results significantly

correlated across ancestries, r = 0.174, p < 2.e-16 (see **Figure 5**). This association persisted after selecting cocaine-related genes/transcripts (r = 0.332, p < 2.e-16; 705 genes/transcripts).

392 Gene Co-expression Networks

Next, we modeled systems of co-expressed genes (gene networks) using 393 weighted gene co-expression network analysis (WGCNA). Similar to previous 394 WGCNA results with these data (Ribeiro et al. 2017), we constructed 12 gene co-395 396 expression networks - each of which is arbitrarily assigned to a color. To evaluate the stability and validity of our gene co-expression networks, we used a standard 397 398 network preservation technique (Langfelder et al. 2011) to assess within sample 399 and out of sample gene network reproducibility. Our analyses suggest that our WGCNA networks were highly reproducible/valid within sample (e.g., stable; all Z-400 summary > 16.19) and, except for the tan (Z-summary = 9.75) and yellow gene 401 networks (Z-summary = 0.47), were valid in an independent RNA-seq sample (e.g., 402 403 robust; all Z-summary > 12.67) of hippocampal tissue from human cocaine users and controls (Huggett & Stallings, 2019). 404 After validating our WGCNA gene co-expression networks, we associated 405

these networks with CUD. Using an effect-size based approach and permuting *p*values, we found 6 gene networks associated with CUD, all $p_{adj} < 0.049$ (see **Figure 6A**). We subsequently tested significantly associated WGCNA gene networks for enrichment of differentially expressed genes/transcripts (133 genes). We found significant enrichment of differentially expressed genes among one WGCNA network, the *blue gene network* (2,735 genes; see **Figure 6B** and GS357662). Thus,

412	the blue gene network was robustly associated with CUD and selected for follow-up
413	investigation.

414 The blue gene network recapitulated many molecular processes and was significantly enriched for 13 KEGG pathways ($p_{adj} < 0.05$; see **Figure 6C**). Similar to 415 Ribeiro et al. (2017), our blue gene network was enriched for neuroplasticity 416 processes and also over-represented for various *neurotransmitter signaling* 417 pathways, morphine addiction, intracellular signaling and circadian entrainment. 418 419 Note that other KEGG drug addiction pathways (nicotine addiction, alcoholism and cocaine addiction) approached significant enrichment (all p: 0.007-0.054; all padi: 420 421 0.051-0.201). Of note, the blue gene network was enriched for the 130 candidate 422 neurotransmitter system genes, OR = 2.51, 95% CI [1.61, 3.83], *p* = 3.175e-05. We then assessed the overlap between genetic predispositions to CD and the 423 blue gene network robustly associated with CUD. Of the five genome-wide 424 significant associations with CD, our analyses identified the NDUFB9 and C1qL2 425 426 genes to be central entities (> 50% tile of module membership (kME), kME > 0.58) of 427 the blue gene network. To better understand the role of NDUFB9 and C1qL2 in the context of cocaine addiction, we explored/visualized their co-expression patterns 428 429 with the blue network genes annotated for *neurotransmitter signaling* and *drug* 430 addictions, see Figure 7. Of particular note, we found that our data-derived blue gene network recapitulated previously established connections between FOSB and 431 432 *JUN* genes, which are thought to perpetuate chronic cocaine/drug seeking behavior 433 (Nestler et al. 2002) and further highlights the validity of the co-expression patterns 434 from this gene network.

435	We used co-expression patterns in the blue gene network to better
436	understand biological functions of NDUFB9 and C1qL2 with cocaine use via a "guilt-
437	by-association" approach (Oliver, 2000). Guilt-by-association analyses are
438	commonly used to unravel the biological role of new disease genes and are based on
439	the principle that if genes are highly associated with each other (e.g., co-expressed)
440	they are more likely to share a function (van Dam et al. 2018). In our guilt-by-
441	association technique, we selected the most highly co-expressed genes (weighted r >
442	0.05 or raw $r > 0.78$) separately for <i>NDUFB</i> 9 and <i>C1qL2</i> within the blue gene
443	network, and then investigated enrichment for biological processes, molecular
444	functions and KEGG pathways. Our guilt-by-association analyses indicated that the
445	NDUFB9 gene might play a role in cell death, synaptic plasticity and cell adhesion
446	(see Table 2 , all $p_{adj} < 0.037$). Highly co-expressed genes with <i>C1qL2</i> were
447	significantly enriched for: neurotransmitter signaling, drug response, synaptic
448	plasticity, cell proliferation and neurodevelopment (see Table 2 , all $p_{adj} < 0.045$).
449	Discussion
450	We extend previous genome-wide research (Gelernter et al. 2014; Huggett &
451	Stallings, 2019) that identified four genes significantly associated with cocaine
452	dependence (CD; C1qL2, FAM53B, KCTD20, STK38) by discovering one novel gene
453	(NDUFB9) implicated in the genetic liability to CD for African-Americans. Our study
454	highlights associations between two missense mutations and CD that may interfere
455	with the product of the NDUFB9 and KCTD20 genes. Similar to other psychiatric
456	genetic research (Johnson et al. 2017; Border et al. 2019), we found minimal
457	evidence indicating that genes from candidate neurotransmitter systems contribute

458	to the genetic predisposition of CD. Genome-wide significant genes associated with
459	CD were not differentially expressed in dlPFC neurons between individuals with
460	CUD and cocaine-free controls. However, NDUFB9 and C1qL2 were central parts of a
461	gene co-expression network associated with CUD and exhibited co-expression with
462	relevant drug addiction genes. So while most GWAS findings tend not correspond
463	with pre-hypothesized targets, they may still play a broader role in biologically
464	relevant systems. Similarly, genome-wide associations with psychiatric traits
465	(including alcohol dependence) demonstrated appreciable overlap with PFC gene
466	co-expression networks associated with these traits and corresponded to neuronal,
467	synaptic and mitochondrial functions (Gandal et al. 2018; Kapoor et al. 2019).
468	Our study suggests common biological contributions to cocaine addiction
469	across ancestries/ethnicities. Similar to other substance dependence research
470	(Brick et al. 2019), we found that the individual genetic predispositions to CD
471	demonstrated (modest) genetic overlap across African-Americans and European-
472	Americans. Robust across ancestries, we discovered that the genetic liability of CD
473	menifested as a multi array above menor invelving the beaut liver bland and busin
	manifested as a multi-organ phenomenon involving the heart, liver, blood and brain.
474	Using RNA-seq from PFC neurons, we identified convergence of cocaine-related
474 475	
	Using RNA-seq from PFC neurons, we identified convergence of cocaine-related
475	Using RNA-seq from PFC neurons, we identified convergence of cocaine-related gene expression across African-Americans and European-Americans, albeit with
475 476	Using RNA-seq from PFC neurons, we identified convergence of cocaine-related gene expression across African-Americans and European-Americans, albeit with small to moderate effect sizes. One potential reason for the modest magnitudes of

<u>JNeurosci Accepted Manuscript</u>

480 assess the cross-ancestry transcriptome-wide neurodiversity/similarity for a

481 psychiatric trait - making interpretations difficult.

