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Abstract 1 

Professional musicians are a popular model for investigating experience-dependent plasticity in human 2 

large-scale brain networks. A minority of musicians possess absolute pitch, the ability to name a tone 3 

without reference. The study of absolute pitch musicians provides insights into how a very specific talent 4 

is reflected in brain networks. Previous studies of the effects of musicianship and absolute pitch on large-5 

scale brain networks have yielded highly heterogeneous findings regarding the localization and direction 6 

of the effects. This heterogeneity was likely influenced by small samples and vastly different 7 

methodological approaches. Here, we conducted a comprehensive multimodal assessment of effects of 8 

musicianship and absolute pitch on intrinsic functional and structural connectivity using a variety of 9 

commonly employed and state-of-the-art multivariate methods in the largest sample to date (n = 153 10 

female and male human participants; 52 absolute pitch musicians, 51 non-absolute pitch musicians, and 11 

50 non-musicians). Our results show robust effects of musicianship in inter- and intrahemispheric 12 

connectivity in both structural and functional networks. Crucially, most of the effects were replicable in 13 

both musicians with and without absolute pitch when compared to non-musicians. However, we did not 14 

find evidence for an effect of absolute pitch on intrinsic functional or structural connectivity in our data: 15 

The two musician groups showed strikingly similar networks across all analyses. Our results suggest that 16 

long-term musical training is associated with robust changes in large-scale brain networks. The effects of 17 

absolute pitch on neural networks might be subtle, requiring very large samples or task-based 18 

experiments to be detected. 19 

Significance Statement 1 

A question that has fascinated neuroscientists, psychologists, and musicologists for a long time is how 2 

musicianship and absolute pitch, the rare talent to name a tone without reference, are reflected in large-3 

scale networks of the human brain. Much is still unknown as previous studies have reported widely 4 

inconsistent results based on small samples. Here, we investigate the largest sample of musicians and 5 

non-musicians to date (n = 153) using a multitude of established and novel analysis methods. Results 6 

provide evidence for robust effects of musicianship on functional and structural networks that were 7 

replicable in two separate groups of musicians and independent of absolute pitch ability. 8 
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Introduction 1 

Professional musicians are a commonly studied model for experience-dependent brain plasticity (Münte 2 

et al., 2002; Jäncke, 2009; Schlaug, 2015). Intense musical training starting early in life is thought to 3 

cause neuroplastic adaptations that are paralleled by improvements in audition, sensory-motor skills, and 4 

possibly higher-order cognitive functions (Fujioka et al., 2006; Hyde et al., 2009; Seither-Preisler et al., 5 

2014; Habibi et al., 2018). In recent years, a major focus within the neuroscience of music has been on 6 

training-related plasticity in large-scale brain networks, which underlie most human sensory, motor, and 7 

cognitive functions (Bressler and Menon, 2010). 8 

Previous research provides evidence that musicianship is associated with differences in both the intrinsic 9 

functional and structural networks of the human brain. However, an examination of these studies reveals 10 

inconsistencies in findings regarding the location of the effects in the brain and also the direction of these 11 

effects. For example, while most of the studies report hyperconnectivity in musicians compared to non-12 

musicians (Fauvel et al., 2014; Klein et al., 2016), others have found hypoconnectivity (Imfeld et al., 13 

2009), or both (Schmithorst and Wilke, 2002; Bengtsson et al., 2005). These studies suggest that in 14 

musicians, connectivity between brain regions is altered across the entire brain including sensory, motor, 15 

multisensory, and cognitive regions of the cortex (Klein et al., 2016; Palomar-García et al., 2017), 16 

subcortex (Luo et al., 2012), and the cerebellum (Abdul-Kareem et al., 2011). 17 

The diversity of these findings could be influenced by small sample sizes and inconsistent methodology. 18 

In studies examining intrinsic functional connectivity, the number of participants in the musician groups 19 

ranged from 10 (Zamorano et al., 2017) to 25 (Luo et al., 2014), and in studies examining structural 20 

connectivity, from only five (Schmithorst and Wilke, 2002) to 36 (Steele et al., 2013). Studies with small 21 

samples lack the statistical power to detect small effects, and findings from small-scale studies have a 22 

higher probability of returning false positives (Button et al., 2013). With regard to methodology, many 23 

previous studies took a region of interest (ROI)-based approach. To our knowledge, only two functional 24 

connectivity studies exist using a data-driven, connectomic whole-brain approach (Luo et al., 2014; Klein 25 

et al., 2016). Studies on structural networks in musicians have exclusively used an ROI-based approach 26 

by focusing on separate white-matter tracts or brain regions. No previous structural connectivity study 27 

comparing musicians and non-musicians has employed a whole-brain connectomic approach. 28 
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Apart from general effects of musicianship, some studies have focused on a special talent present among 29 

musicians: absolute pitch (AP), the rare ability to name a tone without reference (Deutsch, 2013). Only a 30 

few studies examined intrinsic functional networks in AP versus non-AP musicians. Again, the findings of 31 

these studies show little consistency, suggesting an effect of AP on functional connectivity of sensory, 32 

parietal, and frontal cortex (Elmer et al., 2015; Kim and Knösche, 2017; Brauchli et al., 2019). The applied 33 

methodology differed widely between studies (cf. Jäncke et al., 2012; Loui et al., 2012; Wenhart et al., 34 

2019). An effect of AP on structural connectivity has been reported in the vicinity of associative auditory 35 

areas (Loui et al., 2011; Dohn et al., 2015; Kim and Knösche, 2016; Burkhard et al., 2020). None of the 36 

previous studies investigating AP and structural connectivity employed a whole-brain connectomic 37 

approach. Importantly, all of these results have yet to be replicated in an independent sample. 38 

Taken together, findings from previous studies are highly inconsistent, possibly due to small samples and 39 

methodological differences. In this study, we aimed to identify robust effects of musicianship and AP on 40 

functional and structural connectivity using a multitude of previously employed and novel methods on a 41 

large multimodal dataset (n = 153), consisting of 52 AP musicians, 51 non-AP musicians, and 50 non-42 

musicians. We employed ROI-based and whole-brain approaches, and a multivariate approach based on 43 

machine learning algorithms. Crucially, we determined if effects of musicianship were replicable in both 44 

musician groups, irrespective of their AP ability. 45 

  46 



 

5 

Materials and methods 47 

Participants 48 

We analyzed resting-state functional magnetic resonance imaging (rsfMRI) and diffusion-weighted 49 

imaging (DWI) data of 153 female and male human participants. A portion of the rsfMRI data (Brauchli et 50 

al., 2019) and the DWI data (Burkhard et al., 2020) was previously analyzed using a different 51 

methodology. The participants consisted of three groups: AP musicians (n = 52), non-AP musicians (n = 52 

51), and non-musicians (n = 50). The groups were comparable regarding sex, handedness, age, rsfMRI 53 

movement, and DWI movement (see Table 1). Participants of the musician groups were either 54 

professional musicians, music students, or highly trained amateurs. Assignment to the musician groups 55 

(AP or non-AP) was based on self-report and confirmed by a tone-naming test (Oechslin et al., 2010a, 56 

2010b). During the test, participants had to name 108 pure tones presented in a pseudorandomized 57 

order. Octave errors were disregarded in the calculation of the tone-naming score. In the rare case that a 58 

potential participant had indicated to be an AP musician in the initial online application form but then 59 

performed around chance level (8.3%) in the tone-naming test, we did not invite this individual to undergo 60 

the imaging experiments in the laboratory. In contrast, we did invite individuals who had indicated to be 61 

non-AP musicians and then showed a high level of proficiency in tone-naming that was above chance 62 

level (and reiterated in the laboratory that they do not possess AP); we did not regroup these participants 63 

as AP musicians (Leipold et al., 2019a). Non-musicians had not received formal musical training in the 64 

five years prior to the study. 65 

Demographical (sex, handedness, age) and behavioral data (musical aptitude, musical experience, and 66 

tone-naming proficiency) were collected using LimeSurvey (https://www.limesurvey.org/). Self-reported 67 

handedness was confirmed using a German translation of the Annett questionnaire (Annett, 1970). 68 

Musical aptitude was assessed using the Advanced Measures of Music Audiation (AMMA) (Gordon, 69 

1989). During the AMMA test, participants were presented with short pairs of piano sequences. The 70 

participants had to decide whether the sequences were equivalent or differed in tonality or rhythm. None 71 

of the participants reported any neurological, audiological, or severe psychiatric disorders, substance 72 

abuse, or other contraindications for MRI. All participants provided written informed consent and were 73 

paid for their participation or received course credit. The study was approved by the local ethics 74 
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committee (https://kek.zh.ch/) and conducted according to the principles defined in the Declaration of 75 

Helsinki. 76 

Experimental design and statistical analysis 77 

Statistical analysis of behavioral data 78 

Participant characteristics were compared between the groups using one-way analyses of variance 79 

(ANOVAs) with a between-participant factor group or Welch’s t-tests where appropriate (significance level 80 

ɑ = 0.05). The analyses were performed in R (version 3.6.0, RRID:SCR_001905). We used the R 81 

packages ez (version 4.4-0, https://CRAN.R-project.org/package=ez) for frequentist ANOVAs and 82 

BayesFactor (version 0.9.12-4.2, https://CRAN.R-project.org/package=BayesFactor) for Bayesian 83 

ANOVAs (Rouder et al., 2012) and Bayesian t-tests (Rouder et al., 2009). We used default priors as 84 

implemented in the BayesFactor package. Consequently, alongside p values, we report Bayes factors 85 

quantifying the evidence for the alternative relative to the null hypothesis (BF10) and vice versa (BF01). 86 

Bayes factors are interpreted as evidence for one hypothesis relative to the other hypothesis. A Bayes 87 

factor between 1 and 3 is considered as anecdotal evidence, between 3 and 10 as moderate evidence, 88 

between 10 and 30 as strong evidence, between 30 and 100 as very strong evidence, and larger than 89 

100 as extreme evidence. Effect sizes of ANOVA-effects are given as generalized eta-squared (η2
G) and 90 

effect sizes for t-tests are given as Cohen’s d. 91 

MRI data acquisition 92 

Magnetic resonance imaging (MRI) data were acquired using a Philips Ingenia 3.0T MRI system (Philips 93 

