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Abstract 
 

We integrated genomic and bioinformatic analyses, utilizing data from the 1 
largest genome-wide association study (GWAS) of cocaine dependence (CD; 2 
n=6,546; 82.37% with CD; 57.39% male) and the largest post-mortem gene-3 
expression sample of individuals with cocaine use disorder (CUD; n=36; 51.35% 4 
with CUD; 100% male). Our genome-wide analyses identified one novel gene 5 
(NDUFB9) associated with the genetic predisposition to CD in African-Americans. 6 
The genetic architecture of CD was similar across ancestries. Individual genes 7 
associated with CD demonstrated modest overlap across European and African-8 
Americans, but the genetic liability to CD converged on many similar tissue types 9 
(brain, heart, blood, liver) across ancestries. In a separate sample, we investigated 10 
the neuronal gene expression associated with CUD by using RNA sequencing of 11 
dorsal-lateral pre-frontal cortex neurons. We identified 133 genes differentially 12 
expressed between CUD cases and cocaine-free controls, including previously 13 
implicated candidates for cocaine use/addiction (FOSB, ARC, KCNJ9/GIRK3, NR4A2, 14 
JUNB and MECP2). Differential expression analyses significantly correlated across 15 
European and African-Americans. While genes significantly associated with CD via 16 
genome-wide methods were not differentially expressed, two of these genes 17 
(NDUFB9 and C1qL2) were part of a robust gene co-expression network associated 18 
with CUD involved in neurotransmission (GABA, acetylcholine, serotonin and 19 
dopamine) and drug addiction. We then used a “guilt-by-association” approach to 20 
unravel the biological relevance of NDUFB9 and C1qL2 in the context of CD. In sum, 21 
our study furthers the understanding of the genetic architecture and molecular 22 
neuropathology of human cocaine addiction and provides a framework for 23 
translating biological meaning to otherwise obscure genome-wide associations. 24 
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Significance Statement: 

Our study: 1) further clarifies the genetic and neurobiological contributions 
to cocaine addiction, 2) provides a rapid approach for generating testable 
hypotheses for specific candidates identified by genome-wide research and 3) 
investigates the cross-ancestral biological contributions to cocaine use 
disorder/dependence for individuals of European- and African-American ancestries.  
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Introduction 25 

Neuroscience research has facilitated the identification of genes studied in 26 

hypothesis-driven human genetic research, often called “candidate gene studies.” 27 

The candidate gene literature proposes numerous genetic associations with cocaine 28 

use/addiction from genomic variants within genes from neurotransmitter systems. 29 

However, some experts question the validity of candidate gene research due to a 30 

lack of reproducibility (Colhoun et al. 2003; Munafo, 2009) and encourage the use of 31 

hypothesis-free genome-wide methods.  32 

Genome-wide association studies (GWASs) have identified thousands of 33 

genetic variants associated with human traits. However, linking molecular 34 

mechanisms to GWAS findings is challenging. Significant GWAS results do not 35 

generally conform to a priori candidate genes and often tag non-protein coding 36 

genomic regions (Maurano et al. 2012). Therefore individual gene variants from 37 

GWASs are rarely interpreted with concrete mechanisms. Experimental laboratory 38 

studies have unraveled mechanisms for a few GWAS findings (Claussnitzer et al. 39 

2015; Sekar et al. 2016), but these studies are expensive and time intensive, so it is 40 

not feasible to apply this line of research for all GWAS findings. Systematic 41 

approaches are needed to prioritize individual genes from GWASs for follow-up 42 

investigation in specific tissues or cell types. Another important caveat of GWAS 43 

research is that most findings are based on individuals of European 44 

ancestry/ethnicity (Martin et al. 2019), highlighting a priority to investigate the 45 

genetic basis of traits among non-Europeans.  46 
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GWASs have discovered four significant genes contributing to predisposition 47 

to cocaine dependence (CD; DSM-IV): FAM53B, KCTD20, STK38 and C1qL2 (Gelernter 48 

et al. 2014; Huggett & Stallings, 2019). The relevance of these genes with CD is not 49 

fully understood. Follow-up investigation in mice revealed that Fam53b might 50 

influence cocaine self-administration via midbrain co-expression with Cyfip2 51 

(Dickson et al. 2016), a gene, which influences cocaine-induced sensitization (Kumar 52 

et al. 2013). Similarly, our previous work found that KCTD20 was associated with 53 

human cocaine abuse/dependence through a hippocampal gene co-expression 54 

network implicated in synaptic plasticity (Huggett & Stallings, 2019). This work 55 

provides a “guilt-by-association” approach to infer the role of newly associated 56 

disease genes and helps contextualize and interpret otherwise ambiguous genetic 57 

associations. Given the surplus of publically available bioinformatic data, systems-58 

based computational follow-up may be a fruitful line of inquiry that could help 59 

translate biological meaning to obscure genetic associations.  60 

Despite the rising rates of cocaine and drug-related overdoses in the United 61 

States (US; NIDA, 2018) post-mortem brain data on substance use disorders remain 62 

limited. The largest cocaine-related human brain sample used RNA-sequencing 63 

(RNA-seq) on dorsolateral PFC (dlPFC) neurons from individuals of mixed 64 

ancestries (Ribeiro et al. 2017). The PFC is a critical region for the neuropathology 65 

of cocaine addiction and plays a role in decision-making, salience attribution and 66 

promotes inhibitory control over drug addiction (Goldstein et al. 2011). Rodent 67 

models suggest that PFC glutamate neurons provide “top-down” control of reward 68 

circuitry and increase motivation to seek/use cocaine (Kalivas et al. 2005), but little 69 
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is known regarding the neuro-adaptations underlying PFC dysfunction in human 70 

cocaine addicts. Ribeiro et al. identified associations of various immediate early 71 

genes (FOS, JUN and JUNB) with dlPFC neuro-adaptations of cocaine use disorder 72 