We found evidence of disrupted GABA, but not glutamate, neurotransmitter 482 483 signaling in dIPFC neurons of human cocaine addicts (blue gene network; see Fig 6). PFC GABAergic signaling is sparsely studied in rodent models of cocaine use, but 484 some evidence suggests that GABA regulates prefrontal disinhibition (Cass et al. 485 2013). We discovered that various GABA genes (GABBR2, GABRA1, GABRA4, 486 487 GABRB2, GABARAPL1, GABARAPL2) were core elements ("hub genes"; top 10% of gene network connectivity) of PFC network function for individuals with CUD. That 488 is, GABAergic genes demonstrated very high co-expression/connectivity patterns 489 490 with other genes in the blue gene network; suggesting GABAergic transmission plays a critical, yet unappreciated, modulatory role of PFC neurons in disordered 491 cocaine use. 492

The blue gene network associated with CUD also suggests that 493 494 catecholamine; acetylcoholine and endocannabanoid signaling play an important role in the PFC for the neuropathology of CUD. Specifically, PFC DRD5 activity may 495 mediate executive functioning (Carr et al. 2017) and impulsive decision-making 496 497 (Loos et al. 2010) as well as HTR1A and ADRA1A could regulate PFC glutamate 498 and/or GABA transmission and various cocaine-related behaviors (Mitrano et al. 2012; Howell et al. 2014). Particular nicotinic (CHRNA6, CHRNB2) and muscarinic 499 acetylcholine subunit genes (CHRM1, CHRM4) we found to be associated with CUD 500 501 have previously been implicated in rodent cocaine research (Carrigan et al. 2007; 502 Dencker et al. 2012; Sanjakdar et al. 2015) and might govern selective attention and

525

503	promote incentive salience to drugs/drug-related cues (Williams et al. 2008). Lastly,
504	cocaine has found to alter expression of endocannabanoid genes/receptors in the
505	mouse PFC (Bystrowska et al. 2019), which could facilitate the strength of
506	connections between PFC neurons (Kasanetz et al. 2013). Our results provide an in
507	human corroboration of specific genes and pathways commonly studied in animal
508	models of cocaine use and/or drug-related behaviors.
509	The combination of genomic and bioinformatics techniques may help
510	contextualize and interpret nebulous genetic associations with human traits.
511	NDUFB9 is a subunit of the inner mitochondrial complex I. Evidence indicates that
512	cocaine inhibits complex I of the inner mitochondrial membrane (Cunha-Oliveira et
513	al. 2013), which is similar to other genetic associations with substance
514	use/dependence that implicate binding targets of specific drugs. Mitochondrial
515	complex I is thought to mediate altered energy metabolism and cocaine-induced
516	neurotoxicity (Dey et al. 2007; Periera & Cunha-Oliveira et al. 2017) and is
517	consistent with our "guilt-by-association" results suggesting NDUFB9 may be
518	involved in neuro-degeneration and ATP production (oxidative phosphorylation).
519	Additionally, analogous to research highlighting the role of mitochondria in drug
520	addiction (Sadakierska-Chudy et al. 2014), our guilt-by-association analyses suggest
521	that NDUFB9 could be involved in cell death, synaptic plasticity and calcium
522	signaling. <i>NDUFB9</i> is not the only mitochondrial gene implicated in cocaine
523	addiction. We found 26 different mitochondrial inner membrane genes within the
524	blue gene network associated with CUD, including 12 <i>NDUF</i> subunits – suggesting

25

links between cocaine use and broad mitochondrial functioning. Accordingly,

various mitochondrial genes have demonstrated associations with human cocaine 526 abuse/dependence in the dlPFC (Lehrmann et al. 2013), hippocampus (Zhou et al. 527 2011) and midbrain (Bannon et al. 2014). Despite the mounting evidence, very little 528 529 is known regarding the relation between mitochondrial genes and cocaine or drug use behavior. One study indicates that mitochondrial genes may contribute to 530 cocaine withdrawal, as they observed differential expression of 40 mitochondrial 531 genes in the PFC of mice experiencing protracted abstinence after chronic high 532 533 doses of cocaine use (Li et al. 2017). The *C1qL2* gene is secreted from the innate immune system and is thought to 534 535 modulate trans-synaptic glutamatergic connections (Evans et al. 2019). Similar to 536 previous work (Matsuda et al. 2017), we identified *C1qL2* to be co-expressed with *C1qL3* and found that *C1qL2* may regulate glutamate receptor signaling (see **Table** 537 2). Extending this research, we hypothesize and provide novel evidence that *C1qL2* 538 may be involved in broader neurotransmitter signaling (GABA, acetylcholine and 539 540 serotonin), ion transport (K⁺/Na⁺), neuro-development and various drug addiction pathways. C1qL2 may be a particularly tantalizing candidate for follow-up, as it is 541 implicated in typical biological processes underlying cocaine use, is highly 542 543 conserved across species and is differentially expressed in the hippocampus in 544 mouse models of cocaine use (Walker et al. 2018). Overall, we prioritize a specific cell-type for follow-up investigation (neurons) and propose specific biological 545 roles/hypotheses for otherwise obscure genomic associations with cocaine 546 547 addiction.

26

548	This study should be interpreted with the following limitations. While, we
549	used the largest GWAS of cocaine addiction to date, our (highly) selected sample had
550	uneven case/control ratios and was not large by contemporary standards and thus
551	the estimates from this study were approximate. The gene-based associations we
552	observed with CD barely surpassed genome-wide significance, warranting larger
553	studies to replicate these findings. Although, including only individuals who were
554	exposed to cocaine may have enhanced the power to identify genes associated with
555	CD (Cabana-Dominguez et al. 2019; Polimanti et al. 2020). Our tissue enrichment
556	findings indicated plausible tissue types for cocaine addiction, suggesting the
557	importance of follow-up among multiple tissue types, however, not all tissues
558	seemed directly relevant for CD (e.g., muscle/skeletal) and certain genes may exert
559	tissue specific functions. Tissue-enrichment analyses utilized GTEx samples, which
560	included mostly Caucasian individuals and may complicate our cross-ancestry
561	comparisons. Our RNA-seq design cannot disentangle whether findings are
562	attributed to chronic cocaine use, acute cocaine toxicity, or psychiatric co-
563	morbidities; but it is reassuring to detect some usual suspects in the realm of
564	cocaine addiction. While our RNA-seq results are theoretically specific to neurons,
565	they do not distinguish between types of neurons and also included various
566	genes/transcripts that are non-neuronal (e.g., glial genes).
567	In conclusion, our study translates genetic findings across methods and
568	ancestries using independent samples. We identified significant overlap across
569	ancestries for trancriptomic, but not genomic, associations with cocaine addiction.
570	Neurotransmitter genes generally demonstrated little contribution to the genetic

571	architecture of CD, but were prominent features underlying the neuropathology of
572	CUD. That is, DNA variation within classical neurotransmitter genes was not
573	typically associated with the genetic predisposition to cocaine addiction, but
574	disrupted systems of neurotransmitter genes were associated with cocaine
575	addiction via neuronal RNA expression/co-expression. Significant genome-wide
576	associations with CD were linked to broad systems of genes/transcripts in PFC
577	neurons from individuals with CUD. Ultimately, our study represents a proof-of-
578	principle that utilizes hypothesis-free methods for generating testable hypotheses
579	regarding the role of genes detected by GWASs and shows the promise of multi-omic
580	analyses. We believe that this line of research provides an important alternative
581	approach for validating genetic associations especially when no genomic replication
582	data exists. Our study may also serve a supplemental purpose for neuroscientists
583	and experimental researchers to help refine particular genes in specific tissues/cell-
584	types for follow-up investigation, while also providing tangible molecular
585	interpretations for otherwise obscure genes identified by genome-wide association
586	analyses.