Medical Systems, Best, The Netherlands) equipped with a commercial 15-channel head coil. For each 94 

participant, we acquired whole-brain rsfMRI and DWI data, and a whole-brain anatomical T1-weighted 95 

image to facilitate the spatial normalization of the rsfMRI and DWI data. For the musician groups, we also 96 

collected fMRI data during a pitch-processing task, which is discussed in another publication (Leipold et 97 

al., 2019a). The whole scanning session lasted around 50 minutes. 98 

rsfMRI data acquisition 99 

For the acquisition of rsfMRI data, we used a T2*-weighted gradient echo (GRE) echo-planar imaging 100 

(EPI) sequence with the following parameters: repetition time (TR) = 2,300 ms, echo time (TE) = 30 ms, 101 
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flip angle ɑ = 78°, slice scan order = interleaved, number of axial slices = 40, slice thickness = 3 mm, field 102 

of view (FOV) = 220 x 220 x 143 mm3, acquisition voxel size = 3 x 3 x 3 mm3; reconstructed to a spatial 103 

resolution of 2.75 x 2.75 x 3.00 mm3 with a reconstruction matrix of 80 x 80, number of dummy scans = 5, 104 

total number of scans = 210, total scan duration = 8 min. Participants were instructed to relax and look at 105 

a fixation cross during the scanning. 106 

DWI data acquisition 107 

We acquired DWI data using a diffusion-weighted spin echo (SE) EPI sequence with the following 108 

parameters: TR = 10,022 ms, TE = 89 ms, acquisition and reconstructed voxel size = 2 x 2 x 2 mm3, 109 

reconstruction matrix = 112 x 112, flip angle ɑ = 90°, FOV = 224 x 224 x 152 mm3, number of axial slices 110 

= 76, B = 1000 s/mm2, number of diffusion-weighted scans/directions = 64, number of non-diffusion 111 

weighted scans = 1, total scan duration = 14 min. Additionally, we acquired six non-diffusion weighted 112 

images (B = 0) in opposing phase-encoding directions (anterior-posterior, posterior-anterior), which were 113 

used during the preprocessing of the DWI data. 114 

T1-weighted MRI data acquisition 115 

The anatomical image was acquired using a T1-weighted GRE turbo field echo sequence with the 116 

following parameters: TR = 8.1 ms, TE = 3.7 ms, flip angle ɑ = 8°, number of sagittal slices = 160, FOV = 117 

240 x 240 x 160 mm3, acquisition voxel size = 1 x 1 x 1 mm3; reconstructed to a spatial resolution of 0.94 118 

x 0.94 x 1.00 mm3 with a reconstruction matrix of 256 x 256, total scan duration = 6 min. 119 

MRI data preprocessing 120 

rsfMRI data preprocessing 121 

Preprocessing of the rsfMRI data was performed in MATLAB R2016a (RRID:SCR_001622) using 122 

DPARSF (version 4.4_180801, RRID:SCR_002372), which is part of DPABI (version 4.0_190305, 123 

RRID:SCR_010501) and uses functions of SPM12 (version 6906, RRID:SCR_007037). Preprocessing 124 

included the following steps: (1) slice time correction using the middle slice as a reference, (2) 125 

realignment using a six-parameter (three translations and three rotations) rigid body transformation, (3) 126 

coregistration of rsfMRI data and the T1-weighted anatomical image, (4) segmentation of the T1-weighted 127 

anatomical image into gray matter, white matter, and cerebrospinal fluid (CSF), and estimation of 128 

deformation field for spatial normalization, (5) general linear model-based removal of nuisance covariates 129 
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including (i) low-frequency trends (first degree polynomial), (ii) effects of head motion estimated by the six 130 

realignment parameters and their first temporal derivatives, (iii) five principle components of white matter 131 

and cerebrospinal fluid signals using CompCor (Behzadi et al., 2007), and (iv) the global signal, (6) 132 

temporal filtering (0.008–0.09 Hz), (7) spatial normalization of rsfMRI data to MNI space using DARTEL 133 

(Ashburner, 2007), (8) interpolation to an isotropic voxel size of 3 mm3 (9) spatial smoothing using an 8 134 

mm full-width-at-half-maximum (FWHM) kernel, and (10) removal of scans (“scrubbing”) with framewise 135 

displacement (FD) ≥ 0.5 mm, together with the scan immediately before, and together with the two scans 136 

immediately after the scan with FD ≥ 0.5 (Power et al., 2012). The quality of spatial normalization was 137 

manually inspected. 138 

DWI data preprocessing 139 

Preprocessing of the DWI data was performed in FSL (version 6.0.1, RRID:SCR_002823). First, we used 140 

topup to estimate susceptibility-induced and eddy current-induced distortions based on the non-diffusion 141 

weighted images acquired in opposing phase encoding directions. Then, we simultaneously corrected for 142 

these distortions and for motion artifacts using eddy (Andersson and Sotiropoulos, 2016). As a quality 143 

control step, we visually checked the orientation of the principal eigenvector (V1) using DTIFIT on the 144 

preprocessed DWI data. 145 

rsfMRI seed-to-voxel analyses 146 

We examined intra- and interhemispheric functional connectivity between auditory regions of interest 147 

(ROIs) and voxels in the temporal, parietal, and frontal lobe. In both hemispheres, the Heschl’s gyrus 148 

(HG) and the planum temporale (PT) were selected as seed regions (see Figure 1A). For each 149 

participant, we initially computed the functional connectivity between the seed ROIs and all other voxels 150 

of the brain using DPABI. The ROIs were based on probability maps of parcels included in the Harvard-151 

Oxford cortical atlas (probability threshold = 25 %). Functional connectivity maps were built by computing 152 

the Pearson correlation coefficient between the preprocessed, spatially averaged time-series within an 153 

ROI and the preprocessed time-series of all voxels. To improve the normality of the resulting voxel-wise 154 

correlation values, we subsequently applied a Fisher’s r-to-z transformation. This resulted in four (one per 155 

ROI) z-transformed connectivity maps per participant, which were subjected to second-level analyses. 156 
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Group comparisons of functional connectivity maps 157 

To assess the effect of AP, we compared the functional connectivity maps between AP musicians and 158 

non-AP musicians. To assess the effect of musicianship, we compared the functional connectivity maps 159 

between non-AP musicians and non-musicians. To replicate potential effects of musicianship, we 160 

additionally compared AP musicians and non-musicians. For all group comparisons we used 161 

nonparametric two-sample t-tests (threshold-free cluster enhancement [TFCE] inference, 10,000 162 

permutations) in PALM (version alpha115, RRID:SCR_017029) (Winkler et al., 2014). The significance 163 

level was set to α = 0.05, family-wise error (FWE)-adjusted for multiple comparisons. We restricted the 164 

search space of the group comparisons using a mask that included the following bilateral regions of the 165 

Harvard-Oxford cortical atlas thresholded at 10% probability: HG; PT; planum polare; superior temporal 166 

gyrus (STG; anterior and posterior division); middle temporal gyrus (MTG; anterior and posterior division); 167 

insular cortex; supramarginal gyrus (SMG; anterior and posterior division); angular gyrus; superior parietal 168 

lobule; postcentral gyrus (postCG); precentral gyrus (preCG); inferior frontal gyrus, pars opercularis 169 

(IFG,po); inferior frontal gyrus, pars triangularis; middle frontal gyrus; superior frontal gyrus. The selection 170 

of these regions was primarily guided by dual-stream models of auditory processing, which, in broad 171 

terms, propose that auditory information is processed in two streams: a ventral stream projecting from 172 

primary auditory areas on the supratemporal plane along anterior and middle temporal regions to inferior 173 

frontal cortex, and a dorsal stream projecting from primary areas along posterior temporal regions to 174 

parietal and superior frontal cortices (Rauschecker and Scott, 2009; Leipold et al., 2019b). We also 175 

included the insula as its functional connectivity has been previously studied as a function of musicianship 176 

(Zamorano et al., 2017; Gujing et al., 2019). 177 

Functional connectivity-behavior associations 178 

We used regression analysis for relating behavioral measures of musical aptitude (AMMA total scores), 179 

tone-naming proficiency, and musical experience (age of onset of musical training, years of training, 180 

cumulative training) to the functional connectivity of the auditory ROIs. Separately for each behavioral 181 

measure, we performed voxel-wise regression of the functional connectivity maps with the respective 182 

behavioral measure as a single regressor using PALM (TFCE inference, 10,000 permutations, same 183 

search space as for the group comparisons). Musical aptitude can be sensibly measured in all 184 

participants (Gordon, 1989). However, tone naming requires knowledge on tone names, which non-185 
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musicians might not have, and measures of musical experience are only meaningful for musicians. Thus, 186 

we included all participants in the voxel-wise regression using the AMMA total scores but only included 187 

the musician groups for the regression using the tone-naming scores, age of onset, years of training, and 188 

cumulative training. The significance level was set to α = 0.05, FWE-adjusted for multiple comparisons. 189 

rsfMRI whole-brain graph-theoretical analysis 190 

To assess effects of AP and musicianship on whole-brain functional connectivity, we used graph theory to 191 

characterize global differences in network topology between the groups. For each participant, we 192 

computed functional connectivity between all 96 parcels of the Harvard-Oxford cortical atlas (probability 193 

threshold = 25 %) using DPABI. Functional connectivity was quantified as Fisher’s r-to-z-transformed 194 

Pearson correlation coefficients between the preprocessed, spatially averaged time-series of each parcel. 195 

This resulted in a 96 x 96 connectivity matrix per participant representing a whole-brain functional 196 

connectome comprising the individual parcels as nodes and the correlation coefficients as edges. 197 

Negative edges and edges from the diagonal of the connectivity matrices were set to zero. 198 

Whole-brain functional network topology was quantified using the graph-theoretical measures of average 199 

strength, global efficiency, clustering coefficient, modularity, and (average) betweenness centrality as 200 

implemented in the Brain Connectivity Toolbox (version 2019-03-03, RRID:SCR_004841) in MATLAB 201 

R2017b (Rubinov and Sporns, 2010). Average strength characterizes how strongly the nodes are 202 

connected within a network and was defined as the mean of all node strengths. Node strength was 203 

computed by taking the sum of all edges of a node. Global efficiency, being inversely related to the 204 

characteristic path length, represents a measure of network integration and was computed as the mean 205 

inverse shortest path length in the network. The clustering coefficient is a measure of network 206 

segregation and was based on transitivity, which is the ratio of triangles to triplets in the network. 207 

