Excitatory Contribution to Binocular Interactions in Human Visual Cortex is Reduced in Strabismic Amblyopia

https://doi.org/10.1523/JNEUROSCI.0268-21.2021

Cite as: J. Neurosci 2021; 10.1523/JNEUROSCI.0268-21.2021
Received: 3 February 2021
Revised: 12 August 2021
Accepted: 13 August 2021

This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data.

Alerts: Sign up at www.jneurosci.org/alerts to receive customized email alerts when the fully formatted version of this article is published.
Excitatory Contribution to Binocular Interactions in Human Visual Cortex is Reduced in Strabismic Amblyopia

Abbreviated title: Excitation and suppression in amblyopia

Chuan Hou (侯川)*, Terence L. Tyson, Ismet J. Uner, Spero C. Nicholas and Preeti Verghese

Smith-Kettlewell Eye Research Institute, San Francisco, CA, 94115, USA

*Corresponding author:
Chuan Hou, M.D., Ph.D.
2318 Fillmore St. San Francisco, CA 94115
Phone: 415-345-2073
Fax: 415-345-8455
Email: chuanhou@ski.org

Manuscript information:
Pages: 49
Word count: Abstract (243), Introduction (592), and Discussion (1464)
Figure: 8 (all in color)
Table: 1

Financial interests or conflicts of interest: No

Acknowledgments
This work was supported by NIH Grant R01- EY025018 to C. Hou. We thank Dr. Jeffrey J. Tsai for sharing and providing the model script used in Tsai et al. (2012) and Margaret Q. McGovern for assistance in recruiting the participants.
Abstract

Binocular summation in strabismic amblyopia is typically reported as being absent or greatly reduced in behavioral studies and is thought to be due to a preferential loss of excitatory interactions between the eyes. Here, we studied how excitatory and suppressive interactions contribute to binocular contrast interactions along the visual cortical hierarchy of humans with strabismic and anisometropic amblyopia in both sexes, using source-imaged Steady-State Visual Evoked Potentials (SSVEP) over a wide range of relative contrast between the two eyes. Dichoptic parallel grating stimuli modulated at unique temporal frequencies in each eye allowed us to quantify spectral response components associated with monocular inputs (self-terms) and the response components due to interaction of the two eyes' inputs (intermodulation, IM-terms). While anisometropic amblyopes revealed a similar pattern of responses to normal-vision observers, strabismic amblyopes exhibited substantially reduced IM responses across cortical regions of interest (ROIs: V1, V3a, hV4, hMT+ and lateral occipital cortex), indicating reduced interocular interactions in visual cortex. A contrast gain control model that simultaneously fits self- and IM-term responses within each cortical area revealed different patterns of binocular interactions between individuals with normal and disrupted binocularity. Our model fits show that in strabismic amblyopia, the excitatory contribution to binocular interactions is significantly reduced in both V1 and extra-striate cortex, while suppressive contributions remain intact. Our results provide robust electrophysiological evidence supporting the view that disruption of binocular interactions in strabismus or amblyopia is due to preferential loss of excitatory interactions between the eyes.
Significance Statement

We studied how excitatory and suppressive interactions contribute to binocular contrast interactions along the visual cortical hierarchy of humans with normal and amblyopic vision, using source-imaged SSVEP and frequency-domain analysis of dichoptic stimuli over a wide range of relative contrast between the two eyes. A dichoptic contrast gain control model was used to characterize these interactions in amblyopia and provided a quantitative comparison to normal vision. Our model fits revealed different patterns of binocular interactions between normal and amblyopic vision. Strabismic amblyopia significantly reduced excitatory contributions to binocular interactions, while suppressive contributions remained intact. Our results provide robust evidence supporting the view that the preferential loss of excitatory interactions disrupts binocular interactions in strabismic amblyopia.