Figures/Table Legends

Figure 1- Legend: Miami plot visualizing results from gene-based association analyses. Each dot represents an individual protein-coding gene, x-axis denotes chromosome number and the y-axis shows the $-\log_{10} p$ -value. African-American results are displayed on top and European-American results (from Huggett & Stallings, 2019) are shown on bottom. Dashed-red line represents genome-wide significance and dashed brown line represents the unadjusted/nominal *p*-value threshold < 0.05. Red dots are genes nominally significant in both African and European-Americans.

Figure 2- Legend: Miami plot showing the associations of 130 genes from candidate neurotransmitter systems. Each gene is color coded by neurotransmitter type and the different shapes represent the different parts of the system. The x-axis denotes chromosome number and the y-axis shows the $-\log_{10} p$ -value with African-Americans displayed on top and European-Americans shown on bottom. The dashed-red line represents the Bonferonni correction for multiple testing (p < 0.05 / 130) and the dashed-brown line represents the unadjusted/nominal *p*-value threshold < 0.05.

Figure 3- Legend: Shows the implicated tissue types based on genes nominally associated with cocaine dependence (CD) separately by ancestry. The x-axis shows all tissue types (GTEx) sorted alphabetically and the y-axis represents the $-\log_{10} p$ -value. Solid boxes denote results from the African-American analysis and dashed boxes show European-American results from (Huggett & Stallings, 2019). Red bars show replicated tissue types that were significantly enriched ($p_{adj} < 0.05$) across both ancestries. The labels of replicated tissues are emphasized in bold text on the x-axis.

Figure 4- Legend: Volcano plot showing genes/transcripts that are expressed differently in human PFC neurons between controls (n = 17) and individuals with cocaine use disorder (CUD; n = 19). Each dot represents a gene/transcript. The x-axis denotes the log₂ fold change with positive values corresponding to increased expression in those with CUD. The y-axis shows the $-log_{10}$ FDR adjusted *p*-value and all genes above the dashed-red line survive correction for multiple testing (133 gene/transcripts; $p_{adj} < 0.05$). We labeled all genes significantly associated with the genetic predisposition to CD and highlighted significantly differentially expressed genes/transcripts (pseudogenes).

Figure 5– Legend: Heat scatter plot depicting the correlation of neuronal dlPFC gene expression associated with cocaine use disorder (CUD) from African-Americans (n = 13) and European-Americans (n = 10). The x-axis shows the *Wald* statistics from the European-American differential expression analysis and the y-axis represents the Wald statistics from the African-American differential expression analysis. Each dot represents a specific gene/transcript and the bright red color shows the highest

frequency, whereas the light purple/pink indicates the lowest frequency of genes/transcripts. The dashed black line highlights the Pearson Product correlation of gene expression across ethnicities (r = 0.174, p < 2e-16).

Figure 6– Legend: **A)** The x-axis shows the twelve WGCNA gene co-expression networks. The y-axis shows the absolute value of Wald statistics (from whole sample differential expression analysis) of all genes within a defined/discrete WGCNA network. The directions of associations were determined by assessing whether mean effect sizes for gene networks were positive or negative. All WGCNA gene networks to the right of the dashed red line are significantly associated with cocaine use disorder ($p_{adj} < 0.05$). **B)** The six associated WGCNA gene networks were subsequently tested for enrichment of the 133 differentially expressed genes in dlPFC neurons. The y-axis represents the odd's ratio calculated by a two-sided Fisher's exact test. Only the blue gene network demonstrated significant enrichment and was selected for follow-up investigation. **C)** Potential functions of blue gene network via functional annotation analysis of pathways from Kyoto Encyclopedia of Genes and Genomes (KEGG; all $p_{adj} < 0.05$). We picked 30 representative functions/pathways and grouped them into five domains, which are labeled by colors.

Figure 7– Legend: Shows the genes from the blue gene network significantly enriched for *drug addiction* and *neurotransmission* from Kyoto Encyclopedia of Genes and Genomes (KEGG, 2019) and their relation to the genes associated with the predisposition to CD (in triangles). Co-expression patterns with *NDUFB9* and *C1qL2* are highlighted in red. Only co-expression patterns above a weighted r > 0.05 are shown. Genes in cyan show increased expression in dlPFC neurons for those with CUD and magenta represents decreased expression.

Table 1- Legend: We collapsed *KCTD20* & *STK38* into a single category because they stem from the same genomic signal. AA stands for African-American and EA stands for European-American ancestry. The # of parameters represents the amount of independent signals tested within a protein coding gene and differ across ancestries due to disparate LD patterns. We estimated the linkage disequilibrium patterns of missense variants with lead SNPs using LDlink, and selecting the African-American and CEU reference panels. Note that *C1qL2* only had one missense mutation, but was not tested included in the genome-wide association study on cocaine dependence due to low minor allele frequency across ancestries (< 1%).

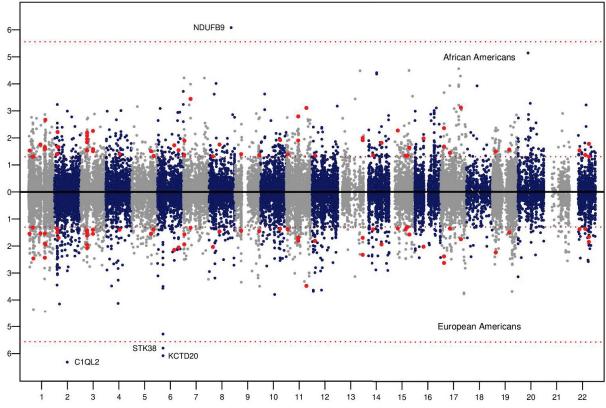
Table 2- Legend: Our "guilt-by-association" approach assesses the function of genes/transcripts that are highly co-expressed with *NDUFB9* and *C1qL2* in the blue gene network associated with CUD and assesses their enrichment for biological processes, molecular functions and KEGG pathways using DAVID (Huang et al. 2009). We selected the most highly co-expressed genes with *NDUFB9* (300 genes/transcripts) and *C1qL2* (694 genes/transcripts) in the blue gene network by using an arbitrary co-expression threshold of: weighted r > 0.05 (raw r > 0.78).