Modularity describes the degree to which a network is subdivided into groups of nodes with a large 208 

number of within-module edges and a small number of between-module edges. The (average) 209 

betweenness centrality of the network was defined as the mean nodal betweenness centrality, which itself 210 

was computed based on the normalized number of all shortest paths in the network passing through a 211 

node. 212 

For each participant, we proportionally thresholded and binarized the connectivity matrices using a wide 213 

range of thresholds from 35 % to 1 % retained edges in the network (in steps of 1 %). We then computed 214 
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the above-listed measures for each threshold resulting in 35 values per measure and participant (average 215 

strength was based on non-binarized connectivity matrices). 216 

Group comparisons of whole-brain functional network topology 217 

Group comparison of the graph-theoretical measures was performed using cluster-based permutation 218 

testing in R. Cluster-based permutation testing uses the dependency of graph-theoretical measures 219 

across thresholds to control the FWE rate and circumvents the choice of a single arbitrary threshold 220 

(Langer et al., 2013; Drakesmith et al., 2015; Brauchli et al., 2020). We estimated the probability of 221 

clustered differences between the groups (i.e. across contiguous thresholds) under the null distribution. 222 

As before, we separately assessed the effects of AP (by comparing AP to non-AP musicians) and 223 

musicianship (by comparing non-AP to non-musicians). In addition, we replicated the potential effects of 224 

musicianship by comparing AP to non-musicians. In detail, we first conducted a two-sample Welch’s t-test 225 

at each threshold. Second, we repeated the first step 5,000 times with permuted group labels. Crucially, 226 

we preserved the dependency across thresholds by keeping the random assignment of group labels 227 

identical across thresholds within one permutation. Third, we applied a (descriptive) cluster-defining 228 

threshold of p < 0.05 to build clusters of group differences. Finally, we compared the largest empirical 229 

cluster sizes k to the null distribution of cluster sizes derived from the permutations. The p-value was 230 

defined as the proportion of cluster sizes under the null distribution that was larger than or equal to k (α = 231 

0.05, FWE-adjusted across multiple thresholds). 232 

Whole-brain functional network topology-behavior associations 233 

We assessed associations between the graph-theoretical measures and the behavioral measures (AMMA 234 

total scores for all participants; tone-naming proficiency, age of onset, years of training, and cumulative 235 

training for the musician groups). For this, we computed the Pearson correlation coefficient (r) between 236 

the graph-theoretical measure averaged across all thresholds and the particular behavioral measure (α = 237 

0.01, Bonferroni-adjusted across multiple graph-theoretical measures). 238 

rsfMRI whole-brain network-based statistic (NBS) analysis 239 

To characterize local between-group differences in the whole-brain functional networks, we identified 240 

subnetworks differing between AP and non-AP musicians, between non-AP and non-musicians, and 241 

additionally between AP and non-musicians using two-sample t-tests as implemented in the network-242 
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based statistic (NBS) toolbox (version 1.2, RRID:SCR_002454) (Zalesky et al., 2010). Analogous to 243 

cluster-based permutation testing, the NBS approach estimates the probability of group differences in 244 

subnetwork sizes under the null distribution and controls the FWE rate on the level of subnetworks. We 245 

used the following parameters: 5,000 permutations, test statistic = network extent, and subnetwork-246 

defining thresholds; t = 2.8 for AP vs. non-AP, and non-AP vs. non-musicians; and t = 3.4 for AP vs. non-247 

musicians. Statistically significant subnetworks were visualized using BrainNet Viewer (version 1.63, 248 

RRID:SCR_009446). 249 

rsfMRI whole-brain classification analysis 250 

Next, using multivariate pattern analysis (MVPA), we attempted to classify the participants into the three 251 

groups based on the individual whole-brain functional connectomes. Group classification of the 252 

participants was performed with functions from scikit-learn (version 0.21.2, RRID:SCR_002577) in Python 253 

3.7.0 (RRID:SCR_002577). We first performed a multi-class classification into the three groups (AP, non-254 

AP, non-musicians) using a “one-against-one”-approach with linear support vector machines (C = 1) as 255 

classifiers. For each participant, we extracted and flattened the upper right triangle of the connectivity 256 

matrix (excluding the diagonal) to build a 4,560-dimensional feature vector representing all edges in the 257 

whole-brain functional network. These vectors were associated with their respective group labels (AP, 258 

non-AP, non-musician) and stacked to build a dataset. We then z-transformed the dataset per feature and 259 

subsequently performed the classification of the participants into the groups. Classification accuracy was 260 

estimated using a 5-fold stratified cross-validation. Statistical significance of this accuracy was assessed 261 

by repeating the multi-class classification 5,000 times with permuted group labels. The p-value was 262 

defined as the proportion of accuracies derived from the permutations that were larger than or equal to 263 

the empirically obtained accuracy (α = 0.05). To descriptively determine if a small number of features was 264 

sufficient for a successful classification, we used recursive feature elimination (RFE), which recursively 265 

prunes the least important feature (step = 1) to characterize accuracy as a function of the number of 266 

(informative) features (De Martino et al., 2008). The optimal number of features was determined using a 267 

5-fold stratified cross-validation. Subsequently, we performed two follow-up classifications to differentiate 268 

AP from non-AP musicians and non-AP from non-musicians. The success of these classifications was 269 

quantified by classification accuracy, precision, and recall. We used the identical algorithm, cross-270 
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validation scheme, assessment of the statistical significance of the accuracy, and RFE as in the multi-271 

class classification. 272 

DWI ROI-to-ROI analysis 273 

Based on the findings from the rsfMRI seed-to-voxel analyses, we next examined the interhemispheric 274 

structural connectivity between the left and the right PT in the three groups. First, we estimated diffusion 275 

parameters based on the preprocessed DWI data by fitting a diffusion tensor model at each voxel using 276 

DTIFIT in FSL. We specifically focused on two commonly investigated diffusion measures: fractional 277 

anisotropy (FA) and mean diffusivity (MD; computed as the mean of the three eigenvalues L1, L2, and 278 

L3). Second, we individually reconstructed the white-matter pathways between the left and right PT using 279 

probabilistic tractography in FSL (default parameters unless otherwise stated). For this, we fitted a 280 

probabilistic diffusion model at each voxel using BEDPOSTX (Behrens et al., 2003). Probabilistic 281 

tractography was performed on the output of BEDPOSTX using PROBTRACKX (10,000 samples). 282 

As in the rsfMRI analyses, the ROIs for the probabilistic tractography were based on atlases in MNI 283 

space. The seed and target ROIs for the bilateral PT were chosen based on the Harvard-Oxford atlas 284 

(probability threshold = 25 %). As a waypoint ROI, we used the midsagittal slice (3 mm thickness) of the 285 

corpus callosum map from the Jülich histological atlas (probability threshold = 10 %). As exclusion ROIs, 286 

we used the pre- and postcentral gyri as included in the Harvard-Oxford atlas (probability threshold = 25 287 

%) to avoid false-positive pathways terminating in these brain regions. All ROIs were spatially dilated (5 288 

mm spherical kernel) to increase the trackability of the pathways between them and to compensate for 289 

interindividual anatomical variability. Because probabilistic tractography was performed in participant-290 

specific diffusion space, we computed the linear transformation from the individual diffusion space to the 291 

individual anatomical space using flirt and the nonlinear transformation from individual anatomical space 292 

to MNI space using fnirt in addition to flirt. Then, we concatenated these transformations using 293 

convertwarp and inverted the concatenated transformation using invwarp. The resulting warp fields 294 

(individual diffusion to MNI space and vice versa) were used in the tractography. 295 

Third, we extracted FA and MD values from the DTIFIT output based on the pathways identified by the 296 

tractography, more specifically based on the sum of the connectivity distributions of pathways connecting 297 

the left PT to the right and vice versa. Before the extraction, we thresholded and binarized the 298 

connectivity distributions to retain the 3 % voxels with the highest probability per participant. The 299 
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extracted FA and MD values were compared between AP and non-AP musicians, and non-AP and non-300 

musicians using Welch’s t-tests in R (α = 0.025, Bonferroni-adjusted for multiple diffusion measures). 301 

Again, we also compared AP and non-musicians to replicate the potential effects of musicianship. We 302 

also associated the FA and MD values with the behavioral measures (AMMA total scores for all 303 

participants; tone-naming proficiency, age of onset, years of training, and cumulative training for the 304 

musician groups) using r (α = 0.025). 305 

DWI whole-brain graph-theoretical analysis 306 

Analogously to the rsfMRI analyses, we assessed the effects of AP and musicianship on whole-brain 307 

structural connectivity. For this, we performed probabilistic tractography between all parcels of the 308 

Harvard-Oxford cortical atlas (probability threshold = 25 %) using BEDPOSTX and PROBTRACKX (5,000 309 

samples). For each participant, this resulted in a 96 x 96 connectivity matrix representing a whole-brain 310 

structural connectome with the parcels as nodes and the connection probability (represented by the 311 

number of streamlines) between them as edges. Based on these connectivity matrices, we quantified and 312 

compared whole-brain structural network topology between AP and non-AP musicians, non-AP and non-313 

musicians, and additionally between AP and non-musicians. All subsequent analysis steps were identical 314 

compared to the rsfMRI whole-brain graph-theoretical analysis (see above for details). We also performed 315 

the same correlations between the graph-theoretical measures and the behavioral measures as 316 

described above. 317 

DWI whole-brain NBS analysis 318 

We repeated the NBS analysis on the structural connectivity matrices to identify structural subnetworks 319 

differing between the groups. Apart from the subnetwork-defining threshold (here: t = 2.7 for AP vs. non-320 

AP, and non-AP vs. non-musicians, and t = 2.8 for AP vs. non-musicians), we used identical parameters 321 

as in the rsfMRI analysis (see above for details). 322 

DWI whole-brain classification analysis 323 

We also performed the classification analysis based on the whole-brain structural networks. Apart from 324 

the different connectivity matrices, all analysis steps and parameters were identical to the rsfMRI whole-325 

brain classification (see above for details). 326 
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General methodological considerations 327 