Key words:

binocular interactions, visual cortex, excitatory interactions, source-imaged SSVEP, amblyopia
Introduction

Amblyopia is a developmental disorder of spatial vision, characterized by visual acuity loss and abnormal binocularity (Holmes & Clarke, 2006). Strabismus (misaligned eyes) and anisometropia (unequal refractive error between the two eyes) are the most common causes of amblyopia (Simons, 2005; Woodruff et al., 1994). Behavioral studies report that binocular summation, the superiority of binocular vision over monocular vision (Campbell & Green, 1965), is absent or greatly reduced in strabismic amblyopia (Dorr et al., 2019; Lema & Blake, 1977; Levi et al., 1980; Pardhan & Gilchrist, 1992).

The loss of binocular neurons in the visual cortex is assumed to underlie the defects of binocular summation and stereopsis in strabismic animals (Harwerth et al., 1984; Hubel & Wiesel, 1965) and humans (Lema & Blake, 1977; Levi et al., 1979). It has been proposed that the neuroanatomical basis for the defects of binocular summation in strabismic animals is due to the preferential loss of excitatory intrinsic connections between neighboring ocular dominance columns (Lowel & Singer, 1992), leaving only inhibitory projections in the majority of neurons (for a review, see Sengpiel and Blakemore, 1996, (Sengpiel & Blakemore, 1996)). This is consistent with behavioral studies that reported an absence of binocular summation (Levi et al., 1979), but with normal dichoptic masking in human strabismus and/or amblyopia (Huang et al., 2011; Levi et al., 1979). A recent MEG source-imaging study (Chadnova et al., 2017) also reported an equal dichoptic masking effect in V1 between the two eyes in human strabismic amblyopia, supporting intact suppressive interactions in amblyopia between the two eyes.
However, there is an ongoing debate about the lack of binocular summation in strabismic amblyopia in a number of psychophysical studies (Baker et al., 2008; Baker et al., 2007; Mansouri et al., 2008). Baker et al. (2007) showed intact binocular summation in human strabismic amblyopia after they increased stimulus contrast to the amblyopic eye, indicating that strabismic amblyopia has latent binocular function that is normally hidden due to suppressive interactions from the fellow eye under normal viewing conditions (equal contrast in the two eyes). Importantly, Baker et al. (2007) suggest an alternative explanation for the absence of binocular summation in strabismus and/or amblyopia reported in earlier studies when equal contrast was presented to the two eyes (Dorr et al., 2019; Lema & Blake, 1977; Levi et al., 1980; Pardhan & Gilchrist, 1992). Baker et al. (2007) specifically suggest that boosting the signal to the amblyopic eye (by increasing the contrast in the amblyopic eye) can lead to normal levels of binocular summation (for a review, see (Hess et al., 2014)).

Therefore, in this study, we set out to answer two questions: 1) whether there are latent binocular interactions in visual cortex in human strabismus and/or amblyopia, and 2) how excitatory and suppressive interactions contribute to binocular contrast interactions along the visual cortical hierarchy in human strabismus and/or amblyopia. To address these questions, we used source-imaged Steady-State Visual Evoked Potentials (SSVEP) and frequency-domain analysis of dichoptic stimuli over a wide range of relative contrasts between the two eyes. This allowed us to quantify spectral response components associated with monocular inputs (self-terms) and the response components due to interaction of the two eyes’ inputs (intermodulation, IM-terms). Self-
term responses reveal the responses to each eye’s input and IM-term responses are a direct measure of interocular interactions in visual cortex (Brown et al., 1999). We used a contrast gain control model (Tsai et al., 2012) to study how excitatory and suppressive interactions contribute to binocular contrast interaction along the visual cortical hierarchy in humans with normal and disrupted binocular vision.