(CUD; DSM-V) and found one gene co-expression network associated with CUD that 73 

was enriched for neuroplasticity processes and GWAS associations for Body-Mass 74 

index and obesity. Notably, while, genome-wide research has begun to disentangle 75 

the genetic architecture of human traits across ancestries (Peterson et al. 2019), we 76 

are aware of no transcriptome-wide studies characterizing potential 77 

similarities/differences across ancestries/ethnicities. Future research is warranted 78 

to clarify the links between the genetic risk for substance abuse and the 79 

neurobiological characteristics of the addicted brain, while also investigating how 80 

gene expression generalizes across ethnicities.  81 

This study aimed to unravel the genetic architecture and molecular 82 

neuropathology of human cocaine addiction. Integrating genomic and bioinformatic 83 

methods, we identified specific genes and tissues associated with the predisposition 84 

to CD and characterized PFC neuro-adaptations associated with CUD. We translated 85 

findings across ancestries and methods and sought to make human genetic findings 86 

more relevant for neuroscientists.  87 

Materials and Methods 88 

Genome-wide Analyses 89 

Sample  90 

We used case-control GWAS summary statistics from Gelernter et al. 2014, 91 

which was based on data from 3,370 African-Americans (44.18% female; Mage = 92 
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41.71) and 3,176 European-Americans (40.96% female; Mage = 37.35). Participants 93 

were a part of the Study of Addiction: Genetics and Environment (SAGE) or 94 

recruited via clinical settings in the northeastern US. Genome-wide analyses were 95 

performed separately by ancestry to account for population stratification. GWAS 96 

summary statistics corrected for relatedness via generalized estimating equations 97 

and adjusted for 3 ancestral principal components, age and sex, but not co-occurring 98 

substance abuse nor other psychiatric co-morbidities. All participants reported 99 

trying cocaine and 90.39% of African-Americans and 73.96% of European-100 

Americans had a lifetime diagnosis of CD (3+ Symptoms of DSM-IV criteria). In a 101 

portion of this sample, measurements of CD yielded high internal reliability k > 0.80 102 

(Pierucci-Lagha et al. 2005), indicating reliable trait measurement. Stringent quality 103 

control was applied to the genotypic data of all subjects and imputation was 104 

performed using the 1000 Genomes reference panel.  105 

Experimental Design and Analysis:  106 

Gene-Based Associations 107 

To detect specific protein-coding genes underlying the predisposition of CD, 108 

we conducted Multi-marker Analysis of GenoMic Annotation (de Leeuw et al. 2015; 109 

MAGMA, v1.06) gene-based association tests by submitting summary statistics to 110 

the Functional Mapping and Annotation (FUMA, v1.1.2) GWAS pipeline (Watanabe 111 

et al. 2017). Contrary to GWAS, which performs millions of regressions for all 112 

common gene variants across the genome, gene-based associations perform one 113 

regression per protein-coding gene and therefore reduce the multiple testing 114 

burdens of GWAS and offer more interpretable results. Most protein-coding genes 115 
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have a multitude of gene variants. MAGMA gene-based tests use a principal 116 

components analysis to reduce the numerous variants for a certain gene into a 117 

single signal, which is then associated with the trait (de Leeuw et al. 2015). Our 118 

gene-based analyses included all single nucleotide polymorphisms within protein-119 

coding regions of the genome (Ensembl v85) that had a minor allele frequency > 1%. 120 

In total, our gene-based tests included 18,122 genes for the African-American 121 

sample and 18,220 genes in European-American sample (18,903 shared genes). We 122 

compared the results of our previously published gene-based test of CD in 123 

European-Americans (Huggett & Stallings, 2019) to the African-American sample 124 

and used a Bonferonni correction for multiple testing to determine genome-wide 125 

significance (p < 2.7e-6). Note that this standard Bonferronni p-value correction 126 

(FUMA default) demarks a less significant threshold than the original GWAS 127 

(Gelernter et al. 2014; p < 5.0e-8) due to the reduction of tests performed (~18,000 128 

versus ~9 million).   129 

To interrogate specific alleles underlying the genetic predisposition to CD, we 130 

investigated specific single nucleotide polymorphisms (SNPs) driving genome-wide 131 

significant associations. First, we reported the lead SNP from each genomic region, 132 

the total SNPs within each gene as well as the number of parameters for each gene, 133 

which reflects independent linkage disequilibrium blocks within genes. ‘Causal’ 134 

SNPs are more likely to confer a biological consequence in protein or transcript 135 

function. Leveraging DNA sequencing data from 71,702 individuals, we queried the 136 

Genome Aggregation Database (v3; Karczewski et al. 2019; 137 

https://gnomad.broadinstitute.org/) for missense mutations, or SNPs that code for 138 
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an amino acid substitution, among genome-wide significant gene-based test results. 139 

To determine whether a missense mutation was significantly associated with CD, we 140 

used a Bonferonni correction for all missense variants within each gene. We also 141 

estimated the relationship between particular missense mutations and a gene’s lead 142 

SNP using LDlink (Machiela &Chanock, 2015; https://ldlink.nci.nih.gov/), which 143 

computes linkage disequilibrium between loci by ancestry.   144 

Our study then refined the focus of gene-based associations with CD from a 145 

genome-wide perspective to a candidate systems approach, selecting genes from 146 

typically studied neurotransmitter systems. In total, these analyses included 130 147 

genes from GABA, glutamate, acetylcholine, endocannabanoid, dopamine, 148 

epinephrine/norepinephrine and serotonin systems encompassing synthesis, 149 

vesicular transport, receptors, degradation and reuptake genes. Since these classical 150 

genes rarely surpass conservative genome-wide significance thresholds, we 151 

assessed whether these hypothesis-driven neurotransmitter genes surpassed a 152 

nominally significant p-value threshold (p < 0.05) as typically employed in the 153 

candidate gene literature. Collapsing across ancestries, we tested whether these 154 

candidate neurotransmitter genes were enriched for being nominally associated 155 

with CD using a Fisher’s exact test. 156 

Tissue Enrichment  157 

To identify tissues underlying the genetic pathophysiology of CD, we 158 

performed tissue enrichment analyses. These analyses assess where genes 159 

underlying the predisposition of a trait might be exerting a functional role. Tissue 160 

enrichment analyses identify which tissues a list of input genes demonstrate 161 
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differential expression (up or down-regulated in a tissue compared to all other 162 

tissues). We assessed tissue enrichment in 53 tissues from hundreds of healthy 163 

human samples (GTEx Consortium, 2013) and performed analyses separately by 164 

ethnicity - including genes nominally associated with CD (unadjusted p < 0.05; 901 165 

genes in African-Americans and 1008 genes in European-Americans). Tissue 166 

enrichment analyses used competitive hyper-geometric tests to compare a specific 167 

tissue type versus all other tissues and incorporated a Bonferoni multiple testing 168 

correction to ascertain significantly enriched tissues (p < 0.05/53).  169 

Neuron Specific RNA-seq Analyses 170 

Sample 171 

 Next, we performed neuron-specific RNA-sequencing (RNA-seq) analyses 172 

using publically available data from the largest post-mortem human brain study on 173 

cocaine use (GEO: GSE99349). Cocaine users (n = 19; 100% male; 6 African-174 

Americans, 6 European-Americans and 7 Hispanics or Latinos) died from the toxic 175 

effects of chronic cocaine abuse and met criteria for cocaine use disorder (CUD; 176 

DSM-V criteria). Age and race matched cocaine-free controls (n = 17; 7 African-177 