To comprehensively assess effects of musicianship and AP on functional and structural networks, we 328 

used a variety of methods. The acquisition techniques and analytical approaches employed in this study 329 

have relative advantages and limitations, which are detailed in the following. 330 

Validity and reliability of functional networks derived from rsfMRI 331 

The crucial advantage of rsfMRI is its unique ability to non-invasively resolve functional connections of the 332 

human brain at a high spatial resolution. However, the relation between neuronal activity and the blood 333 

oxygenation level-dependent (BOLD) signal measured using rsfMRI is indirect and mediated by blood 334 

flow, volume, and oxygenation. Electrophysiological oscillations at the neuronal level are correlated with 335 

the slow oscillations in BOLD signal (< 0.1 Hz) that are the basis of functional networks. This correlation is 336 

not perfect and leaves considerable variance, which can be explained by noise of (non-neuronal) 337 

biological and technical origin (Drew et al., 2020). The reliability of functional networks derived from 338 

rsfMRI varies greatly depending on factors such as data quantity and quality, brain regions involved, 339 

preprocessing choices, time interval between scans, and the spatial level of analysis (local vs. global). 340 

While individual edges can exhibit poor reliability (Noble et al., 2019), whole-brain functional networks are 341 

remarkably stable and highly sensitive to interindividual differences (Gratton et al., 2018), making them 342 

prime targets for comparing groups of different expertise, e.g., musicians and non-musicians. 343 

Validity and reliability of structural networks derived from DWI 344 

At present, DWI is the sole method for the non-invasive investigation of the white-matter pathways 345 

underlying structural networks of the human brain in vivo. Concerning neuroanatomical validity, it has 346 

been shown that the estimation of fiber orientations based on DWI can be reasonably high, although the 347 

measurement is indirect because it is based on water diffusion, and estimation accuracy depends on 348 

acquisition parameters (spatial resolution, number of directions), and the conformity between complexity 349 

of the studied white-matter architecture and the mathematical model to infer this architecture, among 350 

others (Jones et al., 2020). Furthermore, tractography algorithms can lack specificity in identifying white-351 

matter tracts (Maier-Hein et al., 2017), but can also lack sensitivity for certain tracts. For example, 352 

Westerhausen et al. (2009) did not identify a tract connecting bilateral PT in more than 10% of 353 

participants (see below for similar findings in our study). Finally, the neurobiological interpretation of 354 
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diffusion measures, e.g., FA and MD, is notoriously challenging as there are no straightforward correlates 355 

of these measures in white-matter microstructure, and DWI-based tractography cannot provide a 356 

quantitative estimate of connection strength but only an estimate of connection probability (Jones et al., 357 

2013). On the upside, the reliability of structural networks based on DWI is relatively high, but also 358 

dependent on many factors, e.g., acquisition parameters (Wang et al., 2012), or preprocessing choices 359 

(Madhyastha et al., 2014). 360 

Merits and shortcomings of ROI-based and whole-brain analysis approaches 361 

Focusing on a set of brain regions in a seed-to-voxel analysis or separate tracts in an ROI-based 362 

approach is well-suited to test specific hypotheses and alleviate the multiple-comparisons problem. On 363 

the other hand, whole-brain approaches are more suitable for exploration and discovery. Combining both 364 

approaches, as we have done in this study, provides a more complete picture than using each approach 365 

on its own. The same applies to the use of separate flavors of whole-brain approaches, which in turn 366 

have relative advantages and limitations. First, using graph theory has the advantage that the same 367 

approach can be applied to both functional and structural networks, providing metrics that quantify 368 

topological features of these networks in a single or a few values (Rubinov and Sporns, 2010). Graph-369 

theoretical measures provide a bird's-eye view of networks that complements the focused perspective of 370 

ROI approaches. An issue with graph theory concerns the use of thresholding to remove spurious 371 

connections: The type of thresholding employed in graph-theoretical analyses of brain networks (e.g., 372 

proportional or absolute thresholding) is subject to ongoing discussions (Van Wijk et al., 2010; van den 373 

Heuvel et al., 2017). Absolute thresholding can lead to group differences in the number of edges in the 374 

networks which in turn causes spurious group differences in topology (Van Wijk et al., 2010). Proportional 375 

thresholding, as used here, equates the number of edges in the network but has been criticized for being 376 

sensitive to overall differences in functional connectivity, especially in the presence of potentially random 377 

edges (van den Heuvel et al., 2017). Nonetheless, global graph-theoretical measures show high reliability 378 

in functional (Termenon et al., 2016) and structural networks (Owen et al., 2013). Second, the application 379 

of NBS to whole-brain networks offers the opportunity to identify subnetworks differing between groups 380 

without having to test each connection separately. This allows for the localization of connectivity 381 

differences that might drive connectivity differences on the global, connectome level. On the downside, 382 

NBS is also threshold-dependent and group differences in individual edges should not be interpreted on 383 

their own but only in the context of the whole subnetwork (Zalesky et al., 2010). Finally, seed-to-voxel, 384 
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graph theory, and NBS analyses, as employed here, are (mass)-univariate in nature and thus sensitive 385 

for homogeneous increases and decreases in connectivity or network topology in one group relative to 386 

another. In contrast, multivariate approaches based on machine learning algorithms show high sensitivity 387 

for group differences in patterns of connectivity characterized by simultaneous increases and decreases 388 

(Haynes, 2015).   389 
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Results 390 

Behavioral results 391 

Participant characteristics are given in Table 1. Group comparisons revealed no differences regarding 392 

age (F(2,150) = 0.59, p = 0.55, BF01 = 9.30, η2
G = 0.008), movement during rsfMRI (F(2,150) = 0.97, p = 393 

0.38, BF01 = 6.75, η2
G = 0.01), and movement during DWI (F(2,150) = 1.44, p = 0.24, BF01 = 4.54, η2

G = 394 

0.02). Both musician groups showed substantially higher musical aptitude than non-musicians as 395 

measured by the AMMA total score; AP musicians vs. non-musicians: t(85.22) = 8.48, p < 0.001, BF10 > 396 

100, d = 1.69; non-AP musicians vs. non-musicians (t(91.17) = 6.54, p < 0.001, BF10 > 100, d = 1.30). 397 

There was a trend towards a higher musical aptitude in AP musicians than in non-AP musicians (t(99.12) 398 

= 1.99, p = 0.05, BF10 = 1.21, d = 0.39), driven by higher AMMA tonal scores in AP musicians (t(98.43) = 399 

2.28, p = 0.02, BF10 = 2.05, d = 0.45). The musician groups were comparable in the AMMA rhythm scores 400 

(t(99.87) = 1.41, p = 0.16, BF01 = 1.98, d = 0.28). With regard to tone-naming proficiency, AP musicians 401 

showed substantially higher tone-naming scores than non-AP musicians (t(100.95) = 13.68, p < 0.001, 402 

BF10 > 100, d = 2.70), and non-AP musicians showed better tone naming than non-musicians (t(53.43) = 403 

5.54, p < 0.001, BF10 > 100, d = 1.11). The musician groups did not differ in their age of onset of musical 404 

training (t(100.96) = -1.00, p = 0.32, BF01 = 3.08, d = 0.20), years of musical training (t(100.91) = 1.53, p = 405 

0.13, BF01 = 1.71, d = 0.30), and lifetime cumulative musical training (t(96.81) = 1.13, p = 0.26, BF01 = 406 

2.74, d = 0.22).  407 
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Table 1. Participant characteristics. 408 

Continuous measures are given as mean ± standard deviation. + Number of scans with framewise displacement (FD) 409 
≥ 0.5 (Power et al., 2012). $ Mean of average scan-to-scan translational (in mm) and rotational motion (in degrees) 410 
(Yendiki et al., 2014). 411 

 AP musicians Non-AP musicians Non-musicians 

Number of participants 52 51 50 

Sex (female / male) 24 / 28 24 / 27 24 / 26 

Handedness (right / left / 
both) 

45 / 4 / 3 46 / 4 / 1 44 / 6 / 0 

Age 26.37 ± 4.98 years 25.29 ± 4.42 years 25.86 ± 5.52 years 

rsfMRI movement + 8.90 ± 16.31 scans 5.61 ± 11.77 scans 5.26 ± 15.43 scans 

DWI movement $ 0.47 ± 0.11 0.48 ± 0.11 0.44 ± 0.12 

Musical aptitude (AMMA) – 
total 

66.04 ± 6.18 63.45 ± 6.96 52.80 ± 9.22 

Musical aptitude (AMMA) – 
tonal 

32.33 ± 3.67 30.55 ± 4.23 25.34 ± 5.02 

Musical aptitude (AMMA) – 
rhythm 

33.71 ± 2.78 32.90 ± 3.03 27.46 ± 4.58 

Tone-naming score 76.41 ± 19.96 % 23.66 ± 19.16 % 8.41 ± 3.52 % 

Age of onset of musical 
training 

6.06 ± 2.40 6.53 ± 2.39 – 

Years of musical training 20.31 ± 5.26 years 18.76 ± 5.01 – 

Cumulative musical training 
16,347.68 ± 12,582.35 
hours 

13,830.10 ± 9,985.04 
hours 

– 

 412 
Abbreviations: AMMA = Advanced Measures of Music Audiation; AP = absolute pitch; DWI = diffusion-weighted 413 
imaging; FD = framewise displacement; rsfMRI = resting-state functional magnetic resonance imaging. 414 

 415 

Group differences in functional connectivity of auditory ROIs 416 

To assess the effects of AP and musicianship on the functional connectivity of the auditory ROIs, we 417 

compared the functional connectivity maps between AP and non-AP musicians, and between non-AP 418 

musicians and non-musicians (the minimal FWE-corrected p values per cluster [pFWE] and cluster sizes [k] 419 

are given in brackets). Group comparisons between AP musicians and non-AP musicians revealed no 420 

statistically significant clusters for any of the four auditory seed ROIs (all pFWE > 0.05). Comparisons 421 

between non-AP musicians and non-musicians revealed that non-AP musicians showed increased 422 

interhemispheric functional connectivity between the left PT (seed ROI) and a cluster in the right PT (pFWE 423 

= 0.02, k = 47; see Figure 1B). A subset of this cluster also survived additional correction across the four 424 

