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 25 

Abstract 26 

Animals engage in routine behavior in order to efficiently navigate their environments. This 27 

routine behavior may be influenced by the state of the environment, such as the location and size 28 

of rewards. The neural circuits tracking environmental information and how that information 29 

impacts decisions to deviate from routines remains unexplored. To investigate the representation 30 

of environmental information during routine foraging, we recorded the activity of single neurons 31 

in posterior cingulate cortex (PCC) in two male monkeys searching through an array of targets in 32 

which the location of rewards was unknown. Outside the laboratory, people and animals solve 33 

such traveling salesman problems by following routine traplines that connect nearest-neighbor 34 

locations. In our task, monkeys also deployed traplining routines, but as the environment became 35 

better known, they deviate from them despite the reduction in foraging efficiency. While 36 

foraging, PCC neurons tracked environmental information but not reward and predicted 37 

variability in the pattern of choices. Together, these findings suggest that PCC may mediate the 38 

influence of information on variability in choice behavior. 39 

 40 

Significance statement 41 
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Many animals seek information to better guide their decisions and update behavioral routines. In 42 

our study, subjects visually searched through a set of targets on every trial to gather two rewards. 43 

Greater amounts of information about the distribution of rewards predicted less variability in 44 

choice patterns, whereas smaller amounts predicted greater variability. We recorded from the 45 

posterior cingulate cortex, an area implicated in the coding of reward and uncertainty, and 46 

discovered that these neurons signaled the expected information about the distribution of rewards 47 

instead of signaling expected rewards. The activity in these cells also predicted the amount of 48 

variability in choice behavior. These findings suggest that the posterior cingulate helps direct the 49 

search for information in order to augment routines.  50 

 51 

Introduction  52 

Imagine you are at a horse race, and there are six horses, with Local Field Potential the 53 

underdog, facing 100:1 odds against. When LFP wins, a one dollar bet will pay out $100. But in 54 

addition to the reward received from this bet, learning that out of the six horses, LFP is the 55 

winner reduces your uncertainty about the outcome. Hence, LFP crossing the finish line first 56 

yields both reward and information. 57 

Similar problems are often faced by organisms in their environment. Animals are adept at 58 

learning not only the sizes of rewards but also their locations, timing, or other properties. For 59 

example, hummingbirds will adapt their nectar foraging in response to unexpected changes in 60 

reward timing (Garrison and Gass 1999). Similarly, monkeys will adapt their foraging routines 61 

upon receiving information that a highly valued resource has become available (Menzel 1991). 62 

In general, animals can make better decisions by tracking such reward information. Perhaps once 63 
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a reward has been received, it no longer pays to wait for more because the resource is exhausted 64 

or the time between rewards is too great (McNamara 1982), as occurs for some foraging animals. 65 

Or, perhaps receiving a reward also resolves any remaining uncertainty about an environment 66 

(Stephens and Krebs 1986). Keeping track of reward information independent of reward size 67 

thus serves as an important input into animals’ decision processes.  68 

We designed an experiment to probe this oft-neglected informational aspect of reward-69 

based decision making. Our experiment is based on the behavior of animals that exploit 70 

renewable resources by following an efficient foraging path, a strategy known as traplining 71 

(Freeman 1968, Berger-Tal and Bar-David 2015). Trapline foraging has a number of benefits, 72 

including reducing the variance of a harvest and thereby attenuating risk (Possingham 1989), 73 

efficiently capitalizing on periodically renewing resources (Possingham 1989, Bell 1990, Ohashi, 74 

Leslie et al. 2008), and helping adapt to changes in competition (Ohashi, Leslie et al. 2013). 75 

Many animals trapline, including bats (Racey and Swift 1985), bees (Manning 1956, Janzen 76 

1971), butterflies (Boggs, Smiley et al. 1981), hummingbirds (Gill 1988), and an array of 77 

primates including rhesus macaques (Menzel 1973), baboons (Noser and Byrne 2010), vervet 78 

monkeys (Cramer and Gallistel 1997), and humans (Hui, Fader et al. 2009). Wild primates 79 

foraging for fruit (Menzel 1973, Noser and Byrne 2010), captive primates searching for hidden 80 

foods (Gallistel and Cramer 1996, Desrochers, Jin et al. 2010), and humans moving through 81 

simulated (MacGregor and Chu 2011) and real (Hui, Fader et al. 2009) environments all use 82 

traplining to minimize total distance traveled and thereby maximize resource intake rates.  83 

 Though many primates trapline, information about the state of the environment, such as 84 

weather(Janmaat, Byrne et al. 2006), the availability of new foods(Menzel 1991), or possible 85 
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feeding locations(Hemmi and Menzel 1995, Menzel 1996), can influence choices made while 86 

foraging. Such detours result in longer search distances and more variable choices(Hui, Fader et 87 

al. 2009, Noser and Byrne 2010) but allow animals to identify new resources(Menzel 1991) and 88 

engage in novel behaviors(Noser and Byrne 2010). These benefits are consistent with computer 89 

simulations that show traplining with variation in routes yields better long-term returns than 90 

traplining without variation by uncovering new resources or more efficient routes (Ohashi and 91 

Thomson 2005). In this way, environmental information may improve foraging efficiency during 92 

routine foraging over the longer term. 93 

 The neural mechanisms that track, update, and regulate the impact of environmental 94 

information on decision making remain unknown. Neuroimaging studies have revealed that the 95 

posterior cingulate cortex (PCC) is activated by a wide range of cognitive phenomena that 96 

involve rewards, including prospection(Benoit, Gilbert et al. 2011), value representation(Kable 97 

and Glimcher 2007, Clithero and Rangel 2014), strategy setting(Wan, Cheng et al. 2015), and 98 

cognitive control(Leech, Kamourieh et al. 2011). Intracranial recordings in monkeys have found 99 

that PCC neurons signal reinforcement learning strategies(Pearson, Hayden et al. 2009), respond 100 

to novel stimuli during conditional visuomotor learning(Heilbronner and Platt 2013), represent 101 

value(McCoy, Crowley et al. 2003), risk(McCoy and Platt 2005), and task switches (Hayden and 102 

