The neurophysiological basis of the trial-wise and cumulative ventriloquism aftereffects

https://doi.org/10.1523/JNEUROSCI.2091-20.2020

Cite as: J. Neurosci 2020; 10.1523/JNEUROSCI.2091-20.2020
Received: 7 August 2020
Revised: 12 October 2020
Accepted: 8 November 2020

This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data.

Alerts: Sign up at www.jneurosci.org/alerts to receive customized email alerts when the fully formatted version of this article is published.
The neurophysiological basis of the trial-wise and cumulative ventriloquism aftereffects

Neurophysiology of ventriloquism aftereffects

Hame Park1,2, Christoph Kayser1,2

1Department for Cognitive Neuroscience, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
2Center for Cognitive Interaction Technology CITEC, Bielefeld University, Bielefeld, Germany

Hame Park: mail.hamepark@gmail.com, ORCID: 0000-0002-2191-2055
Christoph Kayser: christoph.kayser@uni-bielefeld.de, ORCID: 0000-0001-7362-5704

Number of figures: 5
Number of tables: 3
Number of words
Abstract: 201
Introduction: 622
Discussion: 1328

The authors declare no conflicts of interest.

Electroencephalography, multisensory, audio-visual, spatial perception, recalibration, ventriloquism, ventriloquism aftereffect

We thank Bora Kim for helping with collecting the data. This work was supported by the European Research Council (to CK ERC-2014-CoG; grant No 646657).
ABSTRACT

Our senses often receive conflicting multisensory information, which our brain reconciles by adaptive recalibration. A classic example is the ventriloquism aftereffect, which emerges following both cumulative (long-term) and trial-wise exposure to spatially discrepant multisensory stimuli. Despite the importance of such adaptive mechanisms for interacting with environments that change over multiple time scales, it remains debated whether the ventriloquism aftereffects observed following trial-wise- and cumulative exposure arise from the same neurophysiological substrate. We address this question by probing electroencephalography recordings from healthy humans (both sexes) for processes predictive of the aftereffect biases following the exposure to spatially offset audio-visual stimuli. Our results support the hypothesis that discrepant multisensory evidence shapes aftereffects on distinct time scales via common neurophysiological processes reflecting sensory inference and memory in parietal-occipital regions, while the cumulative exposure to consistent discrepancies additionally recruits prefrontal processes. During the subsequent unisensory trial, both trial-wise and cumulative exposure bias the encoding of the acoustic information, but do so distinctly. Our results posit a central role of parietal regions in shaping multisensory spatial recalibration, suggest that frontal regions consolidate the behavioral bias for persistent multisensory discrepancies, but also show that the trial-wise and cumulative exposure bias sound position encoding via distinct neurophysiological processes.
SIGNIFICANCE STATEMENT

Our brain easily reconciles conflicting multisensory information, such as seeing an actress on screen while hearing her voice over headphones. These adaptive mechanisms exert a persistent influence on the perception of subsequent unisensory stimuli, known as the ventriloquism aftereffect. While this aftereffect emerges following trial-wise or cumulative exposure to multisensory discrepancies, it remained unclear whether both arise from a common neural substrate. We here rephrase this hypothesis using human electroencephalography recordings. Our data suggest that parietal regions involved in multisensory and spatial memory mediate the aftereffect following both trial-wise and cumulative adaptation, but also show that additional and distinct processes are involved in consolidating and implementing the aftereffect following prolonged exposure.
Sensory recalibration serves to continuously adapt perception to discrepancies in our environment, such as the apparent displacement of the sight and sound of an object (Chen & Vroomen, 2013; De Gelder & Bertelson, 2003). Despite the importance of such adaptive multisensory processes in everyday life, their neural underpinnings remain unclear. Our environment changes on multiple timescales and not surprisingly, perceptual recalibration emerges also on distinct scales (Bosen et al., 2017, 2018; Bruns & Röder, 2015, 2019; Rohlf et al., 2020; Van der Burg et al., 2015). During the ventriloquism aftereffect (Bruns & Röder, 2015; Canon, 1970; Radeau & Bertelson, 1974; Recanzone, 1998; Wozny & Shams, 2011) the exposure to displaced acoustic and visual stimuli in an audio-visual trial reliably biases the perceived location of subsequent sounds received during an unisensory trial (Frissen et al., 2012; Mendonça et al., 2015; Watson et al., 2019; Woods & Recanzone, 2004). This aftereffect increases with cumulative exposure to a consistent discrepancy, but seems to independently emerge trial-by-trial and following prolonged exposure (Bruns & Röder, 2015; Frissen et al., 2012; Kramer et al., 2020; Van der Burg et al., 2015; Watson et al., 2019). The trial-wise and cumulative biases differ in their specificity to the sensory features of the inducing stimuli and were suggested to arise from distinct neurophysiological correlates (Bruns & Röder, 2015, 2019). Still, this hypothesis has not been directly tested.

In a previous study on the ventriloquism aftereffect we showed that medial parietal regions integrate audio-visual information within a trial and mediate the trial-by-trial aftereffect (Park & Kayser, 2019), implying a role of parietal regions involved in spatial working memory and multisensory causal inference in trial-wise recalibration. Given that cumulative recalibration results from the prolonged exposure to consistent sensory discrepancies, and the cumulative effect hence encompass trial-wise effects at least to some degree, one could reason that the same parietal regions also mediate a cumulative effect. The few existing neuroimaging studies reported correlates in early sound-evoked potentials and near early auditory cortices (Bruns et al., 2011; Zierul et al., 2017), and concluded that the cumulative aftereffect is implemented by early sensory regions, in line with evidence from single cell recordings.
(Recanzone, 1998; Recanzone et al., 2000). However, these studies focused on neural signatures of sound encoding during the unisensory test trial to probe for neural correlates, thus possibly biasing the findings towards auditory pathways. Indeed, one study also reported changes in the functional coupling between auditory and parietal regions, hinting at a more extensive cerebral network shaping the cumulative effect (Zierul et al., 2017).

We set out to directly compare the neurophysiological correlates of audio-visual spatial recalibration on a trial-by-trial level (short-term: ST) and after cumulative exposure (long-term: LT) in human participants, using the same stimuli and design for both paradigms. Following our previous work (Park & Kayser, 2019), we combined a ventriloquism task with temporally precise neuroimaging (electroencephalography: EEG) and applied single-trial neuro-behavioral modelling. We focused on the hypothesis that the trial-wise and cumulative aftereffects arise from a partly shared substrate (in particular medial parietal regions) and implemented two analysis strands to test this. One strand capitalized on the cerebral representations that reflect the discrepant multisensory evidence received during the audio-visual trial, hence directly focused on the multisensory processes that guide the adaptive behavior (Canon, 1970; Radeau & Bertelson, 1974, 1977; Wozny & Shams, 2011). Another strand characterized the cerebral representations reflecting the task-relevant acoustic information in the auditory trial and asked whether and when these representations are biased by the previously experienced multisensory discrepancy. This analysis follows the logic set out previously (Bruns et al., 2011) and directly investigates how previous multisensory exposure shapes the aftereffect in the trial where it manifests in behavior (Park & Kayser, 2019; Zierul et al., 2017).
METHODS

Participants

20 right-handed healthy young adults (age range: 22 - 39, mean ± SD: 26.7 ± 4.20, 10 females) participated in the study. The sample size was planned based on generic recommendations for behavioral studies (Simmons et al., 2011) and matched that used in similar M/EEG studies on the ventriloquism aftereffect (Bruns et al., 2011; Park & Kayser, 2019). All participants reported normal vision and hearing, with no history of neurological or psychiatric disorders and each provided written informed consent and were compensated for their time. The study was approved by the local ethics committee of Bielefeld University. One participant’s data was excluded due to not being able to follow the task instructions. Therefore, we report data from 19 participants.