ROIs (pFWE-ROI-corr. = 0.04, k = 7). We also identified differences in the symmetric functional connection 425 

between the right PT (seed ROI) and two clusters in the left PT (pFWE = 0.03, k = 51 and pFWE = 0.04, k = 426 
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8). These clusters did not survive additional correction across ROIs (minimum pFWE-ROI-corr. = 0.08). Details 427 

on the clusters are given in Table 2. 428 

Table 2. Statistically significant group differences between non-absolute pitch musicians and 429 
non-musicians in the rsfMRI seed-to-voxel analysis. 430 

Coordinates (x, y, z) of voxels with minimum p values are in MNI space. Clusters are ordered according to seed 431 
region and size. 432 

Contrast Seed region Target region k pFWE x y z 

Non-AP > Non-mus Left PT Right PT 47 0.02 63 -18 9 

Non-AP > Non-mus Right PT Left PT 51 0.03 -54 -27 3 

Non-AP > Non-mus Right PT Left PT 8 0.04 -39 -36 9 

 433 
Abbreviations: Non-AP = non-absolute pitch musicians; Non-mus = non-musicians; k = cluster size in voxels; pFWE = 434 
minimal family-wise error-corrected p value in cluster; PT = planum temporale. 435 

 436 

Table 3. Statistically significant group differences between absolute pitch musicians and non-437 
musicians in the rsfMRI seed-to-voxel analysis. 438 
Coordinates (x, y, z) of voxels with minimum p values are in MNI space. Clusters are ordered according to seed 439 
region and size. 440 
 441 
Contrast Seed region Target region k pFWE x y z 

AP > Non-

mus 

Left Heschl’s gyrus Right PT 357 0.02 69 -24 21 

AP > Non-

mus 

Left Heschl’s gyrus Left PT 140 0.01 -66 -15 9 

AP > Non-

mus 

Left Heschl’s gyrus Right preCG 85 0.02 45 0 42 

AP > Non-

mus 

Left Heschl’s gyrus Right IFG,po 28 0.04 48 15 21 

AP > Non-

mus 

Right Heschl’s gyrus Right aSMG 50 0.04 69 -15 27 

AP > Non-

mus 

Right Heschl’s gyrus Left pSTG 19 0.04 -63 -18 3 

AP > Non-

mus 

Left PT Right PT 489 0.005 63 -24 12 

AP > Non-

mus 

Left PT Left PT 322 0.002 -63 -21 6 

AP > Non-

mus 

Left PT Right IFG,po 103 0.02 48 15 21 

AP > Non-

mus 

Left PT Right MTG 71 0.02 45 0 42 
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AP > Non-

mus 

Right PT Left PT 528 0.001 -60 -18 0 

AP > Non-

mus 

Right PT Right PT 355 0.005 60 -12 -3 

AP > Non-

mus 

Right PT Right IFG,po 264 0.008 45 15 24 

 442 
Abbreviations: AP = absolute pitch musicians; aSMG = anterior supramarginal gyrus; IFG,po = inferior frontal gyrus, 443 
pars opercularis; MTG = middle temporal gyrus; Non-mus = non-musicians; k = cluster size in voxels; pFWE = minimal 444 
family-wise error-corrected p value in cluster; preCG = precentral gyrus; pSTG = posterior superior temporal gyrus; 445 
PT = planum temporale. 446 
  447 
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As we did not find evidence for group differences between AP and non-AP musicians in the functional 448 

connectivity of the auditory ROIs, we attempted to replicate the effects of musicianship that we identified 449 

via the comparison of non-AP and non-musicians. For this, we compared the functional connectivity maps 450 

between AP musicians and non-musicians. These comparisons revealed that AP musicians also showed 451 

increased interhemispheric functional connectivity between the left and right auditory regions (see Table 452 

3). Overall, these clusters were descriptively larger in number and size, and observable from more seed 453 

regions (see Figure 2). 454 

Associations between functional connectivity and behavior 455 

Using voxel-wise regression analysis, we related tone-naming proficiency, musical aptitude, and musical 456 

experience to the functional connectivity of the auditory ROIs. Within musicians, higher tone-naming 457 

proficiency was associated with increased functional connectivity between the right HG (seed ROI) and 458 

surrounding regions including the posterior insula and associative auditory areas (pFWE = 0.02, k = 242). 459 

Most voxels of this cluster also survived additional correction across ROIs (pFWE-ROI-corr. = 0.03, k = 152). 460 

Across all participants, we found that higher musical aptitude as measured by the AMMA total scores 461 

were associated with increased functional connectivity within the left PT (pFWE = 0.04, k = 5). Furthermore, 462 

we unexpectedly observed that higher musical aptitude was associated with lower functional connectivity 463 

between the left HG (seed ROI) and a cluster in the left MTG (pFWE = 0.04, k = 6). Both of these clusters 464 

were very small in size (k < 10) and did not survive additional correction across ROIs. Within the musician 465 

groups, lower age of onset of musical training was associated with increased functional connectivity 466 

between the right HG (seed ROI) and a cluster in the right dorsolateral prefrontal cortex (DLPFC) (pFWE = 467 

0.02, k = 46). This cluster did not survive additional correction for multiple ROIs. We further found that a 468 

lower age of onset was associated with increased functional connectivity between the right planum 469 

temporale (seed ROI) and the right DLPFC (pFWE = 0.03, k = 23). A subset of this cluster just survived 470 

additional correction for multiple ROIs (pFWE-ROI-corr. = 0.046, k = 6). Finally, we found no evidence for an 471 

association between years of training or cumulative training and the functional connectivity of the auditory 472 

ROIs (all pFWE > 0.05). Statistically significant associations within musicians are depicted in Figure 1C and 473 

across all participants in Figure 1D. Details on the clusters are given in Table 4. 474 

 475 
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476

Figure 1. 477

A) Auditory regions of interest (ROIs) used in the rsfMRI seed-to-voxel analyses. Heschl’s gyrus (HG) in red; planum 478
temporale (PT) in sky-blue. Maps for ROIs were derived from the probabilistic Harvard-Oxford cortical atlas as 479
implemented in DPABI.  B) Increased intrinsic functional connectivity between left and right PT in non-AP musicians 480
compared to non-musicians (pFWE < 0.05). C) Associations between functional connectivity and behavior in musicians 481
and D) across all subjects (pFWE < 0.05). Abbreviations: AMMA = Advanced Measures of Music Audiation; HG = 482
Heschl’s gyrus; L = left; PT = planum temporale; R = right; ROIs = regions of interest.  483
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 484 

Figure 2. 485 

Increased intrinsic functional connectivity in AP musicians compared to non-musicians (pFWE < 0.05) in the seed-to-486 
voxel analysis for the following seeds: A) the left Heschl’s gyrus (HG), B) the right HG, C) the left planum temporale 487 
(PT) and D) the right PT. Abbreviations: HG = Heschl’s gyrus; L = left; PT = planum temporale; R = right. 488 

 489 

Table 4. Statistically significant voxel-wise functional connectivity-behavior associations. 490 

Coordinates (x, y, z) of voxels with minimum p values are in MNI space. Clusters are ordered according to behavioral 491 
measures and signs of the association. 492 

Behavior Seed region Target region Sign k pFWE x y z 

Tone 
naming 

Right Heschl’s gyrus Right posterior insula, 

auditory association 
areas 

+ 242 0.02 36 -15 15 

AMMA total Left PT Left PT + 5 0.04 -60 -24 9 

AMMA total Left Heschl’s gyrus Left MTG - 6 0.04 -30 24 48 

Age onset Right Heschl’s gyrus Right DLPFC - 46 0.02 27 36 48 

Age onset Right PT Right DLPFC - 23 0.03 24 36 48 

 493 

Abbreviations: AMMA = Advanced Measures of Music Audiation; DLPFC = dorsolateral prefrontal cortex; k = cluster 494 
size in voxels; MTG = middle temporal gyrus; pFWE = minimal family-wise error-corrected p-value in cluster; PT = 495 
planum temporale; + = positive association; - = negative association. 496 

 497 
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Group differences in functional network topology 498 

Group comparisons of whole-brain functional network topology revealed the following results (FWE-499 

corrected p values per cluster [pFWE] and cluster size across contiguous thresholds [k] are given in 500 

brackets). We found no evidence for group differences between AP and non-AP musicians in any of the 501 

investigated graph-theoretical measures (all pFWE > 0.05). However, we observed an effect of 502 

musicianship on multiple graph-theoretical measures: We found higher average strength (pFWE = 0.01, k = 503 

35), lower global efficiency (pFWE = 0.04, k = 11), and a higher clustering coefficient (pFWE = 0.01, k = 25) 504 

in non-AP musicians than in non-musicians (see Figure 3A). We found no evidence for an effect of 505 

musicianship on modularity, and betweenness centrality of whole-brain functional networks (both pFWE > 506 

0.05). Strikingly similar results were obtained by comparing AP and non-musicians, replicating the effects 507 

of musicianship on functional network topology (see Table 5 for details). 508 

Table 5. Statistically significant group differences between absolute pitch musicians and non-509 
musicians in whole-brain functional network topology. 510 

 511 

Contrast Graph-theoretical measure k pFWE 

AP > Non-mus Mean strength 35 0.02 

AP < Non-mus Global efficiency 23 0.003 

AP > Non-mus Clustering coefficient 31 0.001 

 512 
Abbreviations: AP = absolute pitch musicians; Non-mus = non-musicians; k = cluster size across contiguous 513 
thresholds; pFWE = family-wise error-corrected p value of cluster. 514 
  515 
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Associations between functional network topology and behavior 516 

We found no evidence for an association between average strength, clustering coefficient, modularity, or 517 

betweenness centrality and any of the behavioral measures for musical aptitude, tone-naming proficiency, 518 

or musical experience (all p > 0.01 [ɑ = 0.01, adjusted for multiple graph-theoretical measures]). There 519 

was a statistically significant negative correlation between global efficiency and the AMMA total scores 520 

across all participants (r = -0.23, p = 0.004). However, this correlation was likely driven by group 521 

differences in both measures as we found no evidence for a correlation within AP musicians (r = 0.01, p = 522 

0.90), non-AP musicians (r = -0.21, p = 0.14), or non-musicians (r = -0.11, p = 0.49). For all other 523 

behavioral measures, we found no evidence for an association with global efficiency (all p > 0.01). 524 