Platt 2010), and stimulation there can induce shifts away from a default option (Hayden, Nair et 103 

al. 2008). Together, these observations suggest that the PCC mediates the effect of 104 

environmental information on variability in routine behavior. However, no studies to date have 105 

attempted to disentangle hedonic value from the informational value of rewards in PCC. 106 
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 Previously, we reported that in our traplining task neurons in PCC increased their firing 107 

rates during choices prior to decisions to diverge from the typical trapline, the most common 108 

circular pattern of choices (Barack, Chang et al. 2017). We reported decisions to diverge from 109 

typical traplines were driven by the salience of the pattern of total rewards during foraging. PCC 110 

neuron firing rates predicted decisions to diverge from typical traplines and signaled the 111 

interaction between foraging decision salience, reward, and time. Finally, these cells displayed a 112 

large transient increase in activity prior to decisions to diverge that was especially marked in low 113 

reward rate environments. 114 

Here, we explore how information influenced decisions to deviate from traplines (circular 115 

patterns of choices) and test the hypothesis that PCC tracks reward information. We recorded the 116 

activity of PCC neurons in monkeys foraging through an array of targets in which environmental 117 

information, operationalized as the pattern of rewards, was partially decorrelated from reward 118 

size. Monkeys developed traplines in which they moved directly between nearest neighbor 119 

targets in a circle. When they expected more information about the state of the environment, 120 

their trapline foraging behavior was less variable. While foraging, PCC neurons tracked 121 

environmental information but not reward and forecast variability in choice patterns. These 122 

findings support our hypothesis that PCC mediates the use of information about the state of the 123 

environment to regulate adherence to routines in behavior and cognition. 124 

 125 

Materials and Methods 126 

Task Analysis 127 
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 Our experiment required monkeys to select each target in a set of six targets to harvest 128 

the rewards. In every trial in our experiment, two fixed rewards (large and small) were assigned 129 

to one of six locations in the environment in a pseudorandom fashion (Fig. 1B). Trials began 130 

with monkeys fixating a central cross for a variable amount of time, ranging from 0.5 – 1 sec. 131 

After fixation offset, six targets arranged in a circle appeared. The same locations were used 132 

from trial to trial, and monkeys were free to select the targets in any order. To make a choice, 133 

monkeys had to fixate their gaze on a target for 250 ms. In order to advance to the next trial, 134 

monkeys had to choose each option, even after they’d already harvested the reward available on 135 

that trial. Assuming the cost of making a saccade is a monotonic, positive-definite function of 136 

distance between targets, the most efficient solution to our task is to minimize saccade times 137 

between targets by searching in a circular pattern. This is referred to as a trapline, and sequences 138 

of choices that are non-circular are deviations from traplines. 139 

 Uncertainty about the current trial’s pattern of received rewards is reduced over the 140 

course of the trial as the monkey proceeds through all of the targets. This reduction in 141 

uncertainty is quantifiable by examining how many possible patterns of rewards are excluded 142 

given the rewards revealed by previous choices. For a subset of patterns, the very same 143 

information outcome can be delivered by distinct rewards, serving to partially decorrelate and 144 

hence de-confound reward and information outcomes. Furthermore, expected reward and 145 

expected information, defined as the average amount of information contained in the next 146 

outcome given the pattern of rewards received so far, are also partially decorrelated (Table 1). 147 

Given a set of six rewards (four zero, one small, and one large), there are 6! distinct 148 

permutations. We made the simplifying assumption that monkeys did not distinguish between 149 
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the different zero rewards. This assumption reduces the number of distinct patterns from 720 to 150 

30. 151 
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 152 

Table 1: Equations for expected reward, entropy, information, and expected information for the reward sequence. 153 

Pattern 

# 

Permutation 

𝑷 

Expected Reward 

𝑬𝑹𝒊 =
𝟏

𝒏
∑𝑹𝒊

𝒏

𝒊

 

Entropy 

𝑯𝒊 = −𝐥𝐨𝐠𝟐
(|{𝑷𝒊}|)

(|𝑷|)
 

Information 

𝑰𝒊 = 𝑯𝒊 −𝑯𝒊−𝟏 

Expected Information 

𝑬𝑰𝒊 =
∑ 𝑰𝒊𝑷𝒓𝒆𝒎𝒂𝒊𝒏𝒊𝒏𝒈

(|𝑷𝒓𝒆𝒎𝒂𝒊𝒏𝒊𝒏𝒈|)
 

1 0  0  0  0  1  2 0.5  0.6  0.75  1.0  1.5  2.0 0.5850  1.3219  3.3219  3.9069  4.9069  4.9069 0.5850  0.7370  1  1.5850  1  0 1.2516  0.7370  1  1.5850  1  0 

2 0  0  0  0  2  1 0.5  0.6  0.75  1.0  1.5  1.0 0.5850  1.3219  3.3219  3.9069  4.9069  4.9069 0.5850  0.7370  1  1.5850  1  0 1.2516  0.7370  1  1.5850  1  0 

3 0  0  0  1  0  2 0.5  0.6  0.75  1.0  1.0  2.0 0.5850  1.3219  3.3219  3.9069  4.9069  4.9069 0.5850  0.7370  1  1.5850  1  0 1.2516  0.7370  1  1.5850  1  0 

…
 

..
. 