Stimuli

The acoustic stimulus was a 1300 Hz sine wave tone (50 ms duration) sampled at 48 kHz and presented at 64 dB r.m.s. through one of 5 speakers (MKS-26/SW, MONACOR International GmbH & Co. KG, Bremen, Germany) which were located at 5 horizontal locations (-23.2°, -11.6°, 0°, 11.6°, 23.2°, vertical midline = 0°; negative = left; positive = right). Sound presentation was controlled via a multi-channel soundcard (Creative Sound Blaster Z) and amplified via an audio amplifier (t.amp E4-130, Thomann Germany). Visual stimuli were projected (Acer Predator Z650, Acer Inc., New Taipei City, Taiwan) onto an acoustically transparent screen (Screen International Modigliani, 2 m x 1 m), which was located at 135 cm in front of the participant. The visual stimulus was a cloud of white dots distributed according to a two dimensional Gaussian distribution (N = 200 dots, SD of vertical and horizontal spread 2°, width of a single dot = 0.12°, duration = 50 ms). Stimulus presentation was controlled using the Psychophysics toolbox (Brainard, 1997) for MATLAB (The MathWorks Inc., Natick, MA) with ensured temporal synchronization of auditory and visual stimuli.
Paradigm and task

The paradigm was based on a single-trial audio-visual localization task (Park & Kayser, 2019; Wozny & Shams, 2011), with trials and conditions designed to probe both the ventriloquism effect and the ventriloquism aftereffect. Participants were seated in front of an acoustically transparent screen with their heads on a chin rest. They were instructed not to move their head while performing the task. Five speakers were located immediately behind the screen and participants responded with a mouse. Their task was to localize a sound during either Audio-Visual (AV: sound and visual stimulus presented simultaneously) or Auditory (A: only sound), trials, or to localize a visual stimulus during Visual trials (V: only visual stimulus). For the AV trials, the locations of auditory and visual stimuli were drawn semi-independently from the 5 locations to yield 6 different audio-visual discrepancies (abbreviated ΔVA; -34.8°, -23.2°, -11.6°, 11.6°, 23.2°, 34.8°). Out of 9 possible ΔVAs, we excluded the far left/right extremes and the co-located condition (0°) in order to economize time of session (Figure 1B). For the A or V trials, stimulus locations were drawn from the 5 locations randomly.

Experimental setup

Each participant underwent two sessions on different days in pseudo-randomized order: one for long-term (LT) and one for short-term recalibration (ST). The LT paradigm comprised two parts, 3 consecutive left-wards recalibration blocks, in which the audio-visual discrepancy was always negative (ΔVA < 0°: -34.8°, -23.2°, -11.6°), and 3 consecutive right-wards recalibration blocks in which the discrepancy was always positive (ΔVA > 0°: 11.6°, 23.2°, 34.8°). The left- and right-wards blocks were separated by a brief break. Other than the negative/positive constraint the positions of the acoustic and visual stimuli were chosen randomly. The ST paradigm comprised 5 blocks, with each block featuring all six audio-visual discrepancies in random sequence. Each audio-visual discrepancy (ΔVA) was repeated 72 / 60 times respectively (LT / ST). There were 432 AV trials, 432 A trials, and 72 V trials for the LT. There were 360 AV trials, 360 A trials, and 55 V trials for the ST. The A trial always came
immediately after the AV trial. The V trials were interleaved to maintain attention (V trials always came after A trials, thus not interrupting the AV-A sequence). The LT paradigm included more trials than the ST paradigm to account for the “build-up” of the recalibration bias. However, we entered all trials in the data analysis, and verified that the main results would not change when excluding the first 12 trials from each of the LT blocks. The order of trials was pseudo-randomized with the constraint that the AV trial is always followed by the A trial, and the (few) V trial always comes after the A trial. Each trial started with a fixation period (uniform 1100 ms – 1500 ms), followed by the stimulus (50 ms). After a random post-stimulus period (uniform 600 ms - 800 ms) a horizontal bar was shown, along which participants could move a cursor (Figure 1A). A letter indicated which stimulus participants had to localize. On the A trials, participants also reported their confidence by moving a vertical bar between 0% - 100%. We did not analyze the confidence for this study as these were outside the scope of the specific hypotheses addressed here. There were no constraints on response times, however participants were instructed to respond intuitively, and to not dwell on their response. Inter-trial intervals varied randomly (uniform 800 ms - 1200 ms). Participants were asked to maintain fixation during the entire trial except the response, during which they could freely move their eyes. Eye-tracking data was acquired with a head-mounted eyetracker (EyeLink II, SR Research) at a frequency of 200 Hz. Saccadic eye movements were detected using the ‘cognitive’ setting in the EyeLink II software.

Analyses of behavioral data

The trial-wise ventriloquism effect (ve) in the AV trials was defined as the difference between the actual sound location (A_{AV}) and the reported location (R_{AV}): ve = R_{AV} - A_{AV}. The trial-wise ventriloquism aftereffect (vae) in the A trials was defined as the difference between the reported location (R_{A}) and the mean reported location for all A trials of the same stimulus position (\mu R_{A}), i.e., (vae = R_{A} - \mu R_{A}). This ensured that any intrinsic general bias in sound localization would not influence this measure (Wozny & Shams, 2011).
To quantify the dependency of both biases (ve, vae) on the audio-visual discrepancy (ΔVA) we used general linear modelling. In particular, we included a linear and a non-linear dependency (square root of ΔVA) of the bias on ΔVA and asked whether the respective slopes differ between the LT and ST paradigms. The non-linear dependency was included following predictions from multisensory causal inference models, which posit that the perceptual bias decreases when the stimuli are sufficiently far apart and do not seem to originate from a common source (Cao et al., 2019; Körding et al., 2007; Rohe & Noppeney, 2015). We fit a generalized linear mixed-effects model across all trials from all participants and paradigms. This model included the paradigm and its interaction with the discrepancy terms and by including participants (subj) as random effects to directly compare the group-level biases between LT and ST paradigms:

\[
\text{Bias} \sim \beta_0 + \beta_1 \cdot (\Delta VA)^{\frac{1}{2}} + \beta_2 \cdot \Delta VA + \beta_3 \cdot P + \beta_4 \cdot (\Delta VA)^{\frac{1}{2}} \cdot P \\
+ \beta_5 \cdot \Delta VA \cdot P + (1/\text{subj}) \]

(eq. 1)

where \(\text{Bias} \) can be ve or vae, \(P \) is the paradigm (LT or ST, coded as categories). Note that here and in the following (\(\Delta VA \)) stands for the signed square-root of the magnitude of \(\Delta VA \) (i.e. \(\text{sign}(\Delta VA) \cdot \sqrt{|\Delta VA|} \)). The coefficients \(\beta_1, \beta_2 \) quantify the group-level biases, and \(\beta_4, \beta_5 \) their interactions with the paradigm. Fitting was done using a maximum likelihood procedure in Matlab R2017a (fitglme.m).