References

587	Anders, S., Pyl, P. T., & Huber, W. (2015). Genome analysis HTSeq — a Python framework to work with
588	high-throughput sequencing data. <i>Bioinformatics</i> , 31(2), 166–169.
589	https://doi.org/10.1093/bioinformatics/btu638
590	Bacher, R., Chu, L. F., Leng, N., Gasch, A. P., Thomson, J. A., Stewart, R. M., Kendziorski, C. (2017).
591	SCnorm: Robust normalization of single-cell RNA-seq data. Nature Methods, 14(6), 584–586.
592	Baker, E. J., Jay, J. J., Bubier, J. A., Langston, M. A., & Chesler, E. J. (2012). GeneWeaver : a web-based
593	system for integrative functional genomics. <i>Nucleic Acids Research</i> , 40, 1067–1076.
594	https://doi.org/10.1093/nar/gkr968
595	Bannon, M. J., Johnson, M. M., Michelhaugh, S. K., Hartley, Z. J., Halter, S. D., David, J. A., Schmidt,
596	C. J. (2014). A molecular profile of cocaine abuse includes the differential expression of genes that
597	regulate transcription, chromatin, and dopamine cell phenotype. Neuropsychopharmacology, 39(9),
598	2191–2199.
599	Border, R., Johnson, E. C., Evans, L. M., Smolen, A., Berley, N., Sullivan, P. F., & Keller, M. C. (2018).
600	No Support for Historical Candidate Gene or Candidate Gene-by-Interaction Hypotheses for Major
601	Depression Across Multiple Large Samples. The American Journal of Psychiatry, (July), 1–12.
602	Brick, L. A., Keller, M. C., Knopik V. S., & Palmer. R. H. C. (2017). Shared additive genetic variation for
603	alcohol dependence among subjects of African and European ancestry. <i>Addiction Biology</i> , 24(1),
604	132-144.
605 606 607	Bystrowska, B., Frankowska, M., Smaga, I., Niedzielska-Andres, E., Pomierny-Chamioło, L., & Filip, M. (2019). Cocaine-Induced Reinstatement of Cocaine Seeking Provokes Changes in the Endocannabinoid and N-Acylethanolamine Levels in Rat Brain Structures. Molecules, 24(6), 1125.
608	Cabana-domínguez, J., Shivalikanjli, A., & Fernàndez-castillo, N. (2019). Progress in
609	Neuropsychopharmacology & Biological Psychiatry Genome-wide association meta-analysis of
610	cocaine dependence : Shared genetics with comorbid conditions. <i>Progress in</i>
611	<i>Neuropsychopharmacology & Biological Psychiatry</i> , 94, 109667.
612	https://doi.org/10.1016/j.pnpbp.2019.109667
613	Cahill, M. E., Bagot, R. C., Gancarz, A. M., Walker, D. M., Sun, H. S., Wang, Z. J., Nestler, E. J.
614	(2016). Bidirectional Synaptic Structural Plasticity after Chronic Cocaine Administration Occurs
615	through Rap1 Small GTPase Signaling. Neuron, 89(3), 566–582.
616	Carr, G. V., Maltese, F., Sibley, D. R., Weinberger, D. R., & Papaleo, F. (2017). The dopamine D5 receptor
617	is involved in working memory. Frontiers in Pharmacology, 8(OCT), 1–9.
618	Carrigan, K. A., & Dykstra, L. A. (2007). Behavioral effects of morphine and cocaine in M1 muscarinic
619	acetylcholine receptor-deficient mice. Psychopharmacology, 191(4), 985–993.
620	Cass, D. K., Thomases, D. R., Caballero, A., & Tseng, K. Y. (2013). Developmental Disruption of Gamma-
621	Aminobutyric Acid Function in the Medial Prefrontal Cortex by Noncontingent Cocaine Exposure
622	during Farly Adolescence, Biological Psychiatry 74(7), 490–501.

	623 624 625	(
ot	626 627	(
Ċ.	628 629	(
nsc	630 631 632 633	C
lan	634 635 636	(
Σ	637 638 639	(
6 O	640 641	d
∋pt	642 643 644	Ι
CCE	645 646 647	Ι
Ă	648 649 650	Ι
SC	651 652 653	Ι
<u>S</u>	654 655	Ι
leu	656 657 658	Ι
	659 660 661	E

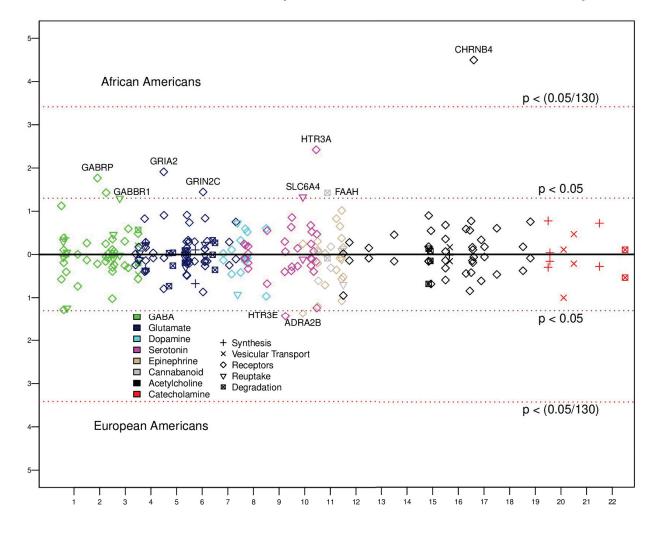
- Claussnitzer, M., Dankel, S. N., Kim, K.-H., Quon, G., Meuleman, W., Haugen, C., ... Kellis, M. (2015). FTO Obesity Variant Circuitry and Adipocyte Browning in Humans. The New England Journal of Medicine, 373(10), 895-907. Colhoun, H. M., McKeigue, P. M., Smith, G. D. (2003). Problems of reporting genetic associations with complex outcomes. The Lancet, 361:865-872. Consortium, T. Gte. (2013). The GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nature Genetics, 45(6), 580-585. Crunelle, C. L., Kaag, A. M., van Wingen, G., van den Munkhof, H. E., Homberg, J. R., Reneman, L., & van den Brink, W. (2014). Reduced Frontal Brain Volume in Non-Treatment-Seeking Cocaine-Dependent Individuals: Exploring the Role of Impulsivity, Depression, and Smoking. Frontiers in Human Neuroscience, 8(January), 1-7. Cunha-Oliveira, T., Rego, A. C., Cardoso, S. M., Borges, F., Swerdlow, R. H., Macedo, T., & de Oliveira, C. R. (2006). Mitochondrial dysfunction and caspase activation in rat cortical neurons treated with cocaine or amphetamine. Brain Research, 1089(1), 44-54. Cunha-Oliveira, T., Silva, L., Silva, A. M., Moreno, A. J., Oliveira, C. R., & Santos, M. S. (2013). Mitochondrial complex I dysfunction induced by cocaine and cocaine plus morphine in brain and liver mitochondria. Toxicology Letters, 43, 2013. le Leeuw, C. A., Mooij, J. M., Heskes, T., & Posthuma, D. (2015). MAGMA: Generalized Gene-Set Analysis of GWAS Data. PLoS Computational Biology, 11(4), 1-19. Dencker, D., Weikop, P., Sørensen, G., Woldbye, D. P. D., Wörtwein, G., Wess, J., & Fink-Jensen, A. (2012). An allosteric enhancer of M4 muscarinic acetylcholine receptor function inhibits behavioral and neurochemical effects of cocaine. Psychopharmacology, 224(2), 277-287. Deng, J. V., Wan, Y., Wang, X., Cohen, S., Wetsel, W. C., Greenberg, M. E., ... West, A. E. (2014). MeCP2 Phosphorylation Limits Psychostimulant-Induced Behavioral and Neuronal Plasticity. Journal of Neuroscience, 34(13), 4519-4527. Dey, S., & Snow, D. M. (2007). Cocaine exposure in vitro induces apoptosis in fetal locus coeruleus neurons through TNF-α-mediated induction of Bax and phosphorylated c-Jun NH2-terminal kinase. Journal of Neurochemistry, 103(2), 542-556. Dickson, P. E., Miller, M. M., Calton, M. A., Bubier, J. A., Cook, M. N., Goldowitz, D., ... Mittleman, G. (2016). Systems genetics of intravenous cocaine self-administration in the BXD recombinant inbred mouse panel. Psychopharmacology, 5(6), 1-8. Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., ... Gingeras, T. R. (2013). STAR: Ultrafast universal RNA-seq aligner. Bioinformatics, 29(1), 15-21.
- Doughetry, J. D., Schmidt, E. F., Nakajima, M., & Heintz, N. (2010). Analytical approaches to RNA
 profiling data for the identification of genes enriched in specific cells. *Nucleic Acids Research*,
 38(13), 4218-4230.
- Evans, A. J., Gurung, S., Henley, J. M., Nakamura, Y., & Wilkinson, K. A. (2019). Exciting Times: New
 Advances Towards Understanding the Regulation and Roles of Kainate Receptors. Neurochemical
 Research, 44(3), 572–584.