…
 

…
 

…
 

…
 

30 2  1  0  0  0  0 0.5  0.2    0       0     0     0 2.5850  4.9069  4.9069  4.9069  4.9069  4.9069 2.5850  2.3219  0      0       0  0 1.2516  2.3219  0      0       0   0 

 154 

Each column in the table (except for the leftmost) contains six columns, each corresponding to a choice number during the trial. 155 

Total number of choices on every trial = 6. Key: |∙| = cardinality of ∙ ; R = reward; n = choice number; i = choice number in trial.156 
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 Different patterns correspond to different series of received reward. The environmental 157 

entropy HE contained in receiving some reward (zero, small, or large) depends on the choice 158 

number i in the sequence and the total number of possible sequences: 159 

𝐻𝐸 = −log2
(|{𝑃𝑖}|)

(|𝑃|)
 

where |∙| denotes cardinality, P is the set of possible permutations, and {Pi} is the set of 160 

remaining permutations after the i
th

 choice. The amount of information contained in some reward 161 

outcome is computed as the difference in the entropy, what has been learned about the current 162 

trial’s pattern of received reward by receiving the most recent outcome: 163 

∆𝐻𝐸 = 𝐻𝑖 − 𝐻𝑖−1 

for the amount of environmental entropy HE on the i
th

 outcome. Expected information can then 164 

be computed as the mean amount of information to be gained by making the next choice, the 165 

weighted average over all possible next information outcomes given the pattern of rewards 166 

received: 167 

𝐸[∆𝐻𝐸]𝑖 =
∑ [∆𝐻𝐸]𝑖𝑃𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔

(|𝑃𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔|)
 

for expected information E[ΔHE] for the i
th

 choice, possible outcomes [ΔHE]i for the remaining 168 

permutations Premaining, and where |∙| again denotes cardinality. As the animal proceeds through 169 

the trial, the amount of expected information varies as a function of how many possible patterns 170 

of returns have been eliminated so far. Expected reward ER is computed simply as the amount of 171 

remaining reward to be harvested on trial i divided by the number of remaining targets n: 172 

𝐸𝑅𝑖 =
1

𝑛
∑ 𝑅𝑖
𝑛
𝑖 . 173 
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If the animal harvests all of the reward near the beginning of a trial, the expected reward will be 174 

zero. However, if the animal does not harvest the rewards until the end of a trial, the expected 175 

reward will increase across the duration of the trial. 176 

 The linear correlation coefficients between the different task variables (information, 177 

expected information, reward, expected reward, etc.) can be computed empirically from the total 178 

experienced reward outcomes and information outcomes, and from the total experienced reward 179 

expectations and information expectations, derived from the trials the monkeys actually 180 

experienced. For the anticipation epoch, this includes expected information and expected reward 181 

(R
2
 = 0.1324), expected information and previous choice information outcome (R

2
 = 0.0292), 182 

expected information and previous choice reward outcome (R
2
 = 0.1348), expected reward and 183 

previous choice information outcome (R
2
 = 2.6458x10

-06
), expected reward and previous choice 184 

reward outcomes (R
2
 = 0.1082), previous choice information outcome and previous choice 185 

reward outcome (R
2
 = 0.5971). For the outcome epoch, this includes current choice information 186 

outcome and current choice reward outcome (R
2
 = 0.3935). 187 

   188 

Experimental Design and Statistical Analysis: Behavior 189 

In our experiments, two male rhesus macaques performed the task described above on 190 

custom software using psychtoolbox {Brainard} and MATLAB (Mathworks, Natick, MA). All 191 

statistical comparisons were performed using custom software in MATLAB. Significance was 192 

Bonferroni corrected for multiple comparisons, and significance assessed at p < 0.05. 193 

For our behavioral entropy measures, we again used the standard definition of entropy. 194 

Step size was defined as the number of positions clockwise or counter-clockwise of the target 195 
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that the monkey chose in relation to the previous choice’s target. For behavioral entropy, the 196 

probability of a particular step size was computed for each step size by counting the number of 197 

trials with that step size and dividing by the total number of trials. Action step sizes (from -2 to 198 

3) and action step size probabilities (probability of taking an action of a given size) were 199 

calculated for choices 1 to 2, 2 to 3, 3 to 4, and 4 to 5 (5 to 6 had a constant update of 1). Step 200 

sizes were calculated on each choice by determining how many targets around clockwise 201 

(positive) or counterclockwise (negative) the next choice was from the previous choice; already 202 

selected targets were not included in this calculation. Step size probabilities were calculated by 203 

holding fixed all of the covariates for a particular choice (information outcome from previous 204 

choice, information expectation for next choice, reward outcome from previous choice, reward 205 

expectation for next choice, and choice number) and counting the frequencies for each step size 206 

and dividing by the total number of trials with that set of covariates. For each unique 207 

combination of covariates (choice number, information outcome, information expectation, 208 

reward outcome, and reward expectation), we computed the choicewise behavioral entropy (HB) 209 

for that combination as 210 

𝐻𝐵 = −∑𝑝𝑠
𝑠

log2 𝑝𝑠 

for probability of each step size ps. Finally, a multilinear regression correlated these behavioral 211 

entropy scores with the covariates. 212 

 To analyze neural coding of expectations, we had to remove diverge choices, defined as 213 

choices that diverged from the daily dominant pattern. Determining the daily dominant pattern 214 

relied on assessing the similarity between pairs of trials, for every possible pair on a given day, 215 
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by computing the pair’s Hamming score(Hamming 1950). To compute the similarity between 216 

two trials, each trial’s pattern of choices by target number is first coded as a digit string (e.g., 1 – 217 

2 – 4 – 5 – 6 – 3). The Hamming distance Di,i′  between two strings i, i′ of equal length is equal to 218 

the sum of the number of differences d between each entry in the string, 219 

𝐷𝑖,𝑖′ =∑𝑑(𝑥𝑛, 𝑦𝑛)

𝑛

 

for strings x, y of length n. We computed Di,i’ for every pair of trials, and then, for each unique 220 

pattern of choices, computed the average Hamming distance 𝐷̅𝑖,𝑖′. The daily dominant pattern 221 

corresponded to the pattern with the minimum 𝐷̅𝑖,𝑖′ and corresponded to a circular pattern for 222 

both monkeys (see Barack et al. 2017). Since the daily dominant pattern was circular, we refer to 223 

these as the monkeys’ typical traplines. 224 

 Behavioral entropy was regressed against a number of variables and their interactions 225 

using multilinear regression. Covariates included choice number in trial, expected information, 226 

expected reward, reward outcome from the previous choice, information outcome from the 227 

previous choice, and all 2-way interactions.  228 

 229 

Experimental Design and Statistical Analysis: Neural 230 

All neural data were analyzed on custom software in MATLAB. For all tests, 231 

significance was Bonferroni corrected for multiple comparisons and assessed at p < 0.05. 232 