Materials and Methods

Participants

A total of 42 adults between 21 and 68 years old (mean ± SD, 42.69 ± 14.33) of both sexes (17 males) participated in this study. Twenty-seven participants with unilateral amblyopia had visual acuity (VA) equal or worse than 20/25 (0.1 logMAR) in the amblyopic eye, and VA equal or better than 20/20 (0 logMAR) in the fellow eye, measured with a Bailey-Lovie LogMAR chart at 6 m distance with the best optical correction. The study included fifteen individuals with 20/20 or better VA in each eye (Controls), who also participated in a previous study of normal binocular interactions (Hou et al., 2020). There was no significant difference (p=0.7855) in age between Controls (mean ± SD, 43.53 ± 15.19) and amblyopic participants (mean ± SD, 42.2 ± 14.11). All participants were recruited from the San Francisco Bay Area with a research advertisement and were refracted under noncycloplegic conditions by one of the authors (C.H.), a pediatric ophthalmologist, before the experiments. Amblyopic participants were classified into the following subgroups. Anisometropic amblyopia (referred to as Aniso; n = 10) was defined as unequal refractive error between the two eyes of at least 1 diopter in any meridian and with no constant ocular deviation or
history of strabismus surgery. Strabismic amblyopia (referred to as Strab; $n=17$) was defined as a constant ocular deviation or a history of prior strabismus surgery with or without anisometropia. There was no significant difference ($p=0.8799$) in logMAR VA in the amblyopic eye between the Aniso (mean \pm SD, 0.46 \pm 0.17) and the Strab (mean \pm SD, 0.47 \pm 0.19) groups. Depending on whether fusion was present with nonius alignment under a mirror stereoscope or an amblyoscope, Strabs were classified into Strab-with-fusion ($n=10$) and Strab-without-fusion ($n=7$) subgroups. Clinical details of the amblyopic participants are provided in Table 1. Stereoacuity was measured with Random-Dot Stereo Butterfly (Stereo Optical Company, Inc) at near distance (33 cm) with the best optical correction. Controls had stereoacuity of at least 40 arcsec. Anisos had measurable stereoacuity while most Strabs had non-measurable stereoacuity, as seen in Table 1. The dominant and non-dominant eye in Controls was determined using the hole-in-the card test. Participants who had congenital cataract, eccentric fixation (measured by a direct ophthalmoscope) and nystagmus or latent nystagmus (nystagmus that appears when covering one eye) were excluded from the study. The research protocol conformed to the tenets of the Declaration of Helsinki and was approved by the Institutional Review Board of The Smith-Kettlewell Eye Research Institute. Written informed consent was obtained before the experiments.

Insert Table 1 about here
Stimuli

Figure 1 illustrates the stimuli and experimental design. A pair of parallel sinusoidal gratings of spatial frequency 2 cycle/degree was presented on two matched Sony Trinitron monitors (model 110GS) viewed through cross-polarized filters (goggles) at a viewing distance of 100 cm. The dichoptic setting used two monitors placed at right angles with a beam splitter that combined the outputs of the two monitors. The left-eye and right-eye monitor outputs were passed through horizontal and vertical polarizing filters, respectively, before they reached a beam splitter. The observer viewed the display with passive polarizing glasses that ensured that each eye received the images presented on only one of the monitors (there was no crosstalk between the monitor signals, as measured with a Minolta CS-100 Chroma Meter). The screen had a resolution of 1024 by 768 pixels with a refresh rate of 85 Hz and a mean luminance at 46.2 cd/m². The gratings were contrast-reversed at 6.07 Hz in the amblyopic/non-dominant eye and at 8.5 Hz in the fellow/dominant eye of amblyopic/control participants, as shown in Figure 1A. The contrast of the gratings in the amblyopic/non-dominant eye (target contrast) was swept from 1.7% to 40% within a 10-second trial, while the mask contrast in the fellow/dominant eye was fixed at 20%. Specifically, the target contrast was swept over 10-logarithmic steps within 8.24 s duration, which included 10 sample epochs along with 2 additional epochs (one before and one after the sweep series) and yielded a 9.88 second trial with the frequency resolution at 1.21 Hz. Stimulus frequencies were chosen so that there were integer numbers of cycles in each epoch and the harmonics of the two frequencies would be precisely represented in the
spectrum. In this case, the frequencies 6.07 Hz and 8.5 Hz are 5 and 7 times the resolution of 1.21 Hz, respectively. For demonstration purpose, in Figure 1B, the spectrum was from the experiment where the contrasts in both eyes were fixed, and was calculated over an interval twice as long as the discrete level epochs in the sweep experiment, thus has half the frequency step, with 0.607 Hz between adjacent frequencies. The associated Fourier spectrum from the SSVEP responses was dominated by self-terms at the second harmonic response to the target frequency (2F1 at 12.14 Hz) and to the mask frequency (2F2 at 17 Hz), and also IM-terms, that are sum and difference of the monocular frequency inputs (F1+F2 at 14.57 Hz, F1-F2 at 2.43 Hz), as shown in Figure 1B.