As previous work has shown that the preceding response can potentially be a driving factor for the ventriloquism aftereffect (Park et al., 2020), and because serial-dependencies in perceptual choices prevail in many laboratory paradigms (Fritsche et al., 2017; Kiyonaga et al., 2017; Talluri et al., 2018), we tested whether including the previous response (R_{AV}) would improve the predictive power of model 1 (eq. 1):

\[
\text{vae} \sim \beta_0 + \beta_1 \cdot (\Delta VA)^{\frac{1}{2}} + \beta_2 \cdot \Delta VA + \beta_3 \cdot R_{AV} + \beta_4 \cdot P + \beta_5 \cdot (\Delta VA)^{\frac{1}{2}} \cdot P \\
+ \beta_6 \cdot \Delta VA \cdot P + (1/\text{subj}) \]

(eq. 2)
We compared the two models (eq. 1, eq. 2) based on their respective BICs. We also inspected the temporal progress of the perceptual biases (ve, vae) and compared these between the two paradigms (Figure 1D). The LT data were averaged in increments of 5 trials resulting in 36 bins and the binned data were combined across blocks with leftward and rightward adaptation. ST data were averaged in increments of 9 trials resulting in 36 bins.

EEG acquisition & preprocessing

EEG data were recorded using an active 128 channel Biosemi system (BioSemi, B. V., The Netherlands), with additional four electrodes placed near the outer canthi and below the eyes to record the electro-oculogram (EOG). Electrode offset was below 25 mV. Offline preprocessing and analyses were performed with MATLAB R2017a (The MathWorks, Natick, MA, USA) using the Fieldtrip toolbox (ver. 20190905) (Oostenveld et al., 2011). The data were band-pass filtered between 0.6 Hz and 90 Hz, resampled to 150 Hz and epoched from 0.8 s ~ 0.65 s around stimulus onset (0 s). Noise removal was performed using ICA simultaneously across all blocks recorded on the same day. The ICA was computed based on 40 PCA components. We removed ICA components that reflect eye movement artefacts, localized muscle activity or poor electrode contacts (17.2 ± 4.45 rejected components per participant, mean ± SD). These were identified as in our previous studies (Grabot & Kayser, 2020; Kayser et al., 2017) following definitions provided in the literature (Hipp & Siegel, 2013; O’Beirne & Patuzzi, 1999). Additionally, trials with amplitude exceeding 175 mV were rejected. 0.9% ± 2.6% of the total trials (mean ± SD) were rejected across all participants.

EEG discriminant analysis

To extract neural signatures of the encoding of different variables of interest we applied a cross-validated regularized linear discriminant analysis (LDA) (Blankertz et al., 2011; Parra & Sajda, 2003) to the single trial data from the AV trials (Figures 2,3) or the A trials (Figures 4,5). Preprocessed EEG data were filtered between 2 Hz and 40 Hz (4th order Butterworth filter) and the LDA was applied to the data aligned to stimulus onset (0 s) in 40 ms sliding
windows, with 6.7 ms time-steps (time window: -0.4 s ~ 0.5 s). The regularization parameter was set to 0.1 as in previous work (Park & Kayser, 2019).

We computed separate linear discriminant classifiers for the different variables of interest: i) the multisensory discrepancy in the AV trial (ΔVA), ii) the response in the AV trial (RAV), and iii) the sound location in the A trial (AA). For each variable we classified whether that variable was left- or right-lateralized by grouping the single trial values into left (< 0°) or right (> 0°), similar to our previous study (Park & Kayser, 2019). Importantly, by binarizing the variables, we avoided specific assumptions about whether the aftereffect follows a linear or non-linear dependency on the AV discrepancy. The classifier performance (e.g. in Figure 2B, 4B) was characterized as the ROC (Receiver operating characteristic)'s AUC (area under curve) obtained from 6-fold cross-validation, training the classifier on 5/6 of the data and computing the AUC on the remaining 1/6. We derived scalp topographies for each classifier by estimating the corresponding forward model, defined as the normalized correlation between the discriminant component and the EEG activity (Parra et al., 2005).

We then used these classifiers to elucidate the correlates of the single trial vae biases. We implemented two analyses strands that differed in their overall goals. In a first strand we focused on brain activity during the AV trial and used classification to extract cerebral representations of the multisensory discrepancy (ΔVA), or the response in that trial (RAV). We then asked which cerebral representations of the audio-visual disparity (or response) are predictive of the response bias in the subsequent unisensory trial. We first tested this within each paradigm separately and then probed whether the relevant representations of disparity (response) are possibly the same between paradigms. For this, we implemented two analyses that differed in the trials used to train the classifier and the trials used to predict the behavioral bias: first, we tested the ability to predict the vae bias, obtained in the A trial, based on the EEG activity obtained in the preceding AV trial within each paradigm (Figure 2A, thick arrows); second, we tested the ability to cross-predict the vae bias in one paradigm (e.g.
ST) based on the brain activity in the AV trials of the other paradigm (e.g. LT; Figure 2A, dotted arrows). This cross-classification analysis directly tests the assumption that the cerebral activations (here captured by the classifier weights) representing the audio-visual discrepancy and driving the aftereffect are identical across paradigms both in their spatial generators and in time relative to the presentation of the AV stimulus.

We computed two linear models for each of the two analyses (within or between paradigms), with LDA-ΔVA (or LDA-R_{AV}) standing for the respective continuous single-trial classifier predictions, which provides a proxy to the cerebral representation of the respective variable of interest (Kayser et al., 2016; Kayser & Kayser, 2020; Park & Kayser, 2019; Parra et al., 2005; Philiaistides et al., 2014):

\[
\text{vae}_P \sim \beta_0 + \beta_1 \cdot \text{LDA}_P - \Delta VA
\]
(eq. 3)

\[
\text{vae}_P \sim \beta_0 + \beta_1 \cdot \text{LDA}_P - R_{AV}
\]
(eq. 4)

where P denotes paradigms (LT, ST). From the coefficients (β_1) obtained for individual participants we then determined i) whether the cerebral encoding of a variable offered significant predictive information for the vae by testing the coefficient at the group-level against zero, ii) when this prediction emerged, and iii) by looking at the forward models of the respective LDAs, we determined the underlying cerebral sources.

These models were computed using EEG activity in the AV trial based on 3-fold cross-validation. That is, we trained the LDA classifier on one training fold of the data (e.g. in the LT paradigm), used the respective weights to predict the classifier output in the testing fold (either in the LT data for a within-paradigm analysis, or in the ST data for cross-classification), and then computed the regression models (eq. 3, 4) between the predicted classifier activity and the vae bias on this testing fold. We averaged the resulting betas across 30 repeats of this analysis. The use of cross validation is only necessary for the within-paradigm analysis. However, to keep the two analyses comparable, we used the same approach for both the within and between-paradigm analysis. A 3-fold cross-validation was used (rather than a
higher number of folds, e.g. as used to compute the AUC) in order to enter more trials in the
neuro-behavioral regression, which yielded more robust results. Finally, we derived group-
level t-values for the coefficients for each predictor at each time point, and assessed their
significance using cluster-based permutation statistics controlling for multiple comparisons
(below: Statistical analysis).

In a second analysis strand we focused on the brain activity during the A trial and used
classification to extract cerebral representations of the sound location presented in that trial
(Figure 4). We then asked where these representations of the task-relevant acoustic
information are shaped by the previously experienced discrepancy or the response (R\text{AV}). To
this end we computed the following regression model:

\[
\text{LDAP} \sim \beta_0 + \beta_1 \cdot \Delta \text{VA} \quad \text{(eq. 5)}
\]

\[
\text{LDAP} \sim \beta_0 + \beta_1 \cdot R\text{AV} \quad \text{(eq. 6)}
\]

Similar to the first analysis strand, we derived these models using 3-fold cross-validation,
establishing the classifier weights on a testing fold and deriving classifier predictions and the
regression model on the testing fold, averaging the resulting coefficients over 30 cross-
validation sets of trials. Again we implemented this analysis once within each paradigm
separately, and once cross-testing between paradigms, analogously to the first analysis
strand (Figure 4B).