Both monkeys were trained to orient to visual targets for liquid rewards before 233 

undergoing surgical procedures to implant a head-restraint post (Crist Instruments) and receive a 234 

craniotomy and recording chamber (Crist Instruments) permitting access to PCC. All surgeries 235 
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were done in accordance with Duke University IACUC approved protocols. The animals were on 236 

isoflourane during surgery, received analgesics and prophylactic antibiotics after the surgery, and 237 

were permitted a month to heal before any recordings were performed. After recovery, both 238 

animals were trained on the trapliner task, followed by recordings from BA 23/31 in PCC. MR 239 

images were used to locate the relevant anatomical areas and place electrodes. Acute recordings 240 

were performed over many sessions. Approximately one fifth of the recordings were done using 241 

FHC (FHC, Inc., Bangor, ME) single contact electrodes and four fifths performed using Plexon 242 

(Plexon, Inc., Dallas, TX) 8-contact axial array U-probes in monkey L. No statistically 243 

significant differences in the proportion of task relevant cells were detected between the 244 

populations recorded with the two types of electrodes (χ
2
, p > 0.5). All recordings in monkey R 245 

were done using the U-probes. Recordings were performed using Plexon neural recording 246 

systems. All single contact units were sorted online and then re-sorted offline with Plexon offline 247 

sorter. All axial units were sorted offline with Plexon offline sorter. 248 

 Neural responses often show non-linearities (Dayan and Abbott 2001), which can be 249 

captured using a generalized linear model (Aljadeff, Lansdell et al. 2016). We used a generalized 250 

linear model (GLM) with a log-linear link function and Poisson distributed noise estimated from 251 

the data to analyze our neuronal recordings, effectively modeling neuronal responses as an 252 

exponential function of a linear combination of the input variables. We analyzed the neural data 253 

in two epochs: a 500 ms anticipation epoch, encompassing a 250 ms pre-saccade period and the 254 

250 ms hold fixation period to register a choice, as well as the 250 ms pre-saccade epoch itself. 255 

Covariates included choice number in the trial, expected information, expected reward, 256 
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information outcome from the last choice, reward outcome from the last choice, and all 2-way 257 

interactions. 258 

 In addition to this GLM, we confirmed our model fits in two ways for each neuron: first, 259 

we plotted the residuals against the covariates, to check for higher-order structure, and second, 260 

we used elastic net regression, to check that our significant covariates were selected by the best-261 

fit elastic net model (Zou and Hastie 2005). Plotting residuals revealed no significant higher-262 

order structure. Furthermore, elastic net regression confirmed our original GLM results. None of 263 

the significant covariates identified by the original GLM received a coefficient of 0 from the 264 

elastic net regression, and the sizes of the significant coefficients identified by the original GLM 265 

were very close to the sizes of the coefficients computed by the elastic net regression. 266 

 Perievent time histograms (PETHs) were created by binning spikes time-locked to the 267 

event of interest. For the anticipation epoch, PETHs were centered on the end of the choice 268 

saccade and spikes binned in 10 ms bins. PETHs were smoothed with a Gaussian kernel with 0 269 

mean and 5σ width where σ = 20 ms (i.e., two samples).  270 

 To analyze encoding of the information or reward boundary, a log-linear GLM regression 271 

was run on vectors of binned spike counts time-locked to the start of the trial, with time in 272 

window, time of last informative feedback (a binary covariate encoding whether or not the 273 

current time bin was before or after the last informative feedback), and their interaction as 274 

covariates. Neuronal spikes were sorted into 50 ms bins starting with trial onset and ending with 275 

the time of the last outcome in a trial across the duration of the trial. This activity was regressed 276 

against time in trial (coded by the bin number, starting with 1 and ending with the number of 50 277 

ms bins for the trial), whether or not the last informative outcome had been received (coded as a 278 
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0, for before, or a 1, for after receiving the last outcome), and their 2-way interaction. For plots 279 

depicting the boundary, PETHs were time-locked to the time of last informative feedback, spikes 280 

from two seconds before to two seconds after sorted into 50 ms time bins, and smoothed with a 281 

Gaussian kernel with 0 mean 5σ width where σ = 50 ms (i.e., one sample). 282 

 The failure to find representations of expected reward reported in the results was 283 

confirmed by holding fixed expected information and choice number and directly comparing 284 

observed firing rates for those combinations for which there was more than one reward level. For 285 

choice number (CN) 2, this resulted in one pair of expected rewards; for CN3, one pair; for CN4, 286 

one pair; for CN5, one triple; and for CN6, one triple. The observed firing rates for the pairs 287 

were compared using Student’s t-test and for the triples using ANOVA. A neuron that showed a 288 

significant difference in those comparisons was included in the count for that choice number and 289 

so could appear as significant for more than one choice (depicted in Fig. 2C).  290 

 Step sizes, step size probabilities, and choicewise behavioral entropies were linearly 291 

regressed against the firing rates during the anticipation epoch, when actions were made. To 292 

assess whether neurons showed differences in tonic firing rates for high compared to low 293 

behavioral entropies, we fit Gaussians with constant offsets to the mean PETH firing rate and 294 

examined the confidence interval for the constant offsets for each. The constant offset for high 295 

and low behavioral entropy were considered significantly different if the 95% confidence 296 

intervals derived from those fits did not overlap. To assess choicewise entropy encoding before 297 

and after receipt of the last bit of information, we used a GLM with log-linear link function and 298 