Americans, 4 European-Americans and 6 Hispanics or Latinos) were selected from 178 

homicides, accidental or cardiac-related deaths and had negative urine screens for 179 

common drugs before death. Cases and controls did not significantly differ on post-180 

mortem index (PMI), RNA integrity (RIN), age, or brain pH level, all | t | > 1.69, all p > 181 

0.100. 182 

Data Preparation  183 
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 For more details on the sample, tissue preparation, RNA extraction, library 184 

construction and RNA-seq protocol see Ribiero et al. (2017). Briefly, dlPFC tissue 185 

was extracted from the middle frontal gyrus at the lateral portion of Broadmann’s 186 

area 46. Fluorescent activated cell sorting dissociated dlPFC cell types and neuronal 187 

nuclei were isolated/extracted via the mouse anti-NeuN antibody. RNA isolation 188 

was conducted via the Zymo Directzol RNA miniprep kit (Zymo Research; R2050). 189 

Indexed libraries were constructed using 10 ng of nuclear RNA from each sample 190 

with the Contech SMARTer Stranded Total RNA-seq library preparation kit 191 

(Clontech/Takara; 634839). Paired end (2x125) RNA-seq was performed using the 192 

Illumina Hiseq-2000 (Liu et al. 2011) and resulted in an average of 50,925,315 read 193 

pairs per sample.   194 

 We pre-processed the RNA-seq data from Ribiero et al. via Trimmomatic v 195 

0.36 to eliminate short and low quality reads (Phred score < 20 or < 100 bases) as 196 

well as Illumina adapters, which resulted in an average of 30,486,006 read pairs per 197 

sample. We then aligned the RNA-seq data to the hg19 reference genome via the 198 

Spliced Transcripts Alignment to a Reference (STAR; Dobin et al. 2013). On average 199 

we had 26,476,583 (SD = 6,173,119) uniquely mapped read pairs per sample, with a 200 

mean alignment rate of 86.84% (SD = 5.86%) and observed no significant 201 

differences in read alignment between cases and controls, t = 0.668, p = 0.509. Our 202 

study used HTseq (Anders et al. 2015) to transfer mapped reads into discrete 203 

genes/transcripts.  204 

Our re-analysis of the Ribiero et al. (2017) data differed in two ways. First, 205 

we defined differentially expressed genes with an adjusted p-value threshold of 206 
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Benjamini-Hochberg False Discovery Rate (BH-FDR) < 0.05. Second, we normalized 207 

RNA-seq data with SCnorm – a method that utilizes quantile regression and seems 208 

to properly handle data derived from single cell types (Bacher et al. 2017). RNA-seq 209 

approaches from a single cell (type) differ from regular RNA-seq due to the presence 210 

of technical noise (i.e., zero-inflated read counts of genes not expressed in 211 

sequenced cells) and may require sensitive statistical care. To test whether SCnorm 212 

increased power, we assessed the number of differentially expressed genes 213 

identified from this technique compared to a standard normalization method 214 

(DESeq2 scale factors). Without covariates, we found just 6 differentially expressed 215 

genes/transcripts (padj < 0.05) using the standard scale factor approach, but 216 

identified 250 differentially expressed genes/transcripts (padj < 0.05) via the 217 

SCnorm technique. Additionally, we found appreciable evidence for zero-inflated 218 

read counts and discovered that SCnorm successfully accommodated for this noise 219 

(data available upon request), perhaps stemming from non-neuronal 220 

genes/transcripts. Accordingly, the lowest decile of normalized read counts were 221 

enriched for cortical astrocytes (padj = 6.92e-4) and oligodendrocytes (padj = 0.002), 222 

but not cortical neuronal cell types (all padj > 0.999) as observed from a cell specific 223 

expression analysis (Doughtrey et al. 2010). Thus, we normalized the RNA-seq data 224 

with SCnorm (for our differential expression analyses) as it appeared to properly 225 

account for technical artifacts and afforded increased statistical power.  226 

Experimental Design and Analysis: 227 

 Differential Expression  228 
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We utilized DESeq2 (Love et al. 2014) to assess differentially expressed 229 

genes/transcripts and to investigate the association of differential expression 230 

analyses across ancestries. We used the full sample to identify differentially 231 

expressed genes/transcripts (49,496 total genes/transcripts), which controlled for 232 

RIN, PMI, age, race (European-American = -1; Hispanic = 0; African-American = 1), 233 

blood alcohol content, smoking status (smokers = 1; non-smokers = 0) and hidden 234 

batch effects (2 surrogate variables via the svaseq package; Leek, 2014).  235 

To complement our genome-wide analyses, we investigated the association 236 

between ancestry specific differential expression results from African-American (n 237 

= 13) and European-American  (n = 10) subsamples. Due to low sample size for 238 

ancestry specific differential expression analyses, we did not control for all possible 239 

confounds, but adjusted for two common and salient covariates (PMI and age). Log 240 

fold change estimates from differential expression analyses are estimated with noise 241 

– especially among lowly expressed genes/transcripts. To accommodate for this 242 

error/noise and enable transcriptome-wide investigation (e.g., low and high 243 

expressed genes/transcripts), our cross-ancestry RNA-seq analysis focused on test 244 

statistics from differential expression analyses (DESeq2 Wald statistics), which 245 

account for log fold change effect size and standard error for individual 246 

genes/transcripts. Additionally, we selected the genes/transcripts with a 247 

differential expression Wald-statistic > |2| in either European- or African-American 248 

specific analyses (705 genes/transcripts) and investigated the cross-ancestry 249 

correlation of cocaine-related gene/transcripts. 250 

Gene Co-expression Networks 251 
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Next, our study utilized a systems-genetics approach to model clusters of 252 

genes derived from correlated RNA expression (gene co-expression networks/gene 253 

networks). The reader should note that these analyses do not determine gene co-254 

expression networks a priori, but rather create gene networks from the observed 255 

RNA-seq data. Specifically, we conducted a signed weighted gene co-expression 256 

network analysis (WGCNA; Langfelder & Hovarth, 2008), using the same input 257 

parameters as our previous work (Huggett & Stallings, 2019). Briefly, we filtered 258 

genes/transcripts based on expression level, such that we only included 259 

genes/transcripts with an average baseline expression > 1 read count per sample, 260 

which resulted in a total of 15,178 genes/transcripts for WGCNA modeling. Our 261 

WGCNA approach computed Pearson Product-Moment correlations of normalized 262 

RNA expression (log2-counts per million) of all WGCNA genes/transcripts with 263 

themselves and weighted these correlations by raising them to the (default) power 264 

of 12, which satisfied WGCNA distribution assumptions (scale free topology = 0.84). 265 