Group differences in whole-brain functional subnetworks 525 

The whole-brain NBS analysis to reveal functional subnetworks differing between the groups did not show 526 

evidence for differences between AP and non-AP musicians (pFWE > 0.05). In contrast, we identified a 527 

subnetwork characterized by higher functional connectivity in non-AP musicians than in non-musicians 528 

(pFWE = 0.04). As shown in Figure 3B, the descriptively strongest group differences within this subnetwork 529 

were present in interhemispheric functional connections between the left and right PT; between the left 530 

IFG,po and the right pSTG; between left and right pSTG; and between the left and right IFG,po. 531 

Additional nodes of this functional subnetwork were located in brain regions of the temporal and parietal 532 

lobes, including HG and anterior and posterior SMG. Detailed information on all nodes and edges of the 533 

functional subnetwork differing between non-AP and non-musicians are given in Table 6. In the internal 534 

replication of these effects of musicianship, we found a strikingly similar subnetwork differing between AP 535 

musicians and non-musicians (pFWE = 0.005). This functional subnetwork is visualized in Figure 4A, and 536 

details regarding all nodes and edges are given in Table 7.  537 
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Table 6. Edges of statistically significant functional subnetwork differing between non-absolute 538 
pitch musicians and non-musicians. 539 

Edges are ordered according to their descriptive strength with respect to group differences. 540 

Contrast Node 1 Node 2 t 

Non-AP > Non-mus Left PT Right PT 3.88 

Non-AP > Non-mus Left IFG,po Right pSTG 3.84 

Non-AP > Non-mus Left pSTG Right pSTG 3.68 

Non-AP > Non-mus Left IFG,po Right IFG,po 3.63 

Non-AP > Non-mus Left aSTG Right pSMG 3.53 

Non-AP > Non-mus Left pSTG Right PT 3.53 

Non-AP > Non-mus Right PP Right HG 3.39 

Non-AP > Non-mus Left pSTG Right aSMG 3.36 

Non-AP > Non-mus Right pSMG Left fOp 3.32 

Non-AP > Non-mus Left IFG,po Right PT 3.23 

Non-AP > Non-mus Left IFG,po Right MTG 3.1 

Non-AP > Non-mus Right aSTG Left PT 3.1 

Non-AP > Non-mus Right aSTG Left pSTG 3.09 

Non-AP > Non-mus Left aSTG Right MTG 3.04 

Non-AP > Non-mus Right PP Left HG 3.03 

Non-AP > Non-mus Right aSTG Right MTG 2.98 

Non-AP > Non-mus Left aSTG Right pSTG 2.97 

Non-AP > Non-mus Right pSTG Left MTG 2.97 

Non-AP > Non-mus Right IFG,po Left fOp 2.95 

Non-AP > Non-mus Left cOp Right HG 2.9 

Non-AP > Non-mus Left aSTG Left PT 2.89 

Non-AP > Non-mus Left cOp Right PT 2.86 

Non-AP > Non-mus Left cOp Right cOp 2.85 

Non-AP > Non-mus Right aSTG Left MTG 2.83 

Non-AP > Non-mus Left pSTG Right pSMG 2.82 

Non-AP > Non-mus Left aSTG Left pOp 2.82 

Non-AP > Non-mus Right pSMG Left ACC 2.81 

 541 
Abbreviations: ACC = anterior cingulate cortex; aSMG = anterior supramarginal gyrus; aSTG = anterior superior 542 
temporal gyrus; cOp = central operculum; fOp = frontal operculum; HG = Heschl's gyrus; IFG,po = inferior frontal 543 
gyrus, pars opercularis; MTG = medial temporal gyrus; Non-AP = non-absolute pitch musicians; Non-mus = non-544 
musicians; pOp = parietal operculum; PP = planum polare; pSMG = posterior supramarginal gyrus; pSTG = posterior 545 
superior temporal gyrus; PT = planum temporale; t = t statistic describing the strength of group difference in functional 546 
connectivity between node 1 and node 2. 547 
  548 
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Table 7. Edges of statistically significant functional subnetwork differing between absolute pitch 549 
musicians and non-musicians. 550 

Edges are ordered according to their descriptive strength with respect to group differences. 551 

Contrast Node 1 Node 2 t 

AP > Non-mus Left PT Right PT 4.35 

AP > Non-mus Left pOp Left PT 4.26 

AP > Non-mus Right IFG,po Right pSTG 4.15 

AP > Non-mus Left pSTG Right PT 3.94 

AP > Non-mus Left pSTG Right aSMG 3.88 

AP > Non-mus Right pSTG Left cOp 3.83 

AP > Non-mus Right pSTG Right PT 3.66 

AP > Non-mus Right pSTG Left PT 3.61 

AP > Non-mus Left pOp Left PP 3.53 

AP > Non-mus Left cOp Left HG 3.52 

AP > Non-mus Left cOp Right HG 3.5 

AP > Non-mus Left pOp Right PT 3.46 

AP > Non-mus Left aSTG Left pOp 3.44 

AP > Non-mus Right pOp Right HG 3.41 

AP > Non-mus Right IFG,po Left pSTG 3.4 

 552 
Abbreviations: AP = absolute pitch musicians; aSMG = anterior supramarginal gyrus; aSTG = anterior superior 553 
temporal gyrus; cOp = central operculum; HG = Heschl's gyrus; IFG,po = inferior frontal gyrus, pars opercularis; Non-554 
mus = non-musicians; pOp = parietal operculum; PP = planum polare; pSTG = posterior superior temporal gyrus; PT 555 
= planum temporale; t = t statistic describing the strength of group difference in functional connectivity between node 556 
1 and node 2. 557 

 558 

Functional network-based classification 559 

Group classification based on whole-brain functional networks using MVPA yielded the following results: 560 

The multi-class classification successfully classified the participants into the three groups with an 561 

accuracy of 47 %, p = 0.002 (chance level = 33 %). See Figure 5A for a visualization of the null 562 

distribution of accuracies with permuted group labels. According to RFE, the optimal number of features 563 

for classification was quite large (604 edges), which suggests that the connectivity patterns of a 564 

substantial part of the whole-brain functional network contained information about group membership. 565 

The confusion matrix showed that the classifier confused AP and non-AP musicians most often, but 566 

participants of the musician groups were less often classified as non-musicians and vice versa (see 567 

Figure 5B). Consistent with this pattern of results, the follow-up classification within musicians showed 568 

that AP and non-AP musicians could not be successfully differentiated (accuracy = 57 %, p = 0.12 569 
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[chance level = 50%], precision = 0.56, recall = 0.6; see Figure 5C). In contrast, the classification of non-570 

AP musicians and non-musicians was successful (accuracy = 65 %, p = 0.01 [chance level = 50%], 571 

precision = 0.7, recall = 0.6; see Figure 5D). The optimal number of features necessary for successful 572 

classification was again relatively high (1,422 edges). 573 

 574 

 575 

Figure 3. 576 

A) Group differences between Non-AP musicians and non-musicians in graph-theoretical measures calculated based 577 
on whole-brain functional networks (pFWE < 0.05). Gray-shaded area indicates range of thresholds belonging to 578 
statistically significant cluster. B) Subnetwork with increased functional connectivity in non-AP musicians compared to 579 
non-musicians obtained in the NBS analysis (pFWE < 0.05). Abbreviations: ACC = anterior cingulate cortex; AP = 580 
absolute pitch; aSMG = anterior supramarginal gyrus; aSTG = anterior superior temporal gyrus; cOp = central 581 
operculum; fOp = frontal operculum; HG = Heschl’s gyrus; IFG,po = inferior frontal gyrus, pars opercularis; L = left; 582 
MTG = middle temporal gyrus; Non-AP = non-absolute pitch; pSMG = posterior supramarginal gyrus; pSTG = 583 
superior temporal gyrus, posterior division; pOp = parietal operculum; PP = planum polare; PT = planum temporale; R 584 
= right. 585 

  586 
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 587 

Figure 4. 588 

Subnetworks with increased connectivity in AP musicians compared to non-musicians (pFWE < 0.05) obtained in the 589 
NBS analysis for A) functional networks and B) structural networks. Abbreviations: ACC = anterior cingulate cortex; 590 
AP = absolute pitch; aSMG = anterior supramarginal gyrus; aSTG = anterior superior temporal gyrus; cOp = central 591 
operculum; fOp = frontal operculum; FP = frontal pole; HG = Heschl’s gyrus; IFG,po = inferior frontal gyrus, pars 592 
opercularis; L = left; MTG = middle temporal gyrus; PCC = posterior cingulate cortex; postCG = postcentral gyrus; 593 
preCG = precentral gyrus; pSTG = superior temporal gyrus, posterior division; pOp = parietal operculum; PP = 594 
planum polare; PT = planum temporale; ptFG = posterior temporal fusiform gyrus; R = right; toFG = temporal occipital 595 
fusiform gyrus; TP = temporal pole. 596 
  597 
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 598 

Figure 5. 599 

A) Multi-class classification differentiating AP, non-AP, and non-musicians based on whole-brain functional networks: Null 600 
distribution of accuracies with permuted group labels (left) and recursive feature elimination outcome (right). B) Confusion matrix of 601 
classifier performance (accuracy) for multi-class classification. C) Classification of AP vs. non-AP musicians: Null distribution of 602 
accuracies with permuted group labels (left) and recursive feature elimination outcome (right). D) Classification of non-AP vs. non-603 
musicians: Null distribution of accuracies with permuted group labels (left) and recursive feature elimination outcome (right). 604 
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Group differences in transcallosal structural connectivity 605 

In nine AP musicians, 14 non-AP musicians, and 15 non-musicians, probabilistic tractography was not 606 

able to identify a white-matter pathway connecting left and right PT (see Figure 6C for a visualization of 607 

the white-matter tract). Consequently, these participants were excluded from group comparisons of 608 

transcallosal connectivity and the structural connectivity-behavior correlations. Results of the group 609 

comparisons of transcallosal structural connectivity are visualized in Figure 6A. We found no evidence for 610 

group differences in FA between AP musicians and non-AP musicians (t(68.34) = 0.81, p = 0.42, d = 611 

0.19), and between non-AP musicians and non-musicians (t(69.17) = 0.12, p = 0.90, d = 0.03). 612 