Poisson distributed noise to calculate the number of neurons that significantly encoded 299 

choicewise behavioral entropy before the receipt of this information to compare to the number 300 
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after. Covariates included behavioral entropy, choice number in trial, a binary variable with 0 = 301 

before boundary and 1 = after boundary, and all 2-way interaction. For the population response, 302 

we first separated trials by mean choicewise behavioral entropy across all choices. Next, the 303 

normalized average population response for high average choicewise entropy trials was 304 

compared to low average entropy during the two seconds before the receipt of the last 305 

information using Student’s t-test. Then we ran the same analysis on the normalized average 306 

response during the two seconds following receipt of this information. We report the results of 307 

these two analyses below. 308 

 309 

Results 310 

Trapline Foraging in a Simulated Environment 311 

 To explore the effects of information on deviation from routines, two monkeys (M. 312 

mulatta) solved a simple traveling salesman problem. In this trapliner task, monkeys visually 313 

foraged through a set of six targets arranged in a circle, only moving on to the next trial after 314 

sampling every target (Fig. 1B). On each trial, two of the targets were baited, one with a large 315 

reward and one with a small reward, with the identity of the baited targets varying from trial to 316 

trial. While foraging, monkeys gathered both rewards, herein defined by the amount of juice 317 

obtained, and information, herein defined as the reduction in uncertainty about the location of 318 

remaining rewards. 319 

 By varying which target was rewarded from trial-to-trial, reward and information were 320 

partially decorrelated. Reward was manipulated by varying the size of received rewards, with 321 

one small, one large, and four zero rewards available on every trial. Information was 322 



 

 

 

18 

manipulated by varying the spatiotemporal pattern of rewarding targets. Different patterns 323 

correspond to different series of received rewards. Based on the series of rewards received up to 324 

a particular choice in the trial, some subset of the set of possible sequences remained, and the 325 

size of this subset determines the remaining uncertainty for the current trial (see methods). Over 326 

the course of a trial, the set of possible patterns shrinks, reducing uncertainty about the current 327 

trial’s pattern and determining the information gathered about the environment. These 328 

differences in reward and information outcomes in turn determine reward and information 329 

expectations. The expected reward for each target is the total remaining reward to harvest 330 

divided by the number of remaining targets. In contrast, the expected information is the mean 331 

amount of information to be gained by making the next choice. As the animal proceeds through 332 

the trial, the amount of expected information varies as a function of how many possible patterns 333 

of rewards have been eliminated so far. Distinct possible reward outcomes may offer the same 334 

information, and so our task partially decorrelates information and reward (linear regression on 335 

expected reward and expected information, R
2
 = 0.13).  336 

 Information may influence the pattern of choices that monkeys made, resulting in trial-to-337 

trial changes in this pattern (behavioral data are the same as first reported in Barack, Chang et al. 338 

2017). On a majority of trials, monkeys chose targets in the same order (the daily dominant 339 

pattern, DDP; Monkey R: same DDP across all 14 sessions; Monkey L: same DDP across 24 of 340 

30 sessions; across all sessions, 0.4665 ± 0.0317 proportion of trials diverged from the DDP; see 341 

methods). More generally, monkeys usually chose the targets in a circle (proportion of trials in 342 

average session with circular patterns of choices: Monkey L: 0.6134 ± 0.0418; Monkey R: 343 

0.7113 ± 0.0208). However, they occasionally deviated from their circular routine. This 344 
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variability can be measured by finding the behavioral entropy over the distribution of choice 345 

probabilities for targets. First, each choice during a trial was egocentrically coded by its step size, 346 

the number of targets clockwise or counter-clockwise from the current trial’s previously chosen 347 

target (Fig. 1B). The probability of a particular step size was computed by counting the number 348 

of trials with that step size and dividing by the total number of trials (see methods). Behavioral 349 

entropy, the entropy computed over that distribution, significantly predicts adherence to both 350 

typical traplines (DDP: logistic regression; significant (p < 0.05) β for 22 of 44 sessions) and 351 

circular traplines (logistic regression; significant β (p < 0.05) for 33 of 44 sessions). We found 352 

that the informativeness of outcomes influenced the variability in the monkeys’ patterns of 353 

choices as measured by behavioral entropy. Anticipation of more informative choice outcomes 354 

significantly reduced the entropy of the monkeys’ choices on average (Student’s t-test across all 355 

choices and sessions comparing behavioral entropy for less than average expected information to 356 

greater than average; Both monkeys: t(96,718) = -19.25, p < 1x10
-81

; Monkey L: t(69,274) = -357 

3.24, p < 0.005; Monkey R: t(27,442) = -23.99, p < 1x10
-125

). To better assess the influence of 358 

expected information on behavioral variability, we plotted by session and choice number the 359 

mean behavioral entropy for zero expected information and compared it to the mean behavioral 360 

entropy for non-zero expected information. Median behavioral entropy across sessions was 361 

greater for choice numbers 4 and 5 than choice number 3 for no expected information (p < 0.05; 362 

Fig. 1C, green boxes and points) and was greater for no expected information in comparison to 363 

some expected information for choice number 5 (p < 0.05; Fig. 1C, choice number 5, red boxes 364 

and points compared to green). 365 
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 The presence of information or reward left to collect on a trial also drove choice 366 

variability. While still harvesting information and reward about the current trial, monkeys’ 367 

choices were less variable, but afterward they became more variable in their choices (Student’s t-368 

test on choice numbers (CN) 4 or 5; Both monkeys: t(48,358) = -125.98, p ~
 
0; Monkey L: 369 

t(34,636) = -96.32, p ~ 0; Monkey R: t(13,720) = -71.79, p ~
 
0; results also significant for each 370 

CN separately; Fig. 1C, right panel). Hence, monkeys deviated less while choices were still 371 

informative or rewarding and more thereafter.   372 

 373 

Environmental Information Signaling by Posterior Cingulate Neurons 374 

 We next probed PCC activity during the trapliner task to examine information and reward 375 

signaling from 124 cells in two monkeys (Fig. 1A; monkey L = 84 neurons; monkey R = 40 376 

neurons; neural data are the same as first reported in Barack, Chang et al. 2017). In order to 377 

control for previously uncovered neural effects, all choices where monkeys diverged from 378 

typical traplines were excluded from the analyses in this section (those neural findings are 379 

reported in Barack, Chang et al. 2017).  380 

 During the anticipation epoch (500 ms encompassing a 250 ms pre-choice period and a 381 