Then, using a dynamic tree-cutting algorithm we split clusters of correlated/co-266 

expressed genes into defined WGCNA gene co-expression networks (minimum 267 

module size = 50). 268 

To validate our WGCNA gene networks, we utilized a Z-summary module 269 

preservation statistic (Langfelder et al. 2011). Z-summary statistics above 10 270 

indicate gene networks are highly robust and reproducible and Z-summary 271 

statistics greater than 2 suggest WGCNA gene networks are weak to moderately 272 

reproducible. Our validation approach was based on previous work (Vanderlinden 273 

et al. 2013) that incorporates within sample and out of sample gene network 274 
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validation technique. Our within sample gene network validation analysis is 275 

indicative of WGCNA network stability and compared the WGCNA networks from 276 

the current study to 100 bootstrapped samples from the same dataset (human 277 

dlPFC neurons; n = 37). Then to assess whether gene networks were robust in a 278 

separate sample, we tested if our constructed WGCNA gene networks were 279 

reproducible in an independent sample using RNA-seq data of hippocampal tissue 280 

from human cocaine users/addicts and controls (Zhou et al. 2011).  281 

Similar to previous research (Ponomarev et al. 2012), we used an effect-size 282 

based approach leveraging test statistics from our full sample differential 283 

expression analysis (DESeq2 Wald statistics) to associate gene co-expression 284 

networks with CUD. That is, we calculated the average absolute value of Wald 285 

statistics for all genes/transcripts within each defined gene co-expression network. 286 

The directions of associations were determined by assessing whether mean effect 287 

sizes for gene networks were positive or negative. We ascertained significant gene 288 

networks via 100,000 permutations. That is, our permutations re-sampled the 289 

absolute values of Wald statistics from all WGCNA genes to approximate a null 290 

distribution. We then derived p-values by determining the probability that a gene 291 

co-expression network had an average absolute Wald statistic in relation to what is 292 

expected under the null. We defined a significant association of a gene network with 293 

CUD, if it survived a Bonferonni correction (p < 0.05/# of WGCNA gene networks) 294 

and demonstrated enrichment for differentially expressed genes (FDR  < 0.05).  295 

Functional Annotation 296 
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We functionally annotated our RNA-seq results via the Database for 297 

Annotation, Visualization and Integrated Discovery (DAVID v6.8; Huang et al. 2009) 298 

and queried for enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) 299 

pathways, biological processes (BPs), and/or molecular functions (MFs).  To control 300 

for false positives, we required significant enrichment to survive correction for 301 

multiple testing (FDR < 0.05) and adjusted for the ‘background distribution’ by 302 

incorporating a list of genes that were included for each analysis. We uploaded our 303 

results to GeneWeaver (https://www.geneweaver.org/; Baker et al. 2012), which 304 

can be found by searching the reported id numbers (GS#).  305 

Results 306 

Genome-wide Analyses 307 

Gene-Based Associations 308 

 To identify specific genes underlying the predisposition to CD, we conducted 309 

gene-based association tests. Figure 1 shows the Miami plot visualizing the results 310 

of our gene-based associations with cocaine dependence (CD) for African- and 311 

European-Americans. Extending our previous gene-based associations with CD 312 

among European-Americans (Huggett & Stallings, 2019), we identified one novel 313 

genome-wide significant association with CD in African-Americans (p = 8.27e-07), 314 

the NADH: ubiquinone oxioreductase subunit B9 gene (NDUFB9), but not in 315 

European-Americans (p = 0.910). The NDUFB9 gene is part of the inner 316 

mitochondrial membrane and plays a role in oxidative phosphorylation, but the 317 

relevance of this gene in the context of cocaine addiction is not known, warranting 318 

further investigation. To investigate specific loci underlying our genome-wide 319 
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significant associations, we reported each region’s most significant SNP (lead SNP) 320 

and examined missense mutations for each gene associated with CD. After 321 

correction for multiple testing, we found significant associations between a 322 

missense mutation in the NDUFB9 gene (rs34095749) with CD in African-Americans 323 

and a missense mutation in the KCTD20 gene (rs2239808) with CD in European-324 

Americans (see Table 1).  325 

Utilizing a nominally significant threshold (p < 0.05), our gene-based test 326 

found 901 and 1,008 genes associated with CD in African-Americans (see 327 

GS357670) and European-Americans (see GS357669), respectively. We found a 328 

small, but significant, association between gene-based associations (Z-statistics) 329 

across European and African Americans (B = 0.017, s.e. = 0.008, p = 0.024; R2 = 330 

0.0002) and observed 59 genes (p < 0.05) that were nominally associated with CD in 331 

both ancestries.  332 

 Next, we investigated gene-based associations with CD for the 130 candidate 333 

neurotransmitter system genes commonly studied with cocaine use/addiction. Of 334 

these genes, we found ten nominally significant associations with CD from GABA, 335 

glutamate, endocannabanoid, serotonin, norepinephrine and acetylcholine genes 336 

(see Figure 2). The most significant candidate genetic association with CD (in 337 

African-Americans) came from the CHRNB4 gene (#SNPs = 422, Z = 4.00, p = 3.199e-338 

05), which resides in a validated gene cluster for CD (Gruzca et al. 2008) as well as 339 

nicotine dependence (Saccone et al. 2009). Despite dopamine’s prominence in the 340 

candidate gene literature, we found no dopamine genes to be associated with CD (all 341 

p > 0.108). Candidate neurotransmitter genes were not enriched to be (nominally) 342 
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associated with CD, OR = 0.73, 95% CI [0.34, 1.40], p = 0.465. In other words, 343 

candidate neurotransmitter genes were no more likely to be (nominally) associated 344 

with CD than we would expect by chance.  345 

Tissue Enrichment 346 

To find tissues implicated in the genetic etiology of CD, we performed tissue 347 

specificity/enrichment analyses of the genes nominally associated with CD. Genes 348 

nominally associated with CD were enriched among numerous tissue types (see 349 

Figure 3). Despite minimal overlap of individual genes associated with CD across 350 

ancestries, 70.37% of significantly enriched tissues in African-Americans were also 351 

significantly enriched in European-Americans (padj < 0.05). Tissue overlap across 352 

ancestry exceeded what we would expect by chance alone, OR = 3.65, 95% CI [1.05, 353 

13.70], p = 0.029. The replicated tissue types across ancestries tag plausibly 354 

implicated tissues in the genetic etiology of CD, including: heart, liver, blood and 355 

most brain regions and highlight various tissues for follow-up investigation. 356 