Insert Figure 1 about here

EEG data acquisition and source localization

We used 128-channel HydroCell Sensor Nets and the Net Station 300 acquisition system (EGI, Eugene OR) to collect EEG data from each participant with a bandpass filter from 0.1 to 50 Hz and digitized at 500 Hz. Each trial had a ~10 s duration that was divided into 12 epochs (10 core + 1 prelude + 1 postlude), and with intervals of 3 ± 0.5 s (mean ± SD) between each trial. The prelude and postlude epochs were discarded for data analysis to eliminate stimulus onset/offset transients. A total of twenty trials were acquired from each participant at the best optical correction and 5-minute breaks were given after every 5 trials. Participants were required to align the nonius line in each eye and instructed to fixate on a central marker and avoid blinking during stimulus
The dichoptic setting itself allowed about 10° of adjustment of the visual angle horizontally to align the nonius lines. For Strab participants who had fusion, prism(s) was (were) used if their eye deviation was beyond 10° horizontally, and/or if they had vertical deviation. For the Strab participants who had no fusion, the prism(s) was (were) used to adjust the nonius lines to the point that fusion was broken. After the EEG recording, three fiducials (nasion, right and left preauricular) and the 3D locations of 128 sensors were recorded for each participant at the end of the EEG session, using a ‘Fastrak’ radio-frequency 3D digitizer (Polhemus, Colchester VT). This 3D sensor location data was used to co-register to participants’ T1-weighted anatomical Magnetic Resonance (MR) scans, in which a three-shell boundary element model of the skull and scalp was computed. A custom software package with post-processed EEG signals and artifact rejection (eye movements and blinks) designed by the Norcia research group (Ales et al., 2013) was used for offline EEG data processing and analysis.

The details of EEG source localization used in this study have been described elsewhere (Appelbaum et al., 2006; Cottereau et al., 2011; Hou et al., 2016; Hou et al., 2017; Hou et al., 2020). In brief, each of the participants had structural and fMRI scans in a separate session to define cortical areas. MRI data was acquired on a 3T Siemens Prisma Fit scanner. Structural MRI scans covered the whole head at 0.8 mm³ cubic voxel resolution and segmented using Freesurfer (Martinos Center for Biomedical Imaging: https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferMethodsCitation). Functional MRI had a resolution of 1.6 mm³ cubic voxels with a repetition time of 1.5 seconds. Functional MRI data were corrected for motion artifacts using the FSL
software library (FMRIB, Oxford, UK). The regions of interest (ROIs) corresponding to visual areas V1, V2v, V2d, V3v, V3d, V3a, and hV4 were defined by a procedure based on retinotopic mapping using fMRI (Engel et al., 1997) using rotating wedge and expanding ring stimuli created with vistadisp software (VISTA Lab, Stanford University). Area hMT+ was identified using low-contrast motion stimuli (Huk & Heeger, 2002). The lateral occipital cortex (LOC) was defined using an fMRI localizer scan with stimuli from Kourtzi and Kanwisher (Kourtzi & Kanwisher, 2000). All fMRI stimuli were in a block design with a 24-second cycle and viewed through a mirror on an LCD display behind the bore providing a 12.6 degree diameter field of view. ROIs were defined using the mrVista Matlab toolbox (VISTA Lab, Stanford University). Cortical source models were created with the MNE software package (Gramfort et al., 2014). Figure 1C shows a sample MRI scan from one participant to define the ROIs (V1, V3a, hV4, hMT+ and LOC) in visual cortex that were used to localize the sources of EEG scalp potentials. An L2 minimum norm inverse with sources constrained to the location and orientation of the cortical surface (Hämäläinen et al., 1993) was computed for EEG source localization.