250 ms hold fixation period), neurons in PCC preferentially signaled information expectations 382 

over reward expectations. An example cell (Fig. 2A) showed a phasic increase in firing rate 383 

during the anticipation epoch when expected information was higher for the same choice number 384 

in the trial (for example, choice number two (CN2): Student’s t-test, p < 0.0001, t(283) = -385 

4.3056; firing rate for 0.72 bits = 22.51 ± 1.46 spikes/sec, firing rate for 1.37 bits = 29.84 ± 0.95 386 

spikes/sec). However, after controlling for choice number in the trial and expected information, 387 
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the same neuron did not differentiate between different amounts of expected reward (Student’s t-388 

test, p > 0.9; firing rate for 0.2 expected reward = 22.23 ± 2.35 spikes/sec, firing rate for 0.4 389 

expected reward = 22.76 ± 1.83 spikes/sec; Fig. 2A, second row from bottom, left panel). The 390 

tuning curves for this same cell collapsed across all choice numbers for both expected 391 

information and expected reward illustrate the strong sensitivity to larger amounts of information 392 

(Fig. 2B).  393 

 In our population of 124 neurons, significantly more cells were tuned to information than 394 

reward when controlling for choice number in trial. A generalized linear model (GLM) 395 

regression revealed that during the anticipation epoch, 35 (28%) of 124 neurons (Monkey L: 25 396 

(30%) of 84 neurons; Monkey R: 10 (25%) of 40 neurons) signaled the interaction of choice 397 

number and expected information, but only 1 (~1%) of 124 neurons (Monkey L: 1 (~1%) of 84 398 

neurons; Monkey R: 0 (0%) of 40 neurons) signaled the interaction of choice number and 399 

expected reward (all results, p < 0.05, Bonferroni corrected; see methods for full list of 400 

covariates in the GLM). A further test for signaling of expected reward compares the average 401 

firing rates for different amounts of expected reward for the same choice number and expected 402 

information. This test revealed that only about 10% of neurons signaled expected reward, except 403 

on the last choice when all information had been received (Fig. 2C). In contrast, about 20% of 404 

neurons signaled expected information (Fig. 2C). These proportions were not significantly 405 

different when all circular traplines were included (expected information X choice number, χ
2
 > 406 

0.24; expected reward X choice number, χ
2
 > 0.17). 407 

  408 

PCC Neurons Index Response Variability   409 
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 We have previously established that PCC neurons signal decisions to diverge from 410 

typical traplines during our task (Barack, Chang et al. 2017). However, the extent to which these 411 

cells track variability of responses during the task remains to be explored. We examined whether 412 

PCC neurons index the degree of behavioral variability, operationalized as behavioral entropy 413 

(BE; see methods; all trials, including divergences from typical traplines, are included in the 414 

following analyses). During the pre-saccade epoch, behavioral entropy varied significantly with 415 

firing rate for 48 (39%) of 124 neurons (linear regression of behavioral entropy against firing 416 

rate, p < 0.05; Monkey L: 37 (44%) of 84 neurons, Monkey R: 11 (28%) of 40 neurons). An 417 

example cell was more active for high entropy choices compared to low (linear regression, βBE = 418 

0.0229 ± 0.0026 bitsBE/spike, p < 5 x 10
-18

; Fig. 3A). Across the population, higher firing rates 419 

predicted greater behavioral entropy (124 neurons; Student’s t-test on mean normalized firing 420 

rates during pre-saccade epoch, t(123) = 2.7363, p < 0.01; βBE > 0 in 80 cells, βBE ≤ 0 in 44 cells; 421 

mean βBE = 0.0025 ± 0.0011 bitsBE/spike, Student’s t-test against h0: mean βBE = 0, t(123) = 422 

2.3268, p < 0.05; Fig. 3B). In addition, in our population of 124 cells, 46 (37%) exhibited 423 

significantly different (p < 0.05) tonic firing rates for high behavioral entropy compared to low 424 

behavioral entropy choices during the anticipation epoch (Monkey L: 35/84 (42%); Monkey R: 425 

11/40 (28%)). 426 

 We next investigated whether PCC neurons signaled the boundary defined by the receipt 427 

of the last information or reward, when the pattern of rewards on a given trial becomes fully 428 

resolved. Note that this can occur before the last reward is delivered if the last reward is received 429 

on the last choice in a trial. A regression of each trial’s binned spike counts against the time in 430 

the trial and the time of last informative outcome revealed that 84 (68%) of 124 neurons 431 
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differentiated these two states (GLM, effect of interaction, p < 0.05; see methods; monkey L: 61 432 

of 84 neurons, 73%; monkey R: 23 of 40 neurons, 58%). During a four second epoch centered on 433 

the time of the last informative choice outcome, an example cell fired less before that outcome 434 

than after (Student’s t-test, p < 1x10
-56

; Fig. 3C). The population of cells also fire more after this 435 

boundary (Student’s t-test, p < 0.005; Fig. 3D). 436 

 Finally, behavioral entropy signals and boundary signals were combined in the PCC 437 

population. While the time of last information can be partly disambiguated from time of last 438 

reward, this occurs only on the last choice when a single target remains. Since behavioral 439 

entropy is a measure of response variability, it requires more than one target, which is not 440 

available on the last choice. As a result, combined signals of behavioral entropy and the 441 

boundary could reflect the end of either information gathering or reward harvesting. 442 