Neuron Specific RNA-seq Analyses 357 

Differential Expression 358 

 To follow-up genome-wide associations with CD, we used publically available 359 

data from dlPFC neurons from individuals with cocaine use disorder (CUD; n = 19) 360 

and cocaine-free controls (n=17; Ribeiro et al. 2017). After successful data 361 

normalization and adjustment for covariates, we found 133 differentially expressed 362 

genes/transcripts (all padj < 0.05; see Figure 4 and GS357661). Similar to Ribeiro et 363 

al. 2017, 42.86% of differentially expressed genes/transcripts were non-coding, and 364 

of these, pseudogenes were the most abundant - including 15 pseudogenes of 365 
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mitochondrial inner membrane genes. Given that most non-coding transcripts lack 366 

detailed functional characterization, perhaps it is not surprising that differentially 367 

expressed genes/transcripts were not enriched for any KEGG pathways, BPs or MFs, 368 

all padj > 0.089, although we did identify some typical candidates for cocaine 369 

use/dependence. That is, consistent with previous research, we found increased 370 

expression of FOSB (Larson et al. 2010), JUNB (Guez-Barber et al. 2011), ARC (Zavala 371 

et al. 2008; Salery et al. 2017), MECP2 (Im et al. 2010; Deng et al. 2014), NR4A2 372 

(Lopez et al. 2019), KCNJ9/GIRK3 (Rifkin et al. 2018; McCAll et al. 2019), MAPK1 373 

(Cahill et al. 2016) and CAMK2N1 (Ribeiro et al. 2018). These genes represent 374 

various “immediate early genes” whose expression is induced by cocaine, 375 

intracellular signaling cascades that modulate neural responsiveness, and nuclear 376 

epigenetic transcripts that perturb the expression of numerous genes. No genome-377 

wide significant association with CD (FAM53B, C1qL2, KCTD20, STK38 or NDUFB9) 378 

was significantly differentially expressed in dlPFC neurons, all | log2 fold change | < 379 

0.411, all p > 0.026, all padj > 0.341.  380 

To complement our genome-wide analyses, we explored whether neuro-381 

transcriptomic associations with CUD generalized across European- and African-382 

Americans. After covariate adjustment, we found one gene that was significantly 383 

differentially expressed in European-Americans (PAX8-AS1, log2 fold change = -7.90, 384 

padj = 4.36e-5). In African-Americans, we found 37 significant differentially 385 

expressed genes – the most significant was the CHRNG gene (log2 fold change = 386 

30.00, padj = 4.29e-30). While the top associations were different across ancestry, we 387 

found that the transcriptome-wide differential expression results significantly 388 
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correlated across ancestries, r  = 0.174, p < 2.e-16 (see Figure 5). This association 389 

persisted after selecting cocaine-related genes/transcripts (r = 0.332, p < 2.e-16; 390 

705 genes/transcripts).  391 

Gene Co-expression Networks 392 

 Next, we modeled systems of co-expressed genes (gene networks) using 393 

weighted gene co-expression network analysis (WGCNA). Similar to previous 394 

WGCNA results with these data (Ribeiro et al. 2017), we constructed 12 gene co-395 

expression networks – each of which is arbitrarily assigned to a color. To evaluate 396 

the stability and validity of our gene co-expression networks, we used a standard 397 

network preservation technique (Langfelder et al. 2011) to assess within sample 398 

and out of sample gene network reproducibility. Our analyses suggest that our 399 

WGCNA networks were highly reproducible/valid within sample (e.g., stable; all Z-400 

summary > 16.19) and, except for the tan (Z-summary = 9.75) and yellow gene 401 

networks (Z-summary = 0.47), were valid in an independent RNA-seq sample (e.g., 402 

robust; all Z-summary > 12.67) of hippocampal tissue from human cocaine users 403 

and controls (Huggett & Stallings, 2019). 404 

 After validating our WGCNA gene co-expression networks, we associated 405 

these networks with CUD. Using an effect-size based approach and permuting p-406 

values, we found 6 gene networks associated with CUD, all padj < 0.049 (see Figure 407 

6A). We subsequently tested significantly associated WGCNA gene networks for 408 

enrichment of differentially expressed genes/transcripts (133 genes). We found 409 

significant enrichment of differentially expressed genes among one WGCNA 410 

network, the blue gene network (2,735 genes; see Figure 6B and GS357662). Thus, 411 
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the blue gene network was robustly associated with CUD and selected for follow-up 412 

investigation.  413 

The blue gene network recapitulated many molecular processes and was 414 

significantly enriched for 13 KEGG pathways (padj < 0.05; see Figure 6C). Similar to 415 

Ribeiro et al. (2017), our blue gene network was enriched for neuroplasticity 416 

processes and also over-represented for various neurotransmitter signaling 417 

pathways, morphine addiction, intracellular signaling and circadian entrainment. 418 

Note that other KEGG drug addiction pathways (nicotine addiction, alcoholism and 419 

cocaine addiction) approached significant enrichment (all p: 0.007-0.054; all padj: 420 

0.051-0.201). Of note, the blue gene network was enriched for the 130 candidate 421 

neurotransmitter system genes, OR = 2.51, 95% CI [1.61, 3.83], p = 3.175e-05.  422 

We then assessed the overlap between genetic predispositions to CD and the 423 

blue gene network robustly associated with CUD. Of the five genome-wide 424 

significant associations with CD, our analyses identified the NDUFB9 and C1qL2 425 

genes to be central entities (> 50%tile of module membership (kME), kME > 0.58) of 426 

the blue gene network. To better understand the role of NDUFB9 and C1qL2 in the 427 

context of cocaine addiction, we explored/visualized their co-expression patterns 428 

with the blue network genes annotated for neurotransmitter signaling and drug 429 

addictions, see Figure 7. Of particular note, we found that our data-derived blue 430 

gene network recapitulated previously established connections between FOSB and 431 

JUN genes, which are thought to perpetuate chronic cocaine/drug seeking behavior 432 

(Nestler et al. 2002) and further highlights the validity of the co-expression patterns 433 

from this gene network.  434 
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We used co-expression patterns in the blue gene network to better 435 

understand biological functions of NDUFB9 and C1qL2 with cocaine use via a “guilt-436 

by-association” approach (Oliver, 2000). Guilt-by-association analyses are 437 

commonly used to unravel the biological role of new disease genes and are based on 438 

the principle that if genes are highly associated with each other (e.g., co-expressed) 439 

they are more likely to share a function (van Dam et al. 2018). In our guilt-by-440 

association technique, we selected the most highly co-expressed genes (weighted r > 441 

0.05 or raw r > 0.78) separately for NDUFB9 and C1qL2 within the blue gene 442 

network, and then investigated enrichment for biological processes, molecular 443 

functions and KEGG pathways. Our guilt-by-association analyses indicated that the 444 

NDUFB9 gene might play a role in cell death, synaptic plasticity and cell adhesion 445 

(see Table 2, all padj < 0.037). Highly co-expressed genes with C1qL2 were 446 

significantly enriched for: neurotransmitter signaling, drug response, synaptic 447 

plasticity, cell proliferation and neurodevelopment (see Table 2, all padj < 0.045).  448 