32

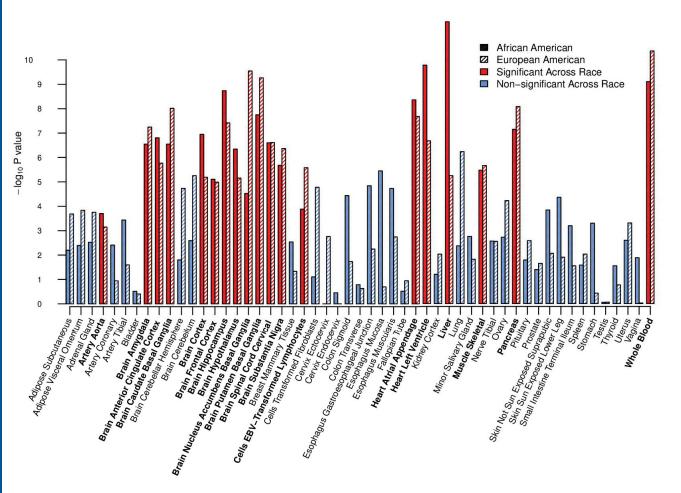
662	Gelernter, J., Sherva, R., Koesterer, R., Almasy, L., Zhao, H., Kranzler, H. R., & Farrer, L. (2014).
663	Genome-wide association study of cocaine dependence and related traits: FAM53B identified as a
664	risk gene. Molecular Psychiatry, 19(6), 717–723.
665	Goldstein, R. Z., & Volkow, N. D. (2011). Dysfunction of the prefrontal cortex in addiction: neuroimaging
666	findings and clinical implications. Nat Rev Neurosci, 12(11), 652–669.
667	Grucza, R. A., Wang, J. C., Stitzel, J. A., Hinrichs, A. L., Scott, F., Saccone, N. L., Bierut, L. J. (2008).
668	A Risk Allele for Nicotine Dependence in CHRNA5 Is a Protective Allele for Cocaine Dependence.
669	Biological Psychiatry, 64(11), 922–929.
670	Guez-Barber, D., Fanous, S., Golden, S. A., Schrama, R., Koya, E., Stern, A. L., Hope, B. T. (2011).
671	FACS Identifies Unique Cocaine-Induced Gene Regulation in Selectively Activated Adult Striatal
672	Neurons. Journal of Neuroscience, 31(11), 4251–4259.
673	Howell, L. L., & Cunningham, K. A. (2014). Serotonin 5-HT2 Receptor Interactions with Dopamine
674	Function: Implications for Therapeutics in Cocaine Use Disorder. Pharmacological Reviews, 67(1),
675	176–197.
676	Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene
677	lists using DAVID bioinformatics resources. <i>Nature Protocols</i> , 4(2), 44–57.
678	https://doi.org/10.1038/nprot.2008.211
679	Huggett, S. B., & Stallings, M. C. (2019). Cocaine'omics: Genome-wide and transcriptome-wide analyses
680	provide biological insight into cocaine use and dependence. Addiction Biology, (January), 1–10.
681	Im, HI., Hollander, J. A., Bali, P., & Kenny, P. J. (2010). MeCP2 controls BDNF expression and cocaine
682	intake through homeostatic interactions with microRNA-212. Nat Neuroscience, 5(6), 1–8.
683 684	Johnson, E. C., Border, R., Melroy-greif, W. E., Leeuw, C. De, Ehringer, M. A., & Keller, M. C. (2018). associated with schizophrenia than non-candidate genes. Biological Psychiatry, 82(10), 702–708.
685	Kalivas, P. W., Volkow, N., & Seamans, J. (2005). Unmanageable motivation in addiction: A pathology in
686	prefrontal-accumbens glutamate transmission. Neuron, 45(5), 647–650.
687	Kapoor, M., Wang, J. C., Farris, S. P., Liu, Y., McClintick, J., Gupta, I., Goate, A. (2019). Analysis of
688	whole genome-transcriptomic organization in brain to identify genes associated with alcoholism.
689	Translational Psychiatry, 9(1).
690	Karczewski, K. J., Francioli, L. C., Tiao, G., Cummings, B. B., Wang, Q., Collins, R. L., Banks, E.
691	(2019). Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-
692	function intolerance across human protein-coding genes. <i>bioRxiv</i> .
693	Kasanetz, F., Lafourcade, M., Deroche-Gamonet, V., Revest, J., Berson, N., Balado, E., Manzoni, O.
694	(2013). Prefrontal synaptic markers of cocaine addiction-like behavior in rats. Molecular Psychiatry,
695	18, 729–737.
696	Kuleshov, M. V, Jones, M. R., Rouillard, A. D., Fernandez, N. F., Duan, Q., Wang, Z., Ma'ayan, A.
697	(2016). Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic
698	Acids Research, 44(W1), W90-7.