Significantly fewer cells (χ
2
, p < 1x10

-10
) predicted behavioral entropy after receiving all 443 

information or reward (24 (19%) of 124 neurons) than before (74 (60%) neurons). PCC 444 

population responses on choices with high behavioral entropy compared to low entropy revealed 445 

significant differences before receipt of the last informative or rewarding outcome (Student’s t-446 

test, p < 1x10
-4

) but not after (Student’s t-test, p > 0.5), with greater modulation for high entropy 447 

compared to low.  448 

 449 

Discussion 450 

 In this study, we show that environmental information influences responses during 451 

routine behavior and that firing rates of PCC neurons carry this information and predict 452 

behavioral variability. Despite the fact that in our task monkeys could not utilize environmental 453 
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information to increase their chance of reward, the receipt of environmental information and the 454 

exhaustion of uncertainty impacted behavioral routines. Monkeys’ responses were less variable 455 

when there was more information to be gathered, but became more variable once the 456 

environment became fully known. This pattern of variable responses after resolving all 457 

environmental uncertainty departs from the reward rate maximizing strategy of selecting targets 458 

in a circle to minimize saccade lengths. While monkeys traplined, neurons in PCC robustly 459 

signaled information expectations but not reward expectations and predicted the variability in the 460 

patterns of choices. Finally, PCC neurons differentiate the degree of behavioral variability before 461 

all information or reward was received about the pattern of rewards compared to after, with an 462 

increase in activity following receipt of the last informative outcome and concomitant decreases 463 

in forecasting behavioral variability. In sum, our experimental findings suggest that PCC tracks 464 

the state of the environment in order to influence routine behavior. 465 

 Monkeys often chose targets in the same pattern, consistent with previous findings of 466 

repetitive stereotyped foraging in wild primate groups (Noser and Byrne 2007). They also 467 

generally moved in a circle, visiting the next nearest neighbor after the current target, likewise 468 

consistent with previous findings in groups of wild foraging primates (Menzel 1973, Garber 469 

1988, Janson 1998). These foraging choices almost always result in straight line routes (Janson 470 

1998, Pochron 2001, Cunningham and Janson 2007, Valero and Byrne 2007) or a series of 471 

straight lines (Di Fiore and Suarez 2007, Noser and Byrne 2007). Experiments on captive 472 

primates have also observed nearest neighbor or near optimal path finding (Menzel 1973, 473 

MacDonald and Wilkie 1990, Gallistel and Cramer 1996, Cramer and Gallistel 1997). Our 474 

monkeys’ choices are also consistent with human behavior on traveling salesman problems, 475 
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wherein next nearest neighbor paths are usually chosen for low numbers of points (Hirtle and 476 

Gärling 1992, MacGregor and Ormerod 1996, MacGregor and Chu 2011).  477 

 The PCC, a posterior midline cortical region with extensive cortico-cortical connectivity 478 

(Heilbronner and Haber 2014) and elevated resting state and off-task metabolic activity 479 

(Buckner, Andrews-Hanna et al. 2008), is at the heart of the default mode network (DMN) 480 

(Buckner, Andrews-Hanna et al. 2008). The DMN is a cortex-spanning network implicated in 481 

exploratory cognition including imagination (Schacter, Addis et al. 2012), creativity (Kühn, 482 

Ritter et al. 2014), and narration (Wise and Braga 2014). Though implicated in a range of 483 

cognitive functions, activity in PCC may be unified by a set of computations related to 484 

harvesting information from the environment to regulate behavior. Signals in PCC that carry 485 

information about environmental decision variables such as value (McCoy, Crowley et al. 2003), 486 

risk (McCoy and Platt 2005), and decision salience (Heilbronner, Hayden et al. 2011) may in fact 487 

reflect the tracking of information returns from the immediate environment. For example, in a 488 

two alternative forced choice task, neurons in PCC preferentially signaled the resolution of a 489 

risky choice with a variable reward over the value of choosing a safe choice with a guaranteed 490 

reward  (McCoy and Platt 2005). Such signals may reflect the information associated with the 491 

resolution of uncertainty regarding the risky option. PCC neurons also signal reward-based 492 

exploration  (Pearson, Hayden et al. 2009) and microstimulation in PCC can shift monkeys from 493 

a preferred option to one they rarely choose (Hayden, Nair et al. 2008). Both of these functions 494 

may reflect signaling of environmental information as well; for example, the signaling of 495 

exploratory choices may reflect the information from an increase in the number of recent sources 496 

of reward (Pearson, Hayden et al. 2009). Evidence from neuroimaging studies in humans 497 
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similarly reveals PCC activation in a wide range of cognitive processes related to adaptive 498 

cognition, including imagination (Benoit, Gilbert et al. 2011), decision making (Kable and 499 

Glimcher 2007), and creativity (Beaty, Benedek et al. 2015).  500 

 Uncovering the neural circuits that underlie variability in foraging behavior may provide 501 

insight into more complex cognitive functions. A fundamental feature of what we call 502 

prospective cognition, thoughts about times, places, and objects beyond the here and now, 503 

involves consideration of different ways the world might turn out. Various types of prospective 504 

cognition, including imagination, exploration and creativity, impose a tradeoff between engaging 505 

well-rehearsed routines and deviating in search of new, potentially better solutions (Gottlieb, 506 

Oudeyer et al. 2013, Andrews‐Hanna, Smallwood et al. 2014, Beaty, Benedek et al. 2015). For 507 

example, creativity involves diverging from usual patterns of thought, such as occurs in 508 

generating ideas (Benedek, Jauk et al. 2014) or crafting novel concepts (Barron 1955, Guilford 509 

1959). During creative episodes the PCC shows increased activity during idea generation 510 

(Benedek, Jauk et al. 2014) and higher connectivity with control networks during idea evaluation 511 

(Beaty, Benedek et al. 2015), perhaps reflecting imagined, anticipated, or predicted variation in 512 

the environment. Exploration similarly involves diverging from the familiar, such as to locate 513 

novel resources (Ohashi and Thomson 2005) or discover shorter paths (Sutton and Barto 1998) 514 

between known locations. Such prospective cognition requires diverging from routine thought, 515 

and the identification of the neural circuits that mediate deviations from motor routines may 516 

provide initial insight into the computations and mechanisms of prospective cognition. The 517 

discovery that the PCC preferentially signals the state of the environment and predicts behavioral 518 

variability relative to that state is a first step towards understanding these circuits. 519 
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The reinforcement learning literature is replete with models where exploration is driven 520 

by the search for information (Schmidhuber 1991, Johnson, Varberg et al. 2012). These models 521 

hypothesize that agents should take actions that maximize the information gleaned from the 522 

environment, either by reducing uncertainty about the size of offered rewards (Schmidhuber 523 