Furthermore, there was no evidence for differences in MD between AP and non-AP musicians (t(70.02) = 613 

-1.01, p = 0.31, d = 0.23). On the contrary, we found a statistically significant difference in MD between 614 

non-AP and non-musicians, characterized by higher MD values in non-AP than in non-musicians (t(59.51) 615 

= 2.61, p = 0.01, d = 0.61). In the internal replication of this effect of musicianship, we found that AP 616 

musicians descriptively showed higher MD values than non-musicians, but this difference did not reach 617 

statistical significance (t(75.11) = 1.81, p = 0.07 [ɑ = 0.025, adjusted for multiple diffusion measures], d = 618 

0.40). 619 

Associations between transcallosal structural connectivity and behavior 620 

Structural connectivity-behavior associations are shown in Figure 6B. Across both musician groups, we 621 

found a statistically significant negative correlation between the age of onset of musical training and FA 622 

values within the pathway connecting left and right PT (r = -0.28, p = 0.01). We did not find evidence for 623 

an association between any of the other behavioral measures and FA (all p > 0.025). Furthermore, we 624 

found a statistically significant positive correlation between age of onset and MD values across both 625 

musician groups (r = 0.31, p = 0.005). Again, there was no evidence for an association of any of the other 626 

behavioral measures and MD (all p > 0.025). 627 

Group differences in structural network topology 628 

In the analysis of whole-brain structural network topology, we found no evidence for group differences 629 

between AP musicians and non-AP musicians, or between both musician groups and non-musicians in 630 

any of the investigated graph-theoretical measures (all pFWE > 0.05). 631 
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Associations between structural network topology and behavior 632 

We found a statistically significant positive correlation between betweenness centrality and the musicians’ 633 

age of onset of musical training (r = 0.27, p = 0.006). Furthermore, age of onset was also descriptively 634 

associated with mean strength (r = -0.19, p = 0.049), global efficiency (r = -0.21, p = 0.04), and clustering 635 

coefficient (r = 0.22, p = 0.02; see Figure 7A). However, these correlations did not survive the adjustment 636 

of the significance level for multiple graph-theoretical measures. We found no evidence for an association 637 

of modularity and age of onset. Furthermore, there was no evidence for an association between any of 638 

the other behavioral measures (besides age of onset) and the graph-theoretical measures. 639 

 640 

 641 

Figure 6. 642 

A) Group differences between AP, non-AP, and non-musicians in fractional anisotropy and mean diffusivity values (α 643 
= 0.025, adjusted for multiple diffusion measures). B) Associations between fractional anisotropy and mean diffusivity 644 
values and age of onset of musical training. C) Coronal and sagittal view of the mean white-matter pathway between 645 
left and right planum temporale obtained by probabilistic tractography across all subjects. Abbreviations: AP = 646 
absolute pitch; non-AP = non-absolute pitch; Non-mus = non-musicians. 647 
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Group differences in whole-brain structural subnetworks 648 

As for the functional data, the NBS analysis to identify structural subnetworks differing between the 649 

groups did not show evidence for differences between AP musicians and non-AP musicians (pFWE > 650 

0.05). On the contrary, we again identified a subnetwork characterized by higher structural connectivity in 651 

non-AP than in non-musicians (pFWE = 0.047). As can be seen from Figure 7B, the descriptively biggest 652 

group difference in structural connectivity was between the posterior cingulate cortex (PCC) and the 653 

frontal pole (FP). Furthermore, non-AP musicians showed higher structural connectivity between right 654 

perisylvian regions including the parietal operculum (pOp) as well as preCG and postCG. Detailed 655 

information on all nodes and edges of the structural subnetwork differing between non-AP and non-656 

musicians are given in Table 8. A similar subnetwork was identified by comparing AP and non-musicians 657 

(pFWE = 0.003). This subnetwork had descriptively stronger group differences and was more extended 658 

than the subnetwork identified by comparing non-AP and non-musicians. This structural subnetwork is 659 

visualized in Figure 4B, and details regarding all nodes and edges are given in Table 9. 660 

Structural network-based classification 661 

Group classification based on whole-brain structural networks using MVPA yielded no successful 662 

classifications. The three groups could not be successfully differentiated in the multi-class classification 663 

(accuracy = 35 %, p = 0.33 [chance level = 33 %]). Furthermore, the follow-up classifications showed that 664 

neither non-AP and AP musicians (accuracy = 43 %, p = 0.90 [chance level = 50%], precision = 0.41, 665 

recall = 0.49), nor non-AP and non-musicians (accuracy = 52 %, p = 0.35 [chance level = 50%], precision 666 

= 0.53, recall = 0.52) could be successfully differentiated. 667 

  668 
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Table 8. Edges of statistically significant structural subnetwork differing between non-absolute 669 
pitch musicians and non-musicians. 670 

Edges are ordered according to their descriptive strength with respect to group differences. 671 

Contrast Node 1 Node 2 t 

Non-AP > Non-mus Right FP Left PCC 3.56 

Non-AP > Non-mus Right aPHG Right preCG 2.94 

Non-AP > Non-mus Right FP Right pOp 2.86 

Non-AP > Non-mus Left cOp Right pOp 2.83 

Non-AP > Non-mus Right aPHG Right pOp 2.74 

Non-AP > Non-mus Right aPHG Right postCG 2.71 

 672 
Abbreviations: aPHG = anterior parahippocampal gyrus; cOp = central operculum; FP = frontal pole; Non-AP = non-673 
absolute pitch musicians; Non-mus = non-musicians; PCC = posterior cingulate cortex; pOp = parietal operculum; 674 
postCG= postcentral gyrus; preCG = precentral gyrus; t = t statistic describing the strength of group difference in 675 
structural connectivity between node 1 and node 2. 676 
 677 

Table 9. Edges of statistically significant structural subnetwork differing between absolute pitch 678 
musicians and non-musicians. 679 

Edges are ordered according to their descriptive strength with respect to group differences. 680 

Contrast Node 1 Node 2 t 

AP > Non-mus Right insula Right ptFG 3.39 

AP > Non-mus Right pOp Right preCG 3.23 

AP > Non-mus Right ACC Right postCG 3.2 

AP > Non-mus Left aSTG Right postCG 3.2 

AP > Non-mus Left preCG Right ptFG 3.12 

AP > Non-mus Right postCG Right preCG 3.09 

AP > Non-mus Left insula Right PCC 3.03 

AP > Non-mus Right PCC Right postCG 2.97 

AP > Non-mus Left preCG Left TP 2.95 

AP > Non-mus Right FP Right preCG 2.88 

AP > Non-mus Right PCC Right ptFG 2.87 

AP > Non-mus Right fOp Right postCG 2.81 

AP > Non-mus Right postCG Right toFG 2.81 

AP > Non-mus Right FP Right postCG 2.8 

 681 
Abbreviations: ACC = anterior cingulate cortex; AP = absolute pitch musicians; aSTG = anterior superior temporal 682 
gyrus; fOp = frontal operculum; FP = frontal pole; Non-mus = non-musicians; PCC = posterior cingulate cortex; pOp = 683 
parietal operculum; postCG= postcentral gyrus; preCG = precentral gyrus; ptFG = posterior temporal fusiform gyrus; t 684 
= t statistic describing the strength of group difference in structural connectivity between node 1 and node 2; toFG = 685 
temporal occipital fusiform gyrus; TP = temporal pole. 686 
  687 
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 688 

Figure 7. 689 

A) Associations between structural network topology and age of onset of musical training for AP- and non-AP 690 
musicians. B) Subnetwork with increased structural connectivity in non-AP musicians compared to non-musicians 691 
obtained in the NBS analysis (pFWE < 0.05). Abbreviations: AP = absolute pitch; aPHG = anterior parahippocampal 692 
gyrus; cOp = central operculum; FP = frontal pole; L = left; Non-AP = non-absolute pitch; PCC = posterior cingulate 693 
cortex; postCG = postcentral gyrus; preCG = precentral gyrus; pOp = parietal operculum; PT = planum temporale; R 694 
= right.  695 
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Table 10. Summary of main findings for group comparisons, classifications, and brain-behavior 696 
associations. 697 

 698 
 Non-AP vs. Non-mus AP vs. Non-mus AP vs. Non-AP 

Functional 
connectivity of 
auditory ROIs 

Non-AP musicians show increased 
interhemispheric functional connectivity 

between the left and right PT 

AP musicians show increased interhemispheric 
functional connectivity between the left and 

right auditory cortex (PT and HG), and between 
bilateral auditory cortex and right inferior 

frontal regions 

No statistical 
evidence for 

group differences 

Associations 
between functional 
connectivity of 
auditory ROIs and 
behavior 

Positive association between tone-naming proficiency and functional connectivity of the right HG and associative 
auditory areas within musicians; negative association between age of onset and functional connectivity between 

right PT and right DLPFC within musicians 

Functional network 
topology 

Non-AP musicians show higher average 
strength and cluster coefficient, and a lower 

global efficiency 

AP musicians show higher average strength 
and cluster coefficient, and a lower global 

efficiency 

No statistical 
evidence for 

group differences 

Functional 
subnetworks 

Non-AP musicians show increased 
functional connectivity within subnetwork 

consisting of bilateral auditory cortex, 
bilateral inferior frontal cortex, anterior and 

middle temporal cortex, and inferior 
parietal cortex 

AP musicians show increased functional 
connectivity within subnetwork consisting of 
bilateral auditory cortex, right inferior frontal 

cortex, left anterior temporal cortex, and 
inferior parietal cortex 

No statistical 
evidence for 

group differences 

Functional network-
based classification 

Statistically significant classification - 

No statistical 
evidence for 

successful 
classification 

Structural 
connectivity of 
auditory ROIs 

Non-AP musicians show increased mean 
diffusivity in transcallosal white-matter 

tract connecting left and right PT 

AP musicians descriptively show a trend 
towards increased mean diffusivity in 

transcallosal white-matter tract connecting left 
and right PT 

No statistical 
evidence for 

group differences 

Association between 
structural 
connectivity of 
auditory ROIs and 
behavior 

Negative association between age of onset of musical training and FA values and positive association with MD 
values of white-matter tract between left and right PT within musician groups 