699 Kumar, V., Kim, K., Joseph, C., Kourrich, S., Yoo, S.-H., Huang, H. C., ... Takahashi, J. S. (2013). 700 C57BL/6N Mutation in Cytoplasmic FMRP interacting protein 2 Regulates Cocaine Response. 701 Science, 342, 1508–1512. 702 Langfelder, P., & Horvath, S. (2008). WGCNA: an R package for weighted correlation network analysis. 703 BMC Bioinformatics, 9, 559. 704 Langfelder, P., Luo, R., Oldham, M. C., & Horvath, S. (2011). Is my network module preserved and 705 reproducible? PLoS Computational Biology, 7(1). Larson, E. B., Akkentli, F., Edwards, S., Graham, D. L., Simmons, D. L., Alibhai, I. N., ... Self, D. W. 706 707 (2010). Striatal regulation of ΔfosB, FosB, and cFos during cocaine self-administration and 708 withdrawal. Journal of Neurochemistry, 115(1), 112-122. 709 Leek, J. T. (2014). Svaseq: Removing batch effects and other unwanted noise from sequencing data. 710 Nucleic Acids Research, 42(21), e161. 711 Lehrmann, E., Oyler, J., Vawter, M. P., Hyde, T. M., Kolachana, B., Kleinman, J. E., ... Freed, W. J. 712 (2003). Trancriptional profiling in the human prefrontal cortex: Evidence for two activational states 713 associated with cocaine abuse. Pharmacogenetics, 3(1), 27-40. 714 Li, M., Xu, P., Xu, Y., Teng, H., Tian, W., Du, Q., & Zhao, M. (2017). Dynamic expression changes in the 715 transcriptome of the prefrontal cortex after repeated exposure to cocaine in mice. Frontiers in 716 Pharmacology, 8(MAR), 1-10. 717 Loos, M., Pattij, T., Janssen, M. C. W., Counotte, D. S., Schoffelmeer, A. N. M., Smit, A. B., ... Van 718 Gaalen, M. M. (2010). Dopamine receptor D1/D5gene expression in the medial prefrontal cortex 719 predicts impulsive choice in rats. Cerebral Cortex, 20(5), 1064-1070. 720 Lopez, A. J., Hemstedt, T. J., Jia, Y., Hwang, P. H., Campbell, R. R., Kwapis, J. L., ... Wood, M. A. 721 (2019). Epigenetic regulation of immediate-early gene Nr4a2/Nurr1 in the medial habenula during 722 reinstatement of cocaine-associated behavior. Neuropharmacology, 153(March), 13-19. 723 Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for 724 RNA-seq data with DESeq2. Genome Biology, 15(12), 550. Machiela, M. J., & Chanock, S. J. (2015). LDlink : a web-based application for exploring population-725 726 specific haplotype structure and linking correlated alleles of possible functional variants. 727 Bioinformatics, 31(21), 3555-3557. https://doi.org/10.1093/bioinformatics/btv402 728 Martin, A. R., Kanai, M., Kamatani, Y., Okada, Y., Neale, B. M., & Daly, M. J. (2019). Current clinical 729 use of polygenic scores will risk exacerbating health disparities. Nature Genetics, 51(4), 584–591. Matsuda, K. (2017). Synapse organization and modulation via C1q family proteins and their receptors in 730 731 the central nervous system. Neuroscience Research, 116, 46-53. 732 Maurano, M., Maurano, M., Humbert, R., Rynes, E., Thurman, R., Haugen, E., ... Stamatoyannopoulos, J. 733 (2012). Systematic Localization of Common Disease-Associated Variation in Regulatory DNA. 734 Science, 337(6099), 1190–1195. McCall, N. M., Fernandez de Velasco, E. M., & Wickman, K. (2019). GIRK channel activity in dopamine 735 736 neurons of the ventral tegmental area bi-directionally regulates behavioral sensitivity to cocaine. The 737 Journal of Neuroscience, 39(19), 3101-3118.

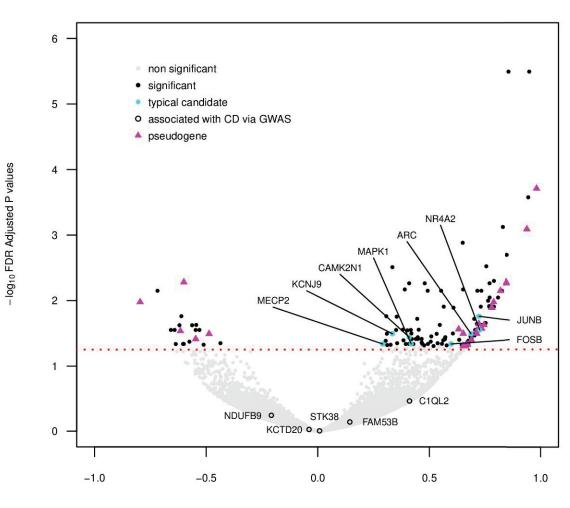
738	Michael J. Gandal, Jillian R. Haney, Neelroop N. Parikshak, Virpi Leppa, Steve Horvath, D. H. G. (2018).
739	Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap.
740	Science, 697(February), 693–697.
741	Mitrano, D. A., Schroeder, J. P., Smith, Y., Cortright, J. J., Bubula, N., Vezina, P., & Weinshenker, D.
742	(2012). Alpha-1 adrenergic receptors are localized on presynaptic elements in the nucleus accumbens
743	and regulate mesolimbic dopamine transmission. Neuropsychopharmacology, 37(9), 2161–2172.
744	Munafo, M. R., & Flint, J. (2009). Replication and heterogeneity in gene x environment interaction studies.
745	International Journal of Neuropsychopharmacology, 12, 727–729.
746	Nestler, E. J., Barrot, M., & Self, D. W. (2002). FosB: A sustained molecular switch for addiction.
747	Proceedings of the National Academy of Sciences, 98(20), 11042–11046.
748	Oliver, S. (2000). Guilt-by-association goes global. Nature, 403(6770), 601-603.
749	Pereira, S. P., & Cunha-Oliveira, T. (2017). Role of Mitochondria on the Neurological Effects of Cocaine.
750	The Neuroscience of Cocaine: Mechanisms and Treatment. Elsevier Inc.
751	Peterson, R. E., et al. (2019). Genome-wide Association Studies in Ancestrally Diverse Populations:
752	Opportunities, Methods, Pitfalls and Recommendations. Cell, 179:589-603.
753	Petry, N. M. (2003). A comparison of African American and non-Hispanic Caucasian cocaine-abusing
754	outpatients. Drug and Alcohol Dependence, 69, 43–49.
755 756 757	Polimanti et al. (2020). Leveraging genome-wide data to investigate differences between opioid use vs. opioid dependence in 41,176 individuals from the Psychiatric Genomics Consortium. <i>Molecular Psychiatry</i> . <u>https://doi.org/10.1038/s41380-020-0677-9</u> .
758	Ponomarev, I., Wang, S., Zhang, L., Harris, R. A., & Mayfield, R. D. (2012). Gene Coexpression Networks
759	in Human Brain Identify Epigenetic Modifications in Alcohol Dependence. Journal of Neuroscience,
760	32(5), 1884–1897.
761	Ribeiro, E. A., Salery, M., Scarpa, J. R., Calipari, E. S., Hamilton, P. J., Ku, S. M., Nestler, E. J. (2018).
762	Transcriptional and physiological adaptations in nucleus accumbens somatostatin interneurons that
763	regulate behavioral responses to cocaine. Nature Communications, 9(1).
764	Ribeiro, E. A., Scarpa, J. R., Garamszegi, S. P., Kasarskis, A., Mash, D. C., & Nestler, E. J. (2017). Gene
765	Network Dysregulation in Dorsolateral Prefrontal Cortex Neurons of Humans with Cocaine Use
766	Disorder. Scientific Reports, 7(1), 1–10.
767	Rifkin, R. A., Huyghe, D., Li, X., Parakala, M., Aisenberg, E., Moss, S. J., & Slesinger, P. A. (2018).
768	GIRK currents in VTA dopamine neurons control the sensitivity of mice to cocaine-induced
769	locomotor sensitization. Proceedings of the National Academy of Sciences, 115(40), E9479–E9488.
770	Saccone, N. L., Wang, J. C., Breslau, N., Johnson, E. O., Hatsukami, D., Saccone, S. F., Bierut, L. J.
771	(2009). The CHRNA5-CHRNA3-CHRNB4 Nicotinic Receptor Subunit Gene Cluster Affects Risk
772	for Nicotine Dependence in African-Americans and in European-Americans. Cancer Research, (17),
773	6848–6857.
774	Sadakierska-Chudy, A., Frankowska, M., & Filip, M. (2014). Mitoepigenetics and drug addiction.
775	Pharmacology and Therapeutics, 144(2), 226–233.