EEG source analysis

Single-trial source signals were derived using a linear constrained minimum variance
beamformer (LCMV, 7% normalization, using a covariance matrix obtained from \(-0.6 \text{ s} \sim 0.5\)
\text{s peri-stimulus period, projecting along the dominant dipole orientation}) as implemented in
the FieldTrip toolbox (Oostenveld et al., 2011). As participant-specific anatomical data were
not available, we used a standardized head model using the average template brain of the
Montreal Neurological Institute. Lead fields were computed using a grid spacing of 6 mm.
Then, we computed the source-level correlation between the single-trial grid-wise source
activity for each participant and the LDA output activity over trials in order to quantify the relevant source regions at specific time points, similar to obtaining the forward scalp distributions by correlating the sensor and LDA components (Haufe et al., 2014; Parra et al., 2005). Source correlations were z-scored before averaging across participants. To interpret these group-level source maps we thresholded these above the 95th percentile, and identified clusters with a minimum cluster size of 80 voxels based on a connected components algorithm (SPM8 toolbox, 2008 Wellcome Trust Centre for Neuroimaging). We then extracted the anatomical labels based on the AAL atlas (Tzourio-Mazoyer et al., 2002), to determine those regions covered by these clusters (reporting atlas regions containing at least 20 voxels and occupying at least 30% of the total number of voxels for each atlas region, excluding deep structures such as the thalamus or cerebellum).

Eye movement analyses

We performed three analyses to rule out potential confounds arising from systematic eye movements. First, we computed the number of saccades between -50 ms ~ 100 ms around stimulus onset that were larger than 1 deg visual angle in the A trials. Then, we computed the percentage of saccades in AV trials between the stimulus onset and +400 ms that pointed in the same direction as ΔVA. Finally, to rule out the possibility that eye movements contribute by inducing specific artifacts in the EEG signals, we applied the neuro-behavioral analyses to the EOG data rather than the EEG data.

Statistical analysis

To test the (trial-averaged) ve and vae from zero we used a sign rank test, correcting for multiple tests using the Holm procedure with a family-wise error rate of $p < 0.05$ (Figure 1C). The confidence intervals for the median/mean (e.g. Figure 1C, D) were obtained using the bootstrap hybrid method with 199 resamples (Bootstrap Matlab Toolbox, Zoubir and Boashash 1998). Group-level inference on the LDA time-course was performed using randomization procedures and cluster-based statistical enhancement controlling for multiple comparisons along time (Maris & Oostenveld, 2007; Nichols & Holmes, 2002). First, we
shuffled the sign of the true single-participant effects (the signs of the chance-level corrected AUC values; or the signs of single-participant regression betas) and obtained distributions of group-level effects (mean for AUC, t-values for regression models) based on 3000 randomizations. We then applied spatial clustering based on a minimal cluster size of 4 and using the sum as cluster-statistics. For testing the LDA performance, we thresholded the first-level effects based on the 99th percentile (i.e. $p < 0.01$) of the full distribution of randomized AUC values. For testing regression betas, we used parametric thresholds corresponding to a two-sided $p < 0.01$ ($t_{crit} = 2.81$, d.f. = 18). The threshold for determining significant clusters was $p < 0.01$ (two-sided), although we also inspected a more lenient threshold of $p < 0.05$. We tested for significant temporal clusters for classifier performance in the whole time window of interest (-0.4 s ~ 0.5 s), while the neuro-behavioral models were restricted to a time window of interest within the significant discriminant performance for the respective variable (ΔVA, R_{AV}). For the cross paradigm analyses, we computed a conjunction statistics obtained at each time point by taking the smaller of the two t-values obtained from $LDA_{ST} \rightarrow vae_{LT}$ and $LDA_{LT} \rightarrow vae_{ST}$ (eq. 3, 4) (Nichols et al., 2005).

To compare the similarities of the group-level forward models of the LDA classifiers obtained in different paradigms, or at different time points, we quantified their group-level similarity using Pearson correlation. Statistical significance was tested using bootstrapping over the (random) selection of participants used to compute the group-level mean (at $p < 0.01$, using 3000 resamples).
RESULTS

Behavioral biases

Behavioral responses in AV trials revealed a clear ventriloquism bias as a function of the audio-visual discrepancy ($\Delta VA = V_{AV} - A_{AV}$), reflecting the influence of the visual stimulus on the perceived location of the simultaneous sound (Figure 1C, left). All group-level ve biases were significantly different from zero ($n = 19$; sign rank test: $p < 0.01$ for all $6 \Delta VA$). A GLMM revealed that the ventriloquism bias varied nonlinearly with the discrepancy but did not differ between paradigms (Table 1A).

Regarding the ventriloquism aftereffect, the behavioral responses in the A trials revealed a clear bias in the direction of the previous trial's ΔVA (Figure 1C, right). All group-level vae biases were significantly different from zero (sign rank test: $p < 0.01$ for all $6 \Delta VA$). The GLMM showed that the aftereffect exhibited both a linear and a nonlinear dependency on discrepancy (Table 1B). Importantly, both the linear and nonlinear dependency on ΔVA differed between paradigms ($p < 0.01$; Table 1B). Closer inspection of the trial-wise dynamics of these effects revealed a clear accumulation of the aftereffect over the course of the long-term but not over the short-term paradigm (Figure 1D, right). The ventriloquism bias in the AV trials, in contrast, did not change over time (Figure 1D, left).

The aftereffect bias reflects the previous multisensory discrepancy

Previous studies suggested two potential factors driving the aftereffect: the sensory discrepancy (ΔVA) in the previous trial, or the participant's response in that trial (R_{AV}) (Park & Kayser, 2019; Van der Burg et al., 2018). Indeed, in many laboratory paradigms sequential effects between the responses on different trials emerge, by which the previous response is predictive of the subsequent one (Fritsche et al., 2017; Kiyonaga et al., 2017; Talluri et al., 2018; Urai et al., 2019). We asked whether the trial-wise aftereffect biases are better accounted for by allowing a dependency on the previous response R_{AV} (eq. 1 vs. eq. 2; Table 1B, C). The model fit improved by adding the previous response ($\Delta BIC = 25$), suggesting that...
this indeed contributes to shaping the bias in the A trial in addition to the multisensory discrepancy. For the following analysis we hence considered both ΔVA and RAV as variables of interest whose cerebral representations in the AV trial could be predictive of the subsequent aftereffect.

Multisensory neurophysiological representations driving the aftereffect

In a first analysis strand we asked whether and which EEG activations reflecting the cerebral encoding of the multisensory information (ΔVA) or the response in the AV trial are predictive of the subsequent vae bias (Figure 2A). For this we extracted EEG-derived representations of these variables using single-trial classification. We then quantified whether and which of these representations are predictive of the trial-wise vae bias. In a first analysis, we tested this within the LT and ST paradigms individually, to potentially reveal representations that are either paradigm-specific or possibly exhibit common properties (time, topographies) between paradigms. In a second analysis, we directly aimed to extract EEG-derived representations that are common to both paradigms, by predicting the bias in one paradigm based on classifiers trained on the EEG activity in the other paradigm.