Structural network 
topology 

No statistical evidence for group differences No statistical evidence for group differences 
No statistical 
evidence for 

group differences 

Association between 
structural network 
topology and 
behavior 

Positive association between age of onset and betweenness centrality in musicians 

Structural 
subnetworks 

Non-AP musicians show increased 
structural connectivity within a subnetwork 

consisting of right-hemispheric 
sensorimotor (preCG, postCG), medial 
temporal, and frontal cortex as well as 

bilateral perisylvian regions 

AP musicians show increased structural 
connectivity within a subnetwork consisting of 

right-hemispheric sensorimotor (preCG, 
postCG), inferior temporal, and frontal cortex, 
as well as bilateral insular cortex and bilateral 

perisylvian regions 

No statistical 
evidence for 

group differences 

Structural network-
based classification 

No statistical evidence for successful 
classification 

- 

No statistical 
evidence for 

successful 
classification 

 699 

Abbreviations: AP = absolute pitch; DLPFC = dorsolateral prefrontal cortex; FA = fractional anisotropy; HG = Heschl’s 700 
gyrus; MD = mean diffusivity; Non-AP = non-absolute pitch; Non-mus = non-musicians; preCG = precentral gyrus; 701 
postCG = postcentral gyrus; PT = planum temporale; ROIs = regions of interest.  702 
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Discussion 703 

In this study, we assessed the effects of musicianship and AP on brain networks. Our main results are 704 

summarized in Table 10. We found robust effects of musicianship across various methodological 705 

approaches, which were largely replicable in AP and non-AP musicians. Both musician groups showed 706 

stronger interhemispheric functional connectivity between left and right PT, enhanced connectivity in 707 

temporal-parietal-frontal functional subnetworks, and globally altered functional network topology, 708 

compared to non-musicians. Furthermore, non-AP musicians and non-musicians could be successfully 709 

classified using MVPA based on functional connectomes. Musicians also showed altered transcallosal 710 

structural connectivity in the white-matter tract connecting bilateral PT. We detected several brain-711 

behavior associations between connectivity and behavioral measures of musicianship, most prominently 712 

between structural network features and the age of onset of musical training. Finally, we found no 713 

evidence for group differences between non-AP and AP musicians across all analyses: the two musician 714 

groups showed striking similarities in both functional and structural networks. 715 

Results showed altered connectivity between left and right PT in both musician groups compared to non-716 

musicians. Left and right PT are structurally connected via the isthmus and splenium of the corpus 717 

callosum (Hofer and Frahm, 2006). Whereas effects of musicianship on (more anterior) parts of the 718 

corpus callosum have been frequently observed (Schlaug et al., 1995; Bengtsson et al., 2005; Vollmann 719 

et al., 2014), only one previous study has reported microstructural differences between musicians and 720 

non-musicians in the callosal fibers connecting bilateral PT (Elmer et al., 2016). Here, we showed that 721 

altered microstructural connectivity is accompanied by increased intrinsic functional connectivity in 722 

musicians, an observation that substantiates earlier reports of increased functional connectivity between 723 

bilateral auditory areas using electroencephalography (Klein et al., 2016). The PT’s role in auditory 724 

processing is well documented (Griffiths and Warren, 2002). Increased interhemispheric functional 725 

connectivity in musicians might reflect increased information transfer between the homotopic areas. It is 726 

conceivable that enhanced auditory information coordination is the basis for the superior auditory skills 727 

frequently noted in musically trained individuals (Schneider et al., 2002; Kraus and Chandrasekaran, 728 

2010). 729 

The effects of musicianship on functional networks were not restricted to interhemispheric auditory-to-730 

auditory connections: We identified widespread subnetworks showing enhanced connectivity in 731 
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musicians, mostly encompassing bilateral superior and middle temporal, inferior frontal, and inferior 732 

parietal regions. These regions can be well situated within the frameworks of dual-stream models for 733 

auditory processing (Rauschecker and Scott, 2009). In particular, our data suggests that communication 734 

between regions of the bilateral ventral stream is shaped by musicianship more strongly than that 735 

between regions of the dorsal stream (see Figure 3B). However, most altered connections in the 736 

subnetwork were of interhemispheric nature. It has been shown that interhemispheric information transfer 737 

causally modulates expansive auditory and motor networks during rest (Andoh et al., 2015). Thus, 738 

experience-dependent plasticity in interhemispheric connections could have a prime role in modulating 739 

network interactions between auditory areas and cortical regions in the temporal, parietal, and frontal 740 

lobes. As we were able to replicate virtually the same enhanced subnetworks in both non-AP and AP 741 

musicians compared to non-musicians, the identified subnetworks of the current study seem to robustly 742 

reflect general characteristics of musical expertise. 743 

A notable feature of the DWI results is the consistent and highly specific association between the age of 744 

onset of music training and structural network measures. Importantly, these network measures were not 745 

associated with other behavioral measures such as cumulative training hours and years of training. Age 746 

of onset of musical training was correlated with diffusion measures in the transcallosal white-matter tract 747 

connecting left and right PT. This result complements previous reports of associations between age of 748 

onset and diffusion measures in parts of the corpus callosum connecting bilateral sensorimotor brain 749 

regions (Steele et al., 2013). An earlier study also showed an association of age of onset with diffusion 750 

measures of both the anterior and the posterior part of the corpus callosum (Imfeld et al., 2009). These 751 

findings suggest that microstructural properties of the corpus callosum are sensitive for changes when 752 

musical training starts at a young age, possibly during a sensitive period when the potential for plasticity 753 

is especially high (Schlaug et al., 1995). Additionally, for the first time, we observed associations between 754 

age of onset and whole-brain structural network topology. Thus, musical training during early childhood 755 

not only has local effects on microstructure, but also has global effects on the topology of the structural 756 

connectome, and these effects are stronger the earlier musical training begins. 757 

This is the first study to analyze effects of musicianship on both structural and functional connectivity. In 758 

this context, we found a surprisingly low correspondence between effects on functional versus structural 759 

networks. Evidence suggests that rsfMRI-based functional connectivity and DWI-based structural 760 
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connectivity are, to some extent, related (Hermundstad et al., 2013). However, because of indirect 761 

structural connections, functional connectivity between regions can also be observed without direct 762 

structural links (Honey et al., 2009). We found that effects of musicianship on connectivity were 763 

particularly strong in the functional domain, and less so in the structural domain. Therefore, based on our 764 

data, one might speculate that musical training more strongly shapes functional networks, and does so 765 

mostly independently of structural networks. An important exception to this general hypothesis concerns 766 

the observed differences in transcallosal connectivity between bilateral PT. However, this selective 767 

correspondence is highly consistent with the finding that interhemispheric functional connectivity causally 768 

depends on structural connectivity provided via the corpus callosum (Jäncke and Steinmetz, 1994, 1998; 769 

Roland et al., 2017). 770 

Concerning reproducibility, the effects of musicianship were not as widespread as one might have 771 

expected from previous evidence on brain function and structure in musicians (e.g., Schlaug, 2015). This 772 

divergence could be attributable to a number of reasons: First, some previously reported findings might 773 

not be reproducible because of inadequate sample sizes (Button et al., 2013). Second, as outlined above 774 

(see General methodological considerations), the methodology applied in this and previous studies may 775 

lack the reliability for the effects to be consistently observed in different studies. Also, stereotactic 776 

normalization might diminish group differences in anatomy (e.g., asymmetries), which could have 777 

downstream consequences on connectivity. Future studies will benefit from approaches that consider 778 

interindividual anatomical variance (Dalboni da Rocha et al., 2020). Third, the investigation of intrinsic 779 

functional and structural networks could be less sensitive compared to activation or connectivity in task-780 

based experiments, e.g., during auditory or motor tasks (Bangert et al., 2006). One possibility to 781 

disentangle these potential causes are well-powered replication studies in a collaborative setting, making 782 

data acquisition from large samples of musicians feasible. Future studies could also benefit from a 783 

hypothesis-driven framework, where brain regions and tracts putatively involved in music production, e.g., 784 

the hand area in motor cortex or the arcuate fasciculus, are investigated more closely (Halwani et al., 785 

2011; Rüber et al., 2015). 786 

Across analyses, we found remarkable similarity of networks for the two musician groups, which seems 787 

surprising, given that previous studies have reported effects of AP on connectivity. There are multiple 788 

reasons potentially contributing to this discrepancy. First, previous evidence for the effects of AP on 789 
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connectivity is sparse: the number of studies reporting differences in intrinsic functional and structural 790 

connectivity is relatively small, none of the effects have been replicated to date, and the effects reported 791 

were very subtle in size (Greber et al., 2020). Second, most of the studies investigated small to very small 792 

samples, making them prone to false-positive results (Button et al., 2013). Third, methodology varied 793 

widely, both between previous studies and compared to the current study. As outlined above (see 794 

General methodological considerations), current methodology might lack the sensitivity and reliability to 795 

robustly detect subtle differences. Fourth, there is no agreement on defining AP; it might represent a 796 

distinct population (Athos et al., 2007) or lie on the upper end of a continuum of tone-naming abilities 797 

(Bermudez and Zatorre, 2009). We defined AP based on self-report, and the tone-naming proficiency of 798 

our AP and non-AP musicians strongly differed (d > 2). Thus, we are confident that the similarities of AP 799 

and non-AP musicians are valid. It is important to note that our results should not be regarded as 800 

evidence that there are no effects of AP on the brain in general. For example, we found a correlation 801 

between tone naming and functional connectivity of right HG and surrounding areas. This is consistent 802 

with previous reports of AP-specific alterations in right-hemispheric auditory regions (Leipold et al., 803 

2019a), and underlines the importance of right-hemispheric HG in AP (Wengenroth et al., 2014). 804 

Furthermore, task-based studies investigating tone labeling in action have shown considerable promise 805 

for uncovering the neural peculiarities of the AP phenomenon (Schulze et al., 2013; Greber et al., 2018; 806 

Leipold et al., 2019c, 2019d; McKetton et al., 2019). 807 

To conclude, we identified robust and replicable effects of musical expertise on intrinsic functional and 808 

structural brain networks. As effects were stronger in the functional domain, we hypothesize that musical 809 

training particularly affects functional compared to structural networks. The effects of AP on large-scale 810 

brain networks might be subtle, requiring very large samples or task-based experiments to be detected.811 
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