1991), the location of rewards in the environment (Johnson, Varberg et al. 2012), or otherwise 524 

maximizing information for subsequent decisions. Furthermore, evidence from initial studies 525 

studying information-based exploration shows that humans are avid information-seekers (Miller 526 

1983, Fu and Pirolli 2007) and regulate attentional and valuational computations on the basis of 527 

information (Manohar and Husain 2013, Blanchard, Hayden et al. 2015). In our task, the PCC 528 

represented environmental information and tracked when learning about the environment was 529 

complete, two variables central to information-based exploration. In particular, the dramatic 530 

change in firing rates associated with the end of information gathering suggests that PCC 531 

represents the information state of the environment and possibly also the rate of information 532 

intake, a central variable in information foraging models (Pirolli and Card 1999, Fu and Pirolli 533 

2007, Pirolli 2007). PCC appears poised to regulate exploration for information. 534 

 In sum, harvested information and response variability were both signaled by PCC 535 

neurons, suggesting a central role for PCC in how information drives exploration and possibly 536 

prospective cognition. Monkeys were sensitive to the amount of uncertainty remaining in the 537 

environment, with more reliable patterns of choices while information remained and more 538 

variable patterns after environmental uncertainty had been resolved and all rewards collected. 539 

PCC neurons preferentially tracked this information and predicted the variability in monkeys’ 540 

behavior. Our findings implicate the PCC in the regulation of foraging behavior, and specifically 541 
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the information-driven deviation from routines. When at the races, PCC will both track who won 542 

and set the stage for changing up your bets. 543 
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 723 

Fig. 1. Monkeys spontaneously trapline, efficiently choosing targets in a circle, when foraging in 724 

a circular array but deviate from these routines as the environment becomes better known. A. 725 

Recording location in the posterior cingulate cortex (PCC). Left: Monkey L. Right: Monkey R. 726 

B. Traplining task, sample trial sequence. Trials began with monkeys fixating a central cross for 727 

a variable amount of time. After fixation offset, six targets appeared in the same locations across 728 

trials. Monkeys then chose targets in any order. To register a choice, monkeys fixated targets for 729 

250 ms. Only two rewards, one small and one large, were available on every trial, and the 730 
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identity of the rewarded targets changed in a pseudorandom fashion from trial to trial. In order to 731 

advance to the next trial, monkeys had to select every target. Open circle: simulated eye position; 732 

dashed arrow: direction of impending saccade; dashed circle: impending saccade endpoint; small 733 

juice drop: small reward; large juice drop: large reward. Central semi-circle: step size, the 734 

clockwise or counter-clockwise distance between subsequently chosen targets; ‘S’ = start; ‘-2’ = 735 

two targets counter-clockwise; ‘-1’ = one target counter-clockwise; ‘+1’ = one target clockwise. 736 

C. Left panel: mean ± s.e.m. behavioral entropy for high expected environmental information 737 

(ΔHE) choices (E[ΔHE] > mean(E[ΔHE])) compared to low expected information choices 738 

(E[ΔHE] ≤ mean(E[ΔHE])) across all sessions and choices; right panel: boxplot by choice number 739 

(2-5)  across sessions before receipt of last informative outcome (E[ΔHE] > 0; red points) and 740 

after (E[ΔHE] = 0; green points). Top and bottom of box are interquartile (25% - 75%) range of 741 

session means, and notch indicates 95% CI for median session. Non-overlapping notches 742 

indicate significantly different medians at α = 0.05. Each point is a session mean. Choice number 743 

2 always possesses some expected information, hence no green box or points. n = 145,524 744 

choices, 24,254 trials.  745 
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36 

Fig. 2. PCC neurons preferentially encode environmental information over reward. A. Firing rate 747 

of sample neuron encoding expected information but not expected reward across all choice 748 

numbers (CN) one through six, plotted separately by expected information (E[ΔHE]). Legends 749 

indicate expected reward(s) for each plot.  Blue line = end of saccade. B. Tuning curves for 750 

expected information (top panel) and expected reward (bottom panel), collapsed across choice 751 

numbers for better visibility, for the cell plotted in A. This example cell showed elevated firing 752 

rates for higher amounts of information. Note that the elevated firing rates for certain amounts of 753 

expected reward correspond to choices with high expected information with only a single level 754 

of expected reward. C. Number of cells encoding expected reward by choice (red) for constant 755 

expected information, and number of cells encoding expected information by choice (green). 756 

Neurons were included in the expected reward counts if Student t-tests (CN2 – 4) or ANOVA 757 

(CN5 – 6) indicated a significant difference in firing rates (p < 0.05, uncorrected for multiple 758 

comparisons to allow the weakest criteria for inclusion, and the same cell could appear for more 759 

than one choice number). 760 
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 762 

Fig. 3. Neurons in PCC forecast deviations in behavior. A. Sample neuron encoding behavioral 763 

entropy during the anticipation epoch. This cell was more active for high entropy choices than 764 

for low entropy choices. B. Population encoding of behavioral entropy. The population was more 765 

active for high entropy choices than low. C. Sample cell encoding the end of information 766 

gathering. This cell had higher firing rates after the last informative or rewarding outcome 767 

compared to before. Thin blue lines with dashed lines very close on either side: average time of 768 

choice before (left) or after (right) last informative or rewarding choice ± 1 s.e.m. D. The 769 
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population also encoded this boundary, with higher firing rates after the last informative or 770 

rewarding outcome compared to before. B and D plots: n = 124 cells. A and B plots: blue line = 771 

end of saccade; C and D plots: central blue line = time of outcome. All plots: shading = ± 1 772 

s.e.m. * = p < 0.05 for that 10 ms time bin. 773 

 774 
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