We applied linear discriminant analysis (LDA) to the AV trial data to probe when the EEG activity allows the (cross-validated) classification of the two main variables of interest: ΔVA and RAV. Here, ΔVA served as the main variable of interest driving the aftereffect, and RAV as a control. In both the LT and ST paradigms, discrimination performance became significant from around 100 ms post stimulus onset (Figure 2B). The performances of both classifiers were significant over a long time in the LT (LDA-ΔVA: $p = 0.0003$, $t_{cluster} = 16.71$, peak = 0.87, range = [62 ms, 475 ms]; LDA-RAV: $p = 0.0003$, $t_{cluster} = 6.70$, peak = 0.73, range = [102 ms, 368 ms]), and ST paradigm (LDA-ΔVA: $p = 0.0003$, $t_{cluster} = 14.18$, peak = 0.88, range = [95 ms, 442 ms]; LDA-RAV: $p = 0.0003$, $t_{cluster} = 6.35$, peak = 0.72, range = [95 ms, 342 ms]).

We then asked whether and when the cerebral representations of these variables are predictive of the aftereffect bias. Figure 2C shows the respective group-level t-values of the regression betas from eq. 3, 4 for the within-paradigm analysis. Figure 2E (left) shows the
time courses of the mean rather than significance. The LDA-ΔVA predicted the subsequent trial-wise vae bias between 75 ms ~ 475 ms in the LT paradigm (p = 0.0003, t_{cluster} = 311.6, \ t_{peak} = 6.96, Cohen's d = 1.60). In the ST paradigm, the LDA-ΔVA predicted the bias between 142 ms ~ 202 ms (p = 0.001, t_{cluster} = 36.1, t_{peak} = 4.88, Cohen's d = 1.12; Figure 2C, right), with the significant clusters overlapping between both paradigms. In contrast, the LDA-R_{AV} in the AV trial was not predictive of the bias in either paradigm (no significant clusters; maximum Cohen's d = 0.22, at 202 ms in the LT, d = 0.30 at 355 ms for the ST).

Then, in a direct cross-decoding analysis we tested whether cerebral representations of these variables can predict the bias between paradigms (Figure 2D). This revealed a significant cluster between 261 ms and 301 ms, in which the LDA-ΔVA in the AV trial of the LT paradigm predicts the bias in the A trial in the ST paradigm, and vice versa (obtained from the conjunction statistics cross-predicting in both directions; p = 0.0003, t_{cluster} = 23.8, t_{peak} = 3.99, Cohen's d = 0.91). Figure 2E (right) shows the time courses of the mean rather than significance.

Distinct neurophysiological sources driving trial-wise and cumulative biases

To better understand the physiological correlates of the aftereffect biases, we extracted key time points of interest, defined as the local and global peaks in the neuro-behavioral analysis (Figures 2C, D black dots). We then investigated the underlying neural generators by inspecting the LDA forward models and source maps. From the within-LT analysis we derived three time points (local peaks at 115 ms and 435 ms; global peak at 241 ms). These time points were specific to the LT paradigm, as the respective EEG activity in the ST paradigm at these moments was not predictive of the aftereffect (at an uncorrected p < 0.01: t = 1.85, 1.87, 1.69 and Cohen's d: 0.42, 0.43, 0.39). From the within-ST analysis we derived one time point (148 ms) (the LT analysis revealed a significant cluster at the same time).

From the cross-paradigm analysis we obtained one time point (global peak at 288 ms). Given that the significant clusters for the within ST and LT analysis overlapped, we asked whether the forward models of the LDA-ΔVA components were similar (at 148 ms): these were
indeed highly correlated (Spearman’s $\rho = 0.97$, Bootstrap-based CI = [0.52 0.98], $p < 0.001$), suggesting that the underlying generators are similar. We hence combined the topographies and sources across paradigms at 148 ms and 288 ms. The resulting forward topographies are shown in Figure 3.

Then, we asked whether the relevant neurophysiological sources were similar between time points within paradigms (LT: 115 ms vs. 241 ms: Rho = -0.34, CI = [-0.79, 0.29]; 115 ms vs. 435 ms: Rho = 0.86, CI = [-0.42, 0.97]; 241 ms vs. 435 ms: Rho = -0.43, CI = [-0.81, 0.59]); ST/LT: 148 ms vs. 288 ms: Rho = 0.50, CI = [-0.45, 0.75]). The group-level forward models were not significantly correlated between time points (all pairs $p > 0.05$, group-level bootstrap confidence intervals). This demonstrates that activity at each time point reflects distinct neurophysiological contributions to the aftereffect, suggesting a contribution from multiple and temporally dispersed processes. Furthermore, this result demonstrates that partly distinct processes contribute to the trial-wise and cumulative biases.

Finally, we inspected the underlying generators in source space. The group-level source maps revealed an involvement of medial superior parietal regions (in particular the precuneus) at multiple time points and common to both paradigms (e.g. at 288 ms; Figure 3C), in line with the hypothesis that parietal structures involved in sensory causal inference and memory mediate recalibration in general. Common to both paradigms were also sources in sensory regions (occipital and temporal cortex; at 148 ms and 288 ms), while sources specific to the LT paradigm involved precentral and frontal regions (Figure 3A, Table 2).

Trial-wise and cumulative effects manifest differentially in auditory trials

In a second analysis strand we asked whether and which EEG activations reflecting the encoding of the task-relevant acoustic information in the A trial are biased by the previously experienced multisensory information (ΔVA) or the previous response (R_{AV}; Figure 4A). This analysis follows the logic set out in previous work, where it has been speculated that trial-wise and cumulative aftereffects emerge with different latencies in neurophysiological activity during the A trial (Bruns et al., 2011; Park & Kayser, 2019; Zierul et al., 2017).
Classification performance of the current sound location in the A trial was significant from about 100 ms onwards and over an extended time window in both paradigms (LT: \(p = 0.0003, t_{\text{cluster}} = 3.6, \text{peak} = 0.63, \text{range} = [61 \text{ ms}, 281 \text{ ms}]\); ST: \(p = 0.0001, t_{\text{cluster}} = 4.5, \text{peak} = 0.69, \text{range} = [101 \text{ ms}, 341 \text{ ms}]\); Figure 4B left). Given that task and stimuli were identical in both paradigms we expected that the underlying cerebral representations of sound position would be the same and hence allow for cross-classification. Indeed, cross-classification was significant in the same time window (\(p = 0.0002, t_{\text{cluster}} = 4.64, \text{peak} = 0.66, \text{range} = [48 \text{ ms}, 341 \text{ ms}]\); Figure 4B right) and the classifier topographies (c.f. Figure 5) at the time of local peaks in the cross-decoding performance were significantly correlated between paradigms (at 141 ms: Spearman's \(\rho = 0.89, \text{Bootstrap-based CI} = [-0.202 0.98], p = 0.015\); at 268 ms: \(\rho = 0.82, \text{CI} = [-0.05 0.96], p=0.009\)).

We then asked whether and when these representations of sound position are biased by the multisensory discrepancy experienced in the previous AV trial, or the motor response in that trial (eq. 5,6). This revealed a significant influence of \(\Delta VA\) on sound encoding in the A trial at different time points in each paradigm (Figure 4C). For the LT paradigm, this effect emerged early in the trial (cluster 115 ms -148 ms, \(p = 0.001, t_{\text{cluster}} = 22.1, t_{\text{peak}} = 4.35, \text{Cohen's }d = 1.00\)), while for the ST paradigm the effect emerged considerably later (228 – 248 ms, \(p = 0.012, t_{\text{cluster}} = 13.9, t_{\text{peak}} = 4.10, \text{Cohen's }d = 0.94\)), suggesting that the neurophysiological processes affected by the multisensory discrepancy differ between paradigms. Indeed, the attempt to directly predict this influence of multisensory discrepancy on sound encoding using cross-classification did not yield any significant effects (no significant clusters; maximum Cohen's \(d = 0.41\). Figure 4D). In addition, the topographies of the classifiers at the respective two time points of peak effects were distinct between paradigms (comparing the LDA forward models for LT at 135 ms and ST at 235 ms: \(p = -15, \text{CI} = [-0.77 0.70], p = 0.487\); Figure 5), and the effect size for \(\Delta VA\) to bias sound representations in the respective other paradigm at the time of each paradigm-specific local peak was considerably smaller (Cohen's \(d\) at the peak time of significance in the LT paradigm, 135 ms, computed in the ST data was \(d = 0.23\); vice versa at the peak time of significance in the ST paradigm, 235 ms, ...
computed in the ST data $d = 0.67$). Finally, when we applied the same analysis using the previous motor response as predictor of sound representations we found no significant effects (no significant clusters; maximum Cohen's $d = 0.51$ for LT, $d = 0.42$ for ST). This shows that the impact of the previously experienced multisensory information during the auditory trial emerges in distinct spatial sources and with different timing for trial-wise and cumulative multisensory exposure.