Discussion 449 

We extend previous genome-wide research (Gelernter et al. 2014; Huggett & 450 

Stallings, 2019) that identified four genes significantly associated with cocaine 451 

dependence (CD; C1qL2, FAM53B, KCTD20, STK38) by discovering one novel gene 452 

(NDUFB9) implicated in the genetic liability to CD for African-Americans. Our study 453 

highlights associations between two missense mutations and CD that may interfere 454 

with the product of the NDUFB9 and KCTD20 genes. Similar to other psychiatric 455 

genetic research (Johnson et al. 2017; Border et al. 2019), we found minimal 456 

evidence indicating that genes from candidate neurotransmitter systems contribute 457 
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to the genetic predisposition of CD. Genome-wide significant genes associated with 458 

CD were not differentially expressed in dlPFC neurons between individuals with 459 

CUD and cocaine-free controls. However, NDUFB9 and C1qL2 were central parts of a 460 

gene co-expression network associated with CUD and exhibited co-expression with 461 

relevant drug addiction genes. So while most GWAS findings tend not correspond 462 

with pre-hypothesized targets, they may still play a broader role in biologically 463 

relevant systems. Similarly, genome-wide associations with psychiatric traits 464 

(including alcohol dependence) demonstrated appreciable overlap with PFC gene 465 

co-expression networks associated with these traits and corresponded to neuronal, 466 

synaptic and mitochondrial functions (Gandal et al. 2018; Kapoor et al. 2019).  467 

Our study suggests common biological contributions to cocaine addiction 468 

across ancestries/ethnicities. Similar to other substance dependence research 469 

(Brick et al. 2019), we found that the individual genetic predispositions to CD 470 

demonstrated (modest) genetic overlap across African-Americans and European-471 

Americans. Robust across ancestries, we discovered that the genetic liability of CD 472 

manifested as a multi-organ phenomenon involving the heart, liver, blood and brain. 473 

Using RNA-seq from PFC neurons, we identified convergence of cocaine-related 474 

gene expression across African-Americans and European-Americans, albeit with 475 

small to moderate effect sizes. One potential reason for the modest magnitudes of 476 

these associations is that rates of psychiatric co-morbidities between cocaine 477 

abusing European-American and African-American seem to differ (Petry, 2003), but 478 

many other factors could be at play. To our knowledge, this is the first study to 479 
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assess the cross-ancestry transcriptome-wide neurodiversity/similarity for a 480 

psychiatric trait - making interpretations difficult.  481 

We found evidence of disrupted GABA, but not glutamate, neurotransmitter 482 

signaling in dlPFC neurons of human cocaine addicts (blue gene network; see Fig 6). 483 

PFC GABAergic signaling is sparsely studied in rodent models of cocaine use, but 484 

some evidence suggests that GABA regulates prefrontal disinhibition (Cass et al. 485 

2013). We discovered that various GABA genes (GABBR2, GABRA1, GABRA4, 486 

GABRB2, GABARAPL1, GABARAPL2) were core elements (“hub genes”; top 10% of 487 

gene network connectivity) of PFC network function for individuals with CUD. That 488 

is, GABAergic genes demonstrated very high co-expression/connectivity patterns 489 

with other genes in the blue gene network; suggesting GABAergic transmission 490 

plays a critical, yet unappreciated, modulatory role of PFC neurons in disordered 491 

cocaine use.  492 

The blue gene network associated with CUD also suggests that 493 

catecholamine; acetylcoholine and endocannabanoid signaling play an important 494 

role in the PFC for the neuropathology of CUD. Specifically, PFC DRD5 activity may 495 

mediate executive functioning (Carr et al. 2017) and impulsive decision-making 496 

(Loos et al. 2010) as well as HTR1A and ADRA1A could regulate PFC glutamate 497 

and/or GABA transmission and various cocaine-related behaviors (Mitrano et al. 498 

2012; Howell et al. 2014). Particular nicotinic (CHRNA6, CHRNB2) and muscarinic 499 

acetylcholine subunit genes (CHRM1, CHRM4) we found to be associated with CUD 500 

have previously been implicated in rodent cocaine research (Carrigan et al. 2007; 501 

Dencker et al. 2012; Sanjakdar et al. 2015) and might govern selective attention and 502 
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promote incentive salience to drugs/drug-related cues (Williams et al. 2008). Lastly, 503 

cocaine has found to alter expression of endocannabanoid genes/receptors in the 504 

mouse PFC (Bystrowska et al. 2019), which could facilitate the strength of 505 

connections between PFC neurons (Kasanetz et al. 2013). Our results provide an in 506 

human corroboration of specific genes and pathways commonly studied in animal 507 

models of cocaine use and/or drug-related behaviors.  508 

The combination of genomic and bioinformatics techniques may help 509 

contextualize and interpret nebulous genetic associations with human traits. 510 

NDUFB9 is a subunit of the inner mitochondrial complex I. Evidence indicates that 511 

cocaine inhibits complex I of the inner mitochondrial membrane (Cunha-Oliveira et 512 

al. 2013), which is similar to other genetic associations with substance 513 

use/dependence that implicate binding targets of specific drugs. Mitochondrial 514 

complex I is thought to mediate altered energy metabolism and cocaine-induced 515 

neurotoxicity (Dey et al. 2007; Periera & Cunha-Oliveira et al. 2017) and is 516 

consistent with our “guilt-by-association” results suggesting NDUFB9 may be 517 

involved in neuro-degeneration and ATP production (oxidative phosphorylation). 518 

Additionally, analogous to research highlighting the role of mitochondria in drug 519 

addiction (Sadakierska-Chudy et al. 2014), our guilt-by-association analyses suggest 520 

that NDUFB9 could be involved in cell death, synaptic plasticity and calcium 521 

signaling. NDUFB9 is not the only mitochondrial gene implicated in cocaine 522 

addiction. We found 26 different mitochondrial inner membrane genes within the 523 

blue gene network associated with CUD, including 12 NDUF subunits – suggesting 524 

links between cocaine use and broad mitochondrial functioning. Accordingly, 525 
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various mitochondrial genes have demonstrated associations with human cocaine 526 

abuse/dependence in the dlPFC (Lehrmann et al. 2013), hippocampus (Zhou et al. 527 

2011) and midbrain (Bannon et al. 2014). Despite the mounting evidence, very little 528 

is known regarding the relation between mitochondrial genes and cocaine or drug 529 

use behavior. One study indicates that mitochondrial genes may contribute to 530 

cocaine withdrawal, as they observed differential expression of 40 mitochondrial 531 

genes in the PFC of mice experiencing protracted abstinence after chronic high 532 

doses of cocaine use (Li et al. 2017). 533 

The C1qL2 gene is secreted from the innate immune system and is thought to 534 

modulate trans-synaptic glutamatergic connections (Evans et al. 2019). Similar to 535 

previous work (Matsuda et al. 2017), we identified C1qL2 to be co-expressed with 536 