776 777 778 779	Salery, M., Dos Santos, M., Saint-Jour, E., Moumné, L., Pagès, C., Kappès, V., Vanhoutte, P. (2017). Activity-Regulated Cytoskeleton-Associated Protein Accumulates in the Nucleus in Response to Cocaine and Acts as a Brake on Chromatin Remodeling and Long-Term Behavioral Alterations. Biological Psychiatry, 81(7), 573–584.
780 781	Sanjakdar, S. S., Maldoon, P. P., Marks, M. J., Brunzell, D. H., Maskos, U., McIntosh, J. M., Damaj, M. I. (2015). Differential roles of α6β2* and α4β2* neuronal nicotinic receptors in nicotine- and
782	cocaine-conditioned reward in mice. Neuropsychopharmacology, 40(2), 350–360.
783	Sekar, A., Bialas, A. R., de Rivera H., Hammond, T., Kamitaki, N., Tooley, K., Presumey, J., Baum M.,
784	Doren, V. V., Genovese, G., Rose, S. A., Handsaker, R. E., Schizophrenia Working Group of the
785	Psychiatric Genomics Consortium, Daly, M. J., Carroll, M. C., Stevens, B., McCarroll, S. A. (2016).
786	Schizophrenia risk from complex variation of complement component 4. Nature, 530:177-183.
787	van Dam, S., Võsa, U., van der Graaf, A., Franke, L., & de Magalhães, J. P. (2018). Gene co-expression
788	analysis for functional classification and gene-disease predictions. Briefings in Bioinformatics, 19(4),
789	575–592.
790	Walker, D. M., Cates, H. M., Loh, Y. H. E., Purushothaman, I., Ramakrishnan, A., Cahill, K. M.,
791	Nestler, E. J. (2018). Cocaine Self-administration Alters Transcriptome-wide Responses in the
792	Brain's Reward Circuitry. Biological Psychiatry, 84(12), 867-880.
793	Watanabe, K., Taskesen, E., van Bochoven, A., & Posthuma, D. (2017). Functional mapping and
794	annotation of genetic associations with FUMA. Nature Communications, 8(1), 1826.
795	Williams, M., & Adinoff, B. (2008). The role of acetylcholine in cocaine addiction.
796	Neuropsychopharmacology, 33(8), 1779–1797.
797	Zavala, A. R., Osredkar, T., Joyce, J. N., & Neisewander, J. L. (2008). Upregulation of Arc mRNA
798	Expression in the Prefrontal Cortex Following Cue0Induced Reinstatement of Extinguished Cocaine-
799	Seeking Behavior. Synapse, 62(6), 421–431.
800	Zhou, Z., Yuan, Q., Mash, D. C., & Goldman, D. (2011). Substance-specific and shared transcription and
801	epigenetic changes in the human hippocampus chronically exposed to cocaine and alcohol.
802	Proceedings of the National Academy of Sciences, 108(16), 6626–6631.

Genes Associated with Cocaine Dependence in European and African Americans

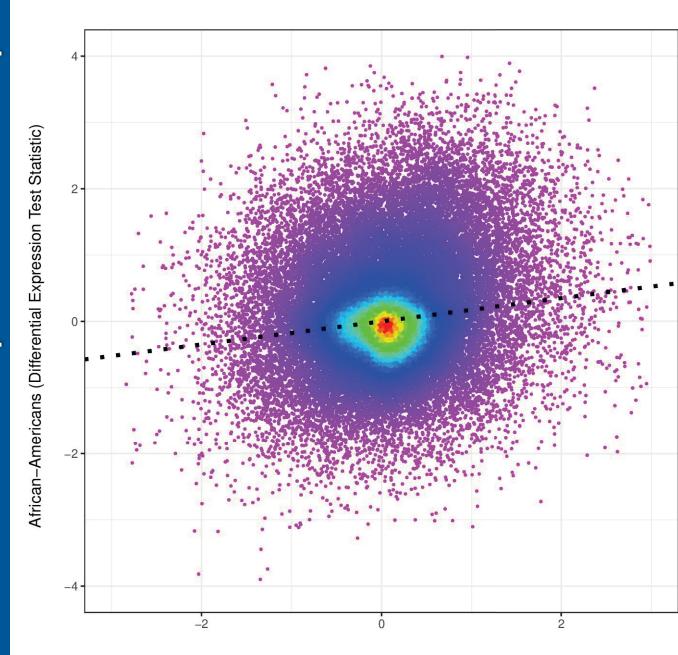

Chromosome

-log₁₀ P value



Gene–Based Tests of Cocaine Dependence: Candidate Neurotransmitter Systems

Chromosome



Tissue Enrichment – Genes Nominally Associated with Cocaine Dependence

Differentially Expressed Genes [dIPFC Neurons]

Log₂ fold change

Neuronal dIPFC Gene Expression Across Ancestry

European-Americans (Differential Expression Test Statistic)

JNeurosci Accepted Manuscript

1

0

Retrograde

GABAegic Strapse.

'oid _{Si}gnaling _ lergic synapse_ ⁴rdíomyocytes_ ^{ar}gic _{Synapse 1} ^{ler}gic _{Synapse} _ ^{ar}gic _{Synapse_}

Α

Neuronal Gene Network Association with Cocaine Use Disorder

Co_{caline} addiction____ ^{ticotine} addiction _

Alcoholism_

^{Na}ptic Vasitie Cycle

Gap lunction -

J-term depression.