ROI-based analysis

Since V1 is the first neural locus where the visual inputs from the two eyes are combined, we specifically examined responses in V1. The responses in extra-striate cortex, including V3a, hV4, hMT+ and LOC were also examined. We excluded the areas V2 and V3 due to the potential for cross-talk from other areas (Cottereau et al., 2011). The raw EEG recordings for each trial were divided into 10 sequential core epochs that corresponded to the swept contrast values, so that we could measure contrast response
functions. A recursive least-squares adaptive filter (Tang & Norcia, 1995) was used for each epoch to generate a series of complex-valued spectral coefficients representing the amplitude and phase of harmonic responses (Hou et al., 2007; Hou et al., 2017). To take into account the different noise levels for each participant (Vialatte et al., 2010), we computed the signal-to-noise ratio (SNR) for each participant by dividing peak amplitudes by the associated noise. The noise was defined for a given frequency by the average amplitude of the two neighboring frequencies (stimulus frequencies ± 1.21 Hz). The SNRs versus contrast response functions were obtained by coherently averaging the spectral coefficients for each epoch across trials for each participant, ROI and harmonic component. Then, we averaged the SNRs incoherently across the participants in each group. There were no significant differences between left and right hemisphere for IM responses (F1+F2 at 14.57 Hz) in V1 for both the control (p=0.586) and amblyopic (p=0.689) groups when collapsing across ROIs, therefore we averaged the data from both hemispheres for further analysis.

Contrast response modeling

The Tsai et al. (2012) model (Tsai et al., 2012) extended a well-established description of the contrast response function—the hyperbolic ratio function (Albrecht & Hamilton, 1982; Naka & Rushton, 1966) and included a time varying contrast input that explained the full range of frequency-domain responses in a non-dichoptic masking study. As described in Hou et al. (2020) and summarized below, we made several modifications to adapt the Tsai et al. (2012) model to fit data from our dichoptic masking paradigm in participants with normal binocular vision (Hou et al., 2020) as well as participants with
disrupted binocular vision (the present study). The modifications from Tsai et al (2012) include: 1) The target and mask stimuli were presented to different eyes; 2) A weighting factor for the target contrast input was used to model the relative contributions of the target and the mask contrast in our dichoptic masking study; 3) An additive baseline parameter was used to account for the SNR floor not being around 1. Thus, the variant of the Tsai et al (2012) model used in this study is described by the following:

\[
c(x,t) = 2 \sin[2\pi f_x x] \left[w_{\text{target}} c_{\text{target}} \cos[2\pi f_{\text{target}} t] + c_{\text{mask}} \cos[2\pi f_{\text{mask}} t] \right] \tag{1}
\]

\[
\dot{c}(t) = \left| \frac{c(x,t)}{2 \sin[2\pi f_x x]} \right| = \left| w_{\text{target}} c_{\text{target}} \cos[2\pi f_{\text{target}} t] + c_{\text{mask}} \cos[2\pi f_{\text{mask}} t] \right| \tag{2}
\]

\[
u(t) = \frac{[\dot{c}(t)]^p}{[\dot{c}(t)]^q + [w_{\text{target}} \sigma]^q} \tag{3}
\]

\[
R(f) = R_0(f) + R_m|U(f)| \tag{4}
\]

Equation (1) defines the counterphase flicker of a sinusoidal grating over time and space \(c(x,t)\), where \(c_{\text{target}}\) and \(c_{\text{mask}}\) are the contrasts of the Target and Mask, respectively, \(f_{\text{target}}\) and \(f_{\text{mask}}\) are their temporal frequencies (Bonin et al., 2006; Carandini, 2004; Tsai et al., 2012) and \(w_{\text{target}}\) is a weighting factor of target contrast relative to mask. Equation (2) is the absolute value of the contrast modulation at each point in space, normalized to its maximal value. Equation (3) defines the non-linearity,
where σ is a semi-saturation constant representing contrast sensitivity, p is an exponent of the excitation, and q is an exponent of divisive suppression (Chen et al., 2001; Foley, 1994; Peirce, 2007; Xing & Heeger, 2001), as described in Tsai et al. (2012). Equation (4) is the function fit to the data, where $R(f)$ is the SNR at frequency f. The parameter R_0 is a frequency-dependent baseline parameter we added to account for the signal-to-noise floor, and R_m is the response gain factor. The notation $|U(f)|$ denotes the amplitude of the Fourier transform of time series $u(t)$ at frequency f. Parameter values were obtained by nonlinear constrained optimization (MATLAB function fmincon) to minimize the sum of the squared residual error. The coefficient of determination (R^2) was used to assess goodness of the model fits. The standard deviations and confidence intervals of the fit parameter values were estimated from the distributions of 1000 bootstrap resamplings, drawn randomly from participant data in each group with replacement.