C1qL3 and found that C1qL2 may regulate glutamate receptor signaling (see Table 537 

2). Extending this research, we hypothesize and provide novel evidence that C1qL2 538 

may be involved in broader neurotransmitter signaling (GABA, acetylcholine and 539 

serotonin), ion transport (K+/Na+), neuro-development and various drug addiction 540 

pathways. C1qL2 may be a particularly tantalizing candidate for follow-up, as it is 541 

implicated in typical biological processes underlying cocaine use, is highly 542 

conserved across species and is differentially expressed in the hippocampus in 543 

mouse models of cocaine use (Walker et al. 2018). Overall, we prioritize a specific 544 

cell-type for follow-up investigation (neurons) and propose specific biological 545 

roles/hypotheses for otherwise obscure genomic associations with cocaine 546 

addiction.  547 
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This study should be interpreted with the following limitations. While, we 548 

used the largest GWAS of cocaine addiction to date, our (highly) selected sample had 549 

uneven case/control ratios and was not large by contemporary standards and thus 550 

the estimates from this study were approximate. The gene-based associations we 551 

observed with CD barely surpassed genome-wide significance, warranting larger 552 

studies to replicate these findings. Although, including only individuals who were 553 

exposed to cocaine may have enhanced the power to identify genes associated with 554 

CD (Cabana-Dominguez et al. 2019; Polimanti et al.  2020). Our tissue enrichment 555 

findings indicated plausible tissue types for cocaine addiction, suggesting the 556 

importance of follow-up among multiple tissue types, however, not all tissues 557 

seemed directly relevant for CD (e.g., muscle/skeletal) and certain genes may exert 558 

tissue specific functions. Tissue-enrichment analyses utilized GTEx samples, which 559 

included mostly Caucasian individuals and may complicate our cross-ancestry 560 

comparisons. Our RNA-seq design cannot disentangle whether findings are 561 

attributed to chronic cocaine use, acute cocaine toxicity, or psychiatric co-562 

morbidities; but it is reassuring to detect some usual suspects in the realm of 563 

cocaine addiction. While our RNA-seq results are theoretically specific to neurons, 564 

they do not distinguish between types of neurons and also included various 565 

genes/transcripts that are non-neuronal (e.g., glial genes). 566 

In conclusion, our study translates genetic findings across methods and 567 

ancestries using independent samples. We identified significant overlap across 568 

ancestries for trancriptomic, but not genomic, associations with cocaine addiction. 569 

Neurotransmitter genes generally demonstrated little contribution to the genetic 570 
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architecture of CD, but were prominent features underlying the neuropathology of 571 

CUD. That is, DNA variation within classical neurotransmitter genes was not 572 

typically associated with the genetic predisposition to cocaine addiction, but 573 

disrupted systems of neurotransmitter genes were associated with cocaine 574 

addiction via neuronal RNA expression/co-expression. Significant genome-wide 575 

associations with CD were linked to broad systems of genes/transcripts in PFC 576 

neurons from individuals with CUD. Ultimately, our study represents a proof-of-577 

principle that utilizes hypothesis-free methods for generating testable hypotheses 578 

regarding the role of genes detected by GWASs and shows the promise of multi-omic 579 

analyses. We believe that this line of research provides an important alternative 580 

approach for validating genetic associations especially when no genomic replication 581 

data exists. Our study may also serve a supplemental purpose for neuroscientists 582 

and experimental researchers to help refine particular genes in specific tissues/cell-583 

types for follow-up investigation, while also providing tangible molecular 584 

interpretations for otherwise obscure genes identified by genome-wide association 585 

analyses. 586 
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Figures/Table Legends 
 
Figure 1- Legend: Miami plot visualizing results from gene-based association 
analyses. Each dot represents an individual protein-coding gene, x-axis denotes 
chromosome number and the y-axis shows the –log10 p-value. African-American 
results are displayed on top and European-American results (from Huggett & 
Stallings, 2019) are shown on bottom. Dashed-red line represents genome-wide 
significance and dashed brown line represents the unadjusted/nominal p-value 
threshold < 0.05.  Red dots are genes nominally significant in both African and 
European-Americans.  
 
Figure 2- Legend: Miami plot showing the associations of 130 genes from candidate 
neurotransmitter systems. Each gene is color coded by neurotransmitter type and 
the different shapes represent the different parts of the system. The x-axis denotes 
chromosome number and the y-axis shows the –log10 p-value with African-
Americans displayed on top and European-Americans shown on bottom. The 
dashed-red line represents the Bonferonni correction for multiple testing (p < 0.05 / 
130) and the dashed-brown line represents the unadjusted/nominal p-value 
threshold < 0.05.  
 
Figure 3- Legend: Shows the implicated tissue types based on genes nominally 
associated with cocaine dependence (CD) separately by ancestry. The x-axis shows 
all tissue types (GTEx) sorted alphabetically and the y-axis represents the –log10 p-
value. Solid boxes denote results from the African-American analysis and dashed 
boxes show European-American results from (Huggett & Stallings, 2019). Red bars 
show replicated tissue types that were significantly enriched (padj < 0.05) across 
both ancestries. The labels of replicated tissues are emphasized in bold text on the 
x-axis.  
 
Figure 4- Legend: Volcano plot showing genes/transcripts that are expressed 
differently in human PFC neurons between controls (n = 17) and individuals with 
cocaine use disorder (CUD; n = 19). Each dot represents a gene/transcript. The x-
axis denotes the log2 fold change with positive values corresponding to increased 
expression in those with CUD. The y-axis shows the –log10 FDR adjusted p-value and 
all genes above the dashed-red line survive correction for multiple testing (133 
gene/transcripts; padj < 0.05). We labeled all genes significantly associated with the 
genetic predisposition to CD and highlighted significantly differentially expressed 
genes/transcripts previously implicated in cocaine use and the most abundant non-
coding transcripts (pseudogenes).   
 
Figure 5– Legend: Heat scatter plot depicting the correlation of neuronal dlPFC gene 
expression associated with cocaine use disorder (CUD) from African-Americans (n = 
13) and European-Americans (n = 10). The x-axis shows the Wald statistics from the 
European-American differential expression analysis and the y-axis represents the 
Wald statistics from the African-American differential expression analysis. Each dot 
represents a specific gene/transcript and the bright red color shows the highest 
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frequency, whereas the light purple/pink indicates the lowest frequency of 
genes/transcripts. The dashed black line highlights the Pearson Product correlation 
of gene expression across ethnicities (r = 0.174, p < 2e-16). 
 