Finally, we also inspected the underlying generators in source space. Given that the forward models of the discriminant components for sound location were highly correlated between paradigms we averaged the resulting sources across paradigms (Figure 5). The group-level sources were broadly distributed but encompassed parietal and temporal regions at the time points relevant for each paradigm (e.g. at 135 ms for LT, 235 ms for ST; c.f. Figure 4C). For the ST paradigm the sources also reveal a more prominent involvement of frontal regions (Table 3).

Eye movements do not confound these results

To ensure that potential eye-movements do not confound our conclusions, we analyzed both eye movements themselves and their predictive power for the single trial biases (Kopco et al., 2009; Werner-Reiss et al., 2003). First, only a few A trials (2.3% ± 0.5% mean ± SEM across participants and trials) contained saccadic eye movements during stimulus presentation (> 1 deg; between -50 ms ~ 100 ms of stimulus onset), showing that participants maintained fixation well. Second, we computed the percentage of saccades in AV trials between stimulus onset and 400 ms that pointed in the same direction as ΔVA, and hence would directly confound with the direction of ΔVA as a predictor. Overall, the direction of saccades was very balanced: with only 51.2% ± 3.1% (mean ± SEM. LT: 52.0% ± 3.1%, ST: 50.3 ± 3.2%) pointing in the same direction as ΔVA. Finally, to rule out the possibility that eye movements contribute by inducing specific artifacts to the EEG analysis, we repeated the above analyses using the EOG signals instead of the EEG activity. These analyses did not provide any significant relation between any putative information about ΔVA in the EOG.
signals and the \textit{vae} bias (in analogy to Figure 2) or between information about the sound location in the A trial and the previously experienced discrepancy (based on the same statistical criteria as for the EEG data no clusters emerged at $p < 0.05$).
DISCUSSION

We often encounter seemingly discrepant multisensory information, such as when watching a movie on a screen while hearing sounds through earphones. Our brain reconciles such discrepant information by adapting to the sensory disparity over multiple time scales. While previous work suggested that the ventriloquism aftereffects from cumulative- and trial-wise exposure arise from distinct mechanisms, the evidence has been indirect and mostly from behavioral studies (Bosen et al., 2018; Bruns & Röder, 2015; Frissen et al., 2012; Van der Burg et al., 2015). We here directly tested within the same participants whether both aftereffects are shaped (while presented with discrepant multisensory evidence, AV trial) and implemented (while presented with a subsequent unisensory test stimulus, A trial) by the same neurophysiological processes. Our results show that while presented with the multisensory evidence both aftereffects are shaped by common neurophysiological correlates arising from sensory and parietal regions, while prolonged exposure additionally recruits frontal regions. During the subsequent unisensory test trial, however, the trial-wise and cumulative aftereffects are mediated by distinct neurophysiological processes reflecting the biased encoding of the current sound location at shorter (cumulative bias) and longer (trial-wise bias) latencies.

The neural underpinnings of the spatial ventriloquism aftereffect

Sensory recalibration as in the ventriloquism aftereffect is robustly seen across variations of the paradigm and after exposure over multiple time scales (Bruns & Röder, 2015, 2019; Lewald, 2002; Mendonça et al., 2015; Recanzone, 1998; Wozny & Shams, 2011). Although it is conceptually difficult to strictly separate trial-wise and cumulative effects, in particular as the latter always encompasses some of the former, behavioral studies suggested that trial-wise and cumulative biases obtained after prolonged exposure times arise from distinct mechanisms; in particular as the trial-wise bias generalizes across stimulus features (e.g. sound frequencies) while the cumulative effect seems more specific (Bruns & Röder, 2015, 2019; Lewald, 2002; Recanzone, 1998). Yet, the degree of stimulus specificity remains
debated (Frissen et al., 2003, 2005), and by nature the behavioral studies remain inconclusive about the precise neural underpinnings.

Previous EEG studies found that prolonged exposure to audio-visual discrepancies alters evoked responses around 100 ms following stimulus onset and suggested a neural correlate near auditory cortex (Bruns et al., 2011), in line with single neuron data (Recanzone, 1998; Recanzone et al., 2000). Previous work also proposed that the cumulative aftereffect may be mediated by a larger temporo-parietal network involved in multisensory integration, although direct evidence so far has been scarce (Zierul et al., 2017). The origin of the trial-wise ventriloquism aftereffect, in contrast, has been attributed to medial parietal regions involved in spatial working memory and sound localization (Park & Kayser, 2019), raising the question as to whether the trial-wise- and cumulative aftereffects indeed are mediated by shared or distinct processes.

To reconcile the previous work, we combined two analytical approaches to test for neurophysiological processes underlying the aftereffect biases. In one approach we followed previous studies, which either explicitly focused on auditory cortices or relied on neural signatures of sound encoding, to probe for an influence of the discrepant audio-visual information on the encoding of subsequent unisensory information (Recanzone, 1998; Recanzone et al., 2000; Zierul et al., 2017). By design, this approach likely reveals neural processes involved in auditory encoding, while those concerned with other computations such as multisensory fusion or sensory causal inference are less likely to emerge. Hence, we also considered a second approach that focused on neural processes reflecting the encoding of the multisensory spatial discrepancy, which is the key driver of the aftereffect (Park & Kayser, 2019; Wozny & Shams, 2011).

Combining these two approaches allowed us to directly confirm the notion of a partly shared neural substrate shaping the aftereffect, whereby sensory and parietal regions encode and maintain information about the multisensory environment to guide adaptive behavior. However, during the unisensory test trial, the trial-wise and cumulative aftereffect arise from
neural signatures of biased sound representations at different latencies and from different
sources, in line with both biases being implemented by distinct circuits. Confirming previous
EEG results, the aftereffect emerged around 100 ms from sound onset following cumulative
exposure, possibly reflecting changes in auditory cortical sound encoding due to processes
reflecting adaptation or perceptual learning on longer time scales and possibly mediated by
top-down guidance (Bruns et al., 2011; Bruns & Röder, 2015; Zierul et al., 2017). In contrast,
the aftereffect for trial-wise exposure emerged at much longer latencies (> 200 ms). Several
forms of sequential patterns in behavior have been attributed to longer-latency and cognitive
processes, and our previous MEG study implied parietal activity beyond about 130 ms from
stimulus onset in the trial-wise ventriloquism effect (Park & Kayser, 2019). The collective
evidence from the present and previous work hence suggests that the trial-wise bias arises
from higher-level regions beyond immediate sensory encoding. Future work could seek to
confirm these common and distinct neural processes mediating the two time scales of the
ventriloquism aftereffect using brain stimulation geared to selectively interfere with the
putative shared or common process and establishing a causal role of these.