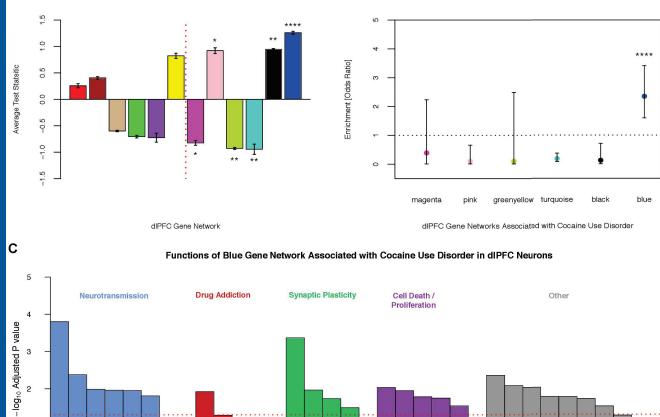
KEGG Pathways

^{Jkine} sign_{aling} pati_{way} J

Prion diseases -

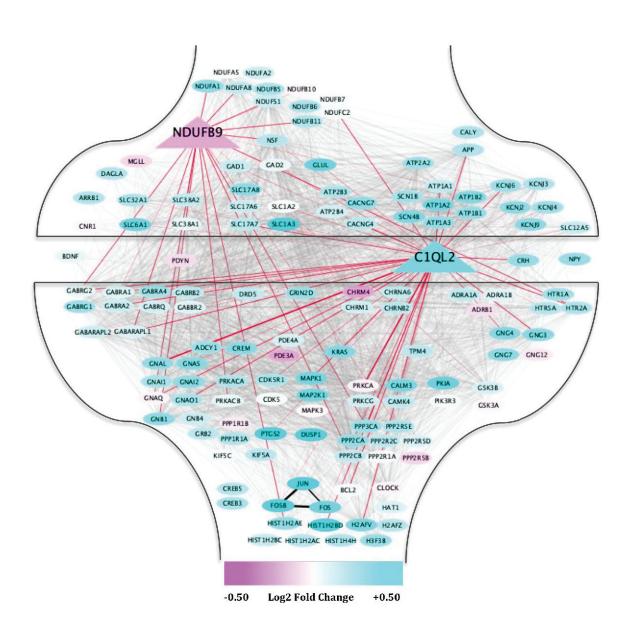
Pathways in cancar _

^{lalin}g pathway_ Parkinson's disease - Oxidati^{le phosphovylation_} Oxydocin signading Aathway_ Colur-Pho Sonaling Datimay_F


Estrogen signaling path_w

Endocrine. Calcium realson Circadian₆

CAMP Signaling Pathway.


Maph⁶Sgnaling path_{ing} MicroANJAs in cance

^{ie addiction}

В

Enrichment for Differentially Expressed Genes

SNPs Associated with the Genetic Predisposition to Cocaine Dependence by Ancestry									
Gene / Region:	NDUFB9		C1qL2		KCTD20 & STK38				
Ancestry	AA	EA	AA	EA	AA	EA			
#SNPs	174	205	10	74	215	174			
# Parameters	51	29	4	14	38	17			
Lead SNP	rs77422927		rs13020121		rs9470273				
Minor Allele	С		А		Т				
Minor Allele Frequency	0.021	0.096	0.2247	0.30025	0.3192	0.21828			
P_{SNP_Lead}	6.42E-06	0.963	0.902	2.22E-06	0.0253	1.42E-06			
Direction of Effect	+	+	+	-	+	+			
Missense SNP	rs34095749		NA		rs2239808 (KCTD20)				
Minor Allele	Т		NA		С				
Minor Allele Frequency	0.013	0.050	NA	NA	0.4206	0.21439			
Missense SNP	Proline_157_Serine		NA	NA	Serine_171_Threonine				
P _{SNP_Missense}	0.00568	0.841	NA	NA	0.0501	1.28E-05			
LD with Lead SNP (R ²)	0.4917	0.5154	NA	NA	0.609	0.9629			
Direction of Effect	+	+	NA	NA	+	+			

Table 1 Single Nucleotide Polymorphism (SNP) Associations with CD

We collapsed *KCTD20* & *STK38* into a single category because they stem from the same genomic signal. AA stands for African-American and EA stands for European-American ancestry. The # of parameters represents the amount of independent signals tested within a protein coding gene and differ across ancestries due to disparate LD patterns. We estimated the linkage disequilibrium patterns of missense variants with lead SNPs using LDlink, and selecting the African-American and CEU reference panels. Note that *C1qL2* only had one missense mutation, but was not tested included in the genome-wide association study on cocaine dependence due to low minor allele frequency across ancestries (< 1%).

Table 2 "Guilt-By-Association" Analyses: Info				
]				
NDUFB9				
Biological Processes, Molecular Function				
or KEGG Pathways				
Neuro-degeneration / Cell Death				
Phagosome acidification				
Parkinson's disease				
Alzheimer's disease				
Huntington's disease				
Synaptic Plasticity				
Synaptic Vesicle Cycle				
Cadherin binding involved in cell-cell adhe GTPase activity				
GTP binding				
Cell to cell adhesion				
Other Processes				
Oxidative Phosphorylation				
Protein Binding				
Endocrineregulated calcium reabsorpti				
Our "guilt-by-association" approach assesses <i>C1qL2</i> in the blue gene network associated w functions and KEGG pathways using DAVID ((300 genes/transcripts) and <i>C1qL2</i> (694 gen threshold of: weighted <i>r</i> > 0.05 (raw <i>r</i> > 0.78)				

Table 2 "Guilt-By-Association"	' Analyses: Inferring Function of NDUFB9 and C1qL2 with CUD
	Potential Functions of NDUFB9 and C1qL2

NDUFB9		C1qL2		
Biological Processes, Molecular Function or		Biological Processes, Molecular Function or	10	
or KEGG Pathways	$p_{ m adj}$	or KEGG Pathways	$p_{ m adj}$	
Neuro-degeneration / Cell Death		Neurotransmitter Signaling		
Phagosome acidification	0.0056	GABAergic synapse	2.4e-7	
Parkinson's disease	0.0156	Serotonergic synapse	4.5e-4	
Alzheimer's disease	0.0299	Cholinergic synapse	6.2e-4	
Huntington's disease	0.0320	Glutamatergic synapse	0.0441	
Synaptic Plasticity		Ion Channels & Drug Addiction		
Synaptic Vesicle Cycle	6.3e-4	Aldosterone-regulated sodium reabsorption	0.0013	
Cadherin binding involved in cell-cell adhesion	0.0010	Alcoholism	0.0032	
GTPase activity	0.0016	Response to drug	0.0041	
GTP binding	0.0067	Nicotine addiction	0.0265	
Cell to cell adhesion	0.0170	Potassium ion import	0.0428	
Other Processes		Neurodevelopment & Synaptic Plasticity		
Oxidative Phosphorylation	2.6e-5	Small GTPase mediated signal transduction	2.2e-5	
Protein Binding	7.9e-4	Positive regulation of cell proliferation	0.0177	
Endocrineregulated calcium reabsorption	0.0367	Nervous system development	0.0416	

es the function of genes/transcripts that are highly co-expressed with *NDUFB9* and with CUD and assesses their enrichment for biological processes, molecular (Huang et al. 2009). We selected the most highly co-expressed genes with *NDUFB9* nes/transcripts) in the blue gene network by using an arbitrary co-expression 8).

1