Figure 6– Legend: A) The x-axis shows the twelve WGCNA gene co-expression 
networks. The y-axis shows the absolute value of Wald statistics (from whole 
sample differential expression analysis) of all genes within a defined/discrete 
WGCNA network. The directions of associations were determined by assessing 
whether mean effect sizes for gene networks were positive or negative. All WGCNA 
gene networks to the right of the dashed red line are significantly associated with 
cocaine use disorder (padj < 0.05). B) The six associated WGCNA gene networks 
were subsequently tested for enrichment of the 133 differentially expressed genes 
in dlPFC neurons. The y-axis represents the odd’s ratio calculated by a two-sided 
Fisher’s exact test. Only the blue gene network demonstrated significant enrichment 
and was selected for follow-up investigation. C) Potential functions of blue gene 
network via functional annotation analysis of pathways from Kyoto Encyclopedia of 
Genes and Genomes (KEGG; all padj < 0.05). We picked 30 representative 
functions/pathways and grouped them into five domains, which are labeled by 
colors. 
 
Figure 7– Legend: Shows the genes from the blue gene network significantly 
enriched for drug addiction and neurotransmission from Kyoto Encyclopedia of 
Genes and Genomes (KEGG, 2019) and their relation to the genes associated with 
the predisposition to CD (in triangles). Co-expression patterns with NDUFB9 and 
C1qL2 are highlighted in red. Only co-expression patterns above a weighted r > 0.05 
are shown. Genes in cyan show increased expression in dlPFC neurons for those 
with CUD and magenta represents decreased expression. 
 
Table 1- Legend: We collapsed KCTD20 & STK38 into a single category because they 
stem from the same genomic signal. AA stands for African-American and EA stands 
for European-American ancestry. The # of parameters represents the amount of 
independent signals tested within a protein coding gene and differ across ancestries 
due to disparate LD patterns. We estimated the linkage disequilibrium patterns of 
missense variants with lead SNPs using LDlink, and selecting the African-American 
and CEU reference panels. Note that C1qL2 only had one missense mutation, but was 
not tested included in the genome-wide association study on cocaine dependence 
due to low minor allele frequency across ancestries (< 1%).  
 
Table 2- Legend: Our “guilt-by-association” approach assesses the function of 
genes/transcripts that are highly co-expressed with NDUFB9 and C1qL2 in the blue 
gene network associated with CUD and assesses their enrichment for biological 
processes, molecular functions and KEGG pathways using DAVID (Huang et al. 
2009). We selected the most highly co-expressed genes with NDUFB9 (300 
genes/transcripts) and C1qL2 (694 genes/transcripts) in the blue gene network by 
using an arbitrary co-expression threshold of: weighted r > 0.05 (raw r > 0.78).
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Table 1 Single Nucleotide Polymorphism (SNP) Associations with CD  
 
SNPs Associated with the Genetic Predisposition to Cocaine Dependence by Ancestry 
Gene / Region: NDUFB9 C1qL2 KCTD20 & STK38 

Ancestry AA EA AA EA AA EA 
#SNPs 174 205 10 74 215 174 

# Parameters 51 29 4 14 38 17 
Lead SNP rs77422927 rs13020121 rs9470273 

Minor Allele C A T 
Minor Allele Frequency 0.021 0.096 0.2247 0.30025 0.3192 0.21828 

PSNP_Lead 6.42E-06 0.963 0.902 2.22E-06 0.0253 1.42E-06 
Direction of Effect + + + - + + 

Missense SNP rs34095749 NA rs2239808 (KCTD20) 
Minor Allele T NA C 

Minor Allele Frequency 0.013 0.050 NA NA 0.4206 0.21439 
Missense SNP Proline_157_Serine NA NA Serine_171_Threonine 

PSNP_Missense 0.00568 0.841 NA NA 0.0501 1.28E-05 
LD with Lead SNP (R2) 0.4917 0.5154 NA NA 0.609 0.9629 

Direction of Effect + + NA NA + + 
 
We collapsed KCTD20 & STK38 into a single category because they stem from the 
same genomic signal. AA stands for African-American and EA stands for European-
American ancestry. The # of parameters represents the amount of independent 
signals tested within a protein coding gene and differ across ancestries due to 
disparate LD patterns. We estimated the linkage disequilibrium patterns of 
missense variants with lead SNPs using LDlink, and selecting the African-American 
and CEU reference panels. Note that C1qL2 only had one missense mutation, but was 
not tested included in the genome-wide association study on cocaine dependence 
due to low minor allele frequency across ancestries (< 1%).  
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Table 2 “Guilt-By-Association” Analyses: Inferring Function of NDUFB9 and C1qL2 with CUD 
Potential Functions of NDUFB9 and C1qL2 

NDUFB9 C1qL2 
Biological Processes, Molecular Function or 

padj 
Biological Processes, Molecular Function or 

padj 
or KEGG Pathways or KEGG Pathways 

Neuro-degeneration / Cell Death Neurotransmitter Signaling 
Phagosome acidification 0.0056 GABAergic synapse 2.4e-7 

Parkinson's disease 0.0156 Serotonergic synapse 4.5e-4 
Alzheimer's disease 0.0299 Cholinergic synapse 6.2e-4 

Huntington's disease 0.0320 Glutamatergic synapse 0.0441 
Synaptic Plasticity Ion Channels & Drug Addiction 

Synaptic Vesicle Cycle 6.3e-4 Aldosterone-regulated sodium reabsorption 0.0013 
Cadherin binding involved in cell-cell adhesion 0.0010 Alcoholism 0.0032 

GTPase activity 0.0016 Response to drug 0.0041 
GTP binding 0.0067 Nicotine addiction 0.0265 

Cell to cell adhesion 0.0170 Potassium ion import 0.0428 
Other Processes Neurodevelopment & Synaptic Plasticity 

Oxidative Phosphorylation 2.6e-5 Small GTPase mediated signal transduction 2.2e-5 
Protein Binding 7.9e-4 Positive regulation of cell proliferation 0.0177 

Endocrine…regulated calcium reabsorption 0.0367 Nervous system development 0.0416 
 

Our “guilt-by-association” approach assesses the function of genes/transcripts that are highly co-expressed with NDUFB9 and 
C1qL2 in the blue gene network associated with CUD and assesses their enrichment for biological processes, molecular 
functions and KEGG pathways using DAVID (Huang et al. 2009). We selected the most highly co-expressed genes with NDUFB9 
(300 genes/transcripts) and C1qL2 (694 genes/transcripts) in the blue gene network by using an arbitrary co-expression 
threshold of: weighted r > 0.05 (raw r > 0.78). 
 