A potential role of motor history in the aftereffects

Previous work suggests that adaptive recalibration may not be a purely sensory
phenomenon but is also driven by participants’ previous motor reports (Park et al., 2020; Van
der Burg et al., 2018). That is, both the audio-visual stimulus and participant’s response
during the AV trial could contribute to the aftereffect bias in the A trial. While several studies
reported a stronger sensory than motor influence on the ventriloquism aftereffect (Park et al.,
2020; Park & Kayser, 2019; Van der Burg et al., 2018), here the influence of the previous
motor response on the behavioral bias was significant. Hence, we also probed whether
neurophysiological signatures of the previous response (R_{AV}) were predictive of the
aftereffect. However, we found no such effects. This corroborates the predominant sensory
nature of spatial ventriloquism and rules out motor-related confounds as mediators of the
reported neurophysiological underpinnings.
Multiple timescales of the ventriloquism aftereffect

Our results consolidate previous work by showing that the trial-wise and cumulative aftereffects are shaped by shared neural processes reflecting the encoding of discrepant multisensory information in sensory and parietal regions. Previously, using MEG-based source-imaging we found that the trial-wise effect is mediated by medial parietal regions (Park & Kayser, 2019) involved in spatial working memory and sound localization, such as the precuneus (Lewald et al., 2008; Tao et al., 2015)(Martinkauppi, 2000). While the precise sources underlying the present EEG data have to be interpreted with care, they are compatible with the same parietal regions mediating the ventriloquism aftereffect over multiple time scales, highlighting that structures involved in working or procedural memory play a central role for this form of adaptive behavior (Ester et al., 2015; Müller et al., 2018; Schott et al., 2019).

The cumulative bias was also shaped by a more extensive network involving pre-central and frontal regions. Previous work implied inferior frontal regions in multisensory causal inference (Cao et al., 2019; Rohe & Noppeney, 2015). During prolonged exposure the multisensory discrepancy follows a regular pattern, while it is seemingly random in the trial-wise paradigm. A systematic pattern allows the formation of predictions about upcoming stimuli and may drive the formation of working memory about sensory causal relations (Collins & Frank, 2013; Curtis, 2006; Nee & D’Esposito, 2016; Noppeney et al., 2010). One possibility is that parietal regions guide the aftereffect based on the more immediate stimulus history, while frontal processes exploit the regularity over longer time scales. Such a divided role fits with the notion that parietal regions contribute to the immediate fusion of multisensory information within a trial, while frontal regions help differentiating whether two stimuli arise from a common source (Cao et al., 2019; Rohe et al., 2019; Rohe & Noppeney, 2015), a process known to benefit from knowledge about stimulus history (Beierholm et al., 2019). Future work should investigate whether the same or distinct frontal regions contribute to causal inference within a trial and the fostering of recalibration based on the cumulative stimulus history.
REFERENCES

Figure 1. Experiment setup and behavioral data. (A) Example sequence of AV and A trials (rare V trials are not shown). The yellow speaker is for illustration only; the sound came from speakers placed behind the screen. The participant submitted their response by moving a mouse cursor to the location where they perceived the sound. The confidence rating was only taken in the A trial. (B) \(\Delta VA \) is the distance between the visual and sound stimuli, each located at one of five horizontal locations. Among the 9 possible values of \(\Delta VA \), only 6 were used for efficiency. (C) Behavioral results. (left) ventriloquism effect (right) ventriloquism aftereffect, both median across participants \((n = 19)\), shaded areas are 95% confidence intervals around the median. Dots show individual participant’s data. (D) Temporal progression of biases. Shaded areas indicate 95% hybrid bootstrap confidence intervals around the mean. Black dots denote a significant difference between the LT and ST tested with a cluster-based permutation test \((p < 0.01; \text{See Methods for details})\). VE: ventriloquism effect. VAE: ventriloquism aftereffect. LT: long-term recalibration, ST: Short-term recalibration.
Figure 2. Predicting the trial-wise aftereffects based on neurophysiological representations. (A) In two separate analyses we quantified the predictive power of EEG derived representations of either the multisensory discrepancy or the response in the AV trial to predict the trial-wise vae bias in the A trial, either i) within a paradigm (thick arrows) or ii) across-paradigms (dotted arrows). (B) Classifier performance (group-level mean, n = 19) for both paradigms (short-term ST; long-term LT) as cross-validated area under the ROC curve (AUC). (C) Neuro-behavioral models predicting the trial-wise aftereffect within paradigms based on the EEG-derived cerebral encoding of sensory (ΔVA) or motor (RAV) variables in the AV trial. Graphs show group-level t-maps of the underlying regression betas. (D) Neuro-behavioral models predicting the aftereffect across paradigms. Significance based on cluster-based permutation-based statistics (p < 0.01; see Methods). (E) Time course of regression betas (for LDA_ΔVA) for the same data as in (C). (left) Within paradigm analyses. (right) Cross-paradigm analyses. Solid lines indicate the group-level mean, shaded areas are SEM across participants.
Figure 3. EEG topographies and source maps for the LDA-ΔVA classifier. Group-averaged topographies (forward models) and source maps for (A) the three LT specific time points derived in Figure 2C, left. (B) Time point common to both paradigms (Figure 2C, right), and (C) for the peak time point in the cross-paradigm analysis in Figure 2D. The data are shown as z-score transformed correlations between single trial source activity and the LDA output (see Methods). For B) and C) the correlations were averaged across paradigms.
Figure 4. Predicting the neurophysiological representations in the A trial based on the previous stimuli. (A) In two separate analyses we quantified the predictive power of the multisensory discrepancy (or motor response) in the AV trial to predict the trial-wise neurophysiological representations of sound location in the A trial, either i) within a paradigm (thick arrows) or ii) across-paradigms (dotted arrows). (B) Classifier performance for sound location (group-level mean, n = 19) for (left) both paradigms (short-term ST; long-term LT) or across paradigms (right) as cross-validated area under the ROC curve (AUC). (C) Models reflecting the influence of the multisensory discrepancy (ΔVA) or motor (R_{AV}) variables in the AV trial on the trial-wise representations of sound location, within each paradigm. Graphs show group-level t-maps of the underlying regression betas. Significance based on cluster-based permutation-based statistics (p < 0.05; see Methods). (D) Same analysis computed across paradigms. (E) Time course of regression betas for the results for ΔVA in (C, D). Solid lines indicate the group-level mean, shaded areas are SEM across participants.
Figure 5. EEG topographies and source maps for the LDA-A classifier. Group-averaged topographies (forward models) and source maps for (A) the LT specific time point (c.f. Figure 4C, left), and (B) for the ST specific time point (c.f. Figure 4C, right). The data are shown as z-score transformed correlations between single trial source activity and the LDA output (see Methods). Source maps were averaged across both paradigms given that the LDA forward models were significantly correlated between paradigms.
Table 1. Results from the generalized linear mixed model analysis. CI: 95% confidence interval (parametric); BIC: Bayesian information criterion; AIC: Akaike information criterion; LL: Log-likelihood.

(A) Reveals the linear and non-linear dependency of the ve on multisensory discrepancy (ΔVA), which did not differ between paradigms (P). (B) Reveals the linear and non-linear dependency of the vae on multisensory discrepancy, which both differed between paradigms. (C) Comparing models 1 and 2 shows that some of the variance in the aftereffect is also explained by the response in the AV trial (RAV).

(A) Eq. 1: \(\text{ve} \sim \beta_0 + \beta_1 \cdot (\Delta VA)^{\frac{1}{2}} + \beta_2 \cdot \Delta VA + \beta_3 \cdot P + \beta_4 \cdot (\Delta VA)^{\frac{1}{2}} \cdot P + \beta_5 \cdot \Delta VA \cdot P + (1/\text{subj}) \)

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate (β)</th>
<th>t-statistics</th>
<th>p-value</th>
<th>CI (95%)</th>
<th>Model fits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-2.0029</td>
<td>-3.2469</td>
<td>0.0012</td>
<td>-3.2120 -0.7938</td>
<td>BIC:</td>
</tr>
<tr>
<td>(ΔVA)(^{\frac{1}{2}})</td>
<td>2.0629</td>
<td>16.5643</td>
<td>0.0000</td>
<td>1.8188 2.3070</td>
<td>109000</td>
</tr>
<tr>
<td>ΔVA</td>
<td>0.0231</td>
<td>0.9645</td>
<td>0.3348</td>
<td>-0.0238 0.0700</td>
<td>AIC:</td>
</tr>
<tr>
<td>P</td>
<td>0.0636</td>
<td>0.4070</td>
<td>0.6840</td>
<td>-0.2427 0.3700</td>
<td>108940</td>
</tr>
<tr>
<td>(ΔVA)(^{\frac{1}{2}}):P</td>
<td>-0.1427</td>
<td>-0.7676</td>
<td>0.4427</td>
<td>-0.5070 0.2216</td>
<td>LL:</td>
</tr>
<tr>
<td>ΔVA:P</td>
<td>-0.0513</td>
<td>-1.4370</td>
<td>0.1507</td>
<td>-0.1214 0.0187</td>
<td>-54460</td>
</tr>
</tbody>
</table>

(B) Eq. 1: \(\text{vae} \sim \beta_0 + \beta_1 \cdot (\Delta VA)^{\frac{1}{2}} + \beta_2 \cdot \Delta VA + \beta_3 \cdot P + \beta_4 \cdot (\Delta VA)^{\frac{1}{2}} \cdot P + \beta_5 \cdot \Delta VA \cdot P + (1/\text{subj}) \)

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate (β)</th>
<th>t-statistics</th>
<th>p-value</th>
<th>CI (95%)</th>
<th>Model fits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.0017</td>
<td>0.0228</td>
<td>0.9818</td>
<td>-0.1435 0.1469</td>
<td>BIC:</td>
</tr>
<tr>
<td>(ΔVA)(^{\frac{1}{2}})</td>
<td>0.8909</td>
<td>10.1074</td>
<td>0.0000</td>
<td>0.7181 1.0636</td>
<td>98656</td>
</tr>
<tr>
<td>ΔVA</td>
<td>-0.0635</td>
<td>-3.7469</td>
<td>0.0002</td>
<td>-0.0967 -0.0303</td>
<td>AIC:</td>
</tr>
<tr>
<td>P</td>
<td>-0.0006</td>
<td>-0.0053</td>
<td>0.9958</td>
<td>-0.2172 0.2161</td>
<td>98595</td>
</tr>
<tr>
<td>(ΔVA)(^{\frac{1}{2}}):P</td>
<td>-0.7178</td>
<td>-5.4568</td>
<td>0.0000</td>
<td>-0.9757 -0.4600</td>
<td>LL:</td>
</tr>
<tr>
<td>ΔVA:P</td>
<td>0.0733</td>
<td>2.8981</td>
<td>0.0038</td>
<td>0.0237 0.1229</td>
<td>-49290</td>
</tr>
</tbody>
</table>

(C) Eq. 2: \(\text{vae} \sim \beta_0 + \beta_1 \cdot (\Delta VA)^{\frac{1}{2}} + \beta_2 \cdot \Delta VA + \beta_3 \cdot R_{AV} + \beta_4 \cdot P + \beta_5 \cdot (\Delta VA)^{\frac{1}{2}} \cdot P + \beta_6 \cdot \Delta VA \cdot P + (1/\text{subj}) \)

<table>
<thead>
<tr>
<th>Name</th>
<th>Estimate (β)</th>
<th>t-statistics</th>
<th>p-value</th>
<th>CI (95%)</th>
<th>Model fits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.0540</td>
<td>0.7247</td>
<td>0.4686</td>
<td>-0.0921 0.2001</td>
<td>BIC:</td>
</tr>
<tr>
<td>(ΔVA)(^{\frac{1}{2}})</td>
<td>0.8369</td>
<td>9.4553</td>
<td>0.0000</td>
<td>0.6634 1.0104</td>
<td>98631</td>
</tr>
<tr>
<td>ΔVA</td>
<td>-0.0510</td>
<td>-2.9898</td>
<td>0.0028</td>
<td>-0.0844 -0.0176</td>
<td>AIC:</td>
</tr>
<tr>
<td>R_{AV}</td>
<td>0.0262</td>
<td>5.8954</td>
<td>0.0000</td>
<td>0.0175 0.0349</td>
<td>98562</td>
</tr>
<tr>
<td>P</td>
<td>-0.0002</td>
<td>-0.0015</td>
<td>0.9988</td>
<td>-0.2166 0.2162</td>
<td>LL:</td>
</tr>
<tr>
<td>(ΔVA)(^{\frac{1}{2}}):P</td>
<td>-0.7137</td>
<td>-5.4320</td>
<td>0.0000</td>
<td>-0.9713 -0.4562</td>
<td>-49272</td>
</tr>
<tr>
<td>ΔVA:P</td>
<td>0.0746</td>
<td>2.9523</td>
<td>0.0032</td>
<td>0.0251 0.1241</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Anatomical labels of source clusters for each time point in Figure 3. Anatomical labels are based on the AAL atlas (Tzourio-Mazoyer et al., 2002). See Methods for the extraction of these regions.

<table>
<thead>
<tr>
<th>Time (ms)</th>
<th>Anatomical Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>115</td>
<td>LT</td>
</tr>
<tr>
<td>148</td>
<td>LT/ST</td>
</tr>
<tr>
<td>241</td>
<td>LT</td>
</tr>
<tr>
<td>288</td>
<td>ST → LT</td>
</tr>
<tr>
<td>435</td>
<td>LT</td>
</tr>
</tbody>
</table>

- Pre-/Para-/central
- Post-central
- Precuneus
- Parietal Inf/Sup
- Temporal Inf
- Frontal Inf/Mid/Sup
- Occipital Inf/Mid
- Supp. motor
- Cuneus
- Angular
- Occ. Inf/Mid/Sup
- Paracentral
- Parietal Sup
- Pre-/Para-/inf/Sup
- Calcarine
- Frontal Sup
- Supp. Motor
Table 3. Anatomical labels of source clusters for each time point in Figure 5. Anatomical labels are based on the AAL atlas (Tzourio-Mazoyer et al., 2002). See Methods for the extraction of these regions.

<table>
<thead>
<tr>
<th>Time</th>
<th>Left</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>135 ms</td>
<td>LT</td>
<td>ST</td>
</tr>
<tr>
<td>235 ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temporal Inf/Mid/Sup</td>
<td>Calcarine</td>
<td>Temporal Mid/Sup</td>
</tr>
<tr>
<td>Occipital Inf/Mid/Sup</td>
<td>Angular</td>
<td>Pre-/Post-central</td>
</tr>
<tr>
<td>Cuneus</td>
<td>Lingual</td>
<td>Frontal Inf/Mid</td>
</tr>
<tr>
<td>Precuneus</td>
<td></td>
<td>Parietal Inf</td>
</tr>
<tr>
<td>Parietal Inf/Sup</td>
<td></td>
<td>SupraMarginal</td>
</tr>
</tbody>
</table>
A LT specific

115 ms

B Both ST LT

148 ms

C Common (ST ↔ LT)

288 ms