Our model of binocular combination is linear up to the binocular summation stage, followed by divisive normalization and non-linear exponents. This is different from the Meese et al (2006) model (Meese et al., 2006) and the Ding and Levi (2014) model (Ding & Levi, 2014) for binocular combination that have explicit stages of interocular suppression (normalization) before binocular combination. Our model is equivalent to these models if the nonlinear exponents at the monocular stages are set to 1, allowing a linear combination of the inputs from the two eyes. Thus, our version of the model does not differentiate whether the divisive normalization occurs before or after binocular combination.
Statistical analysis

Brown-Forsythe tests in Matlab were used to test the homogeneity of variance for each factor (group, ROI) in figures 2 and 4. The initial analyses were conducted in R using a mixed between- and within-subjects design ANOVA (Fig. 2 and 4). The two-tailed heteroscedastic t-tests were conducted in Excel to identify the group differences in figures 2 and 4, as well as visual acuity and age. Bonferroni correction was used to control the familywise error rate for repeated t-tests in each group (Control, Aniso and Strab) for Figure 2B, in which the significance level was at $0.05/3 = 0.017$. The group differences of the fit parameter values (figures 6, 7 and 8) were identified by the Wilcoxon rank sum tests in Matlab and corrected by Bonferroni correction as well. The nested model F-tests were conducted in Matlab.

Results

I: **Responses at IM frequency are significantly reduced along the visual cortical hierarchy in strabismic amblyopia**

In SSVEP, the presence of IM-terms tagged with combinations of the unique temporal frequencies presented to each eye is neural evidence for interocular interaction (Hou et al., 2020), as they can result only from the interaction of the two eyes’ inputs (Brown et al., 1999). Among the IM components, $F1+F2$ at 14.57 Hz was dominant in our study as seen in Figure 1B, therefore, we used this particular IM component as an index of interocular interaction in the visual cortex.
Figure 2 plots the group mean of IM signal-to-noise ratio (SNR) as a function of target contrast in various cortical areas. As seen in Figure 2, when the target contrast in the amblyopic/non-dominant eye was swept from 1.7% to 40% while the mask contrast in the fellow/dominant eye was fixed at 20%, the IM responses across all ROIs in Controls (blue) started early (around 2.5%) and continued to increase to a peak, where both target and mask contrasts were matched at 20%, and then declined thereafter. Anisos showed a similar pattern to Controls, except for V3a, although overall response amplitudes seemed weaker than those in Controls. Strabs, including those with and without fusion (orange and purple, respectively), had diminished IM responses in all ROIs, except for V1 at high target contrast (above 20%) in the subgroup with fusion. The homogeneity of variances for each of two factors (group: $p>0.05$; ROI: $p>0.05$) was tested and revealed equal variances. An initial between-subject ANOVA with two factors (Group: Control, Aniso and Strab; ROI: V1, V3a, hV4, and hMT+ and LOC) revealed significance $[F(1,39) = 388.48, p<0.001]$. To reduce data dimensionality, we combined the Strab subgroups (with and without fusion) into one group and only picked the peak IM responses at 20% target contrast for the initial analysis. The interaction of ROI and group was not significant $[F(8,72) = 1.50, p=0.174]$, suggesting that there was no significant difference in groups across ROIs. However, ROIs $[F(4,36) = 3.19, p=0.024]$ and groups $[F(2,39) = 12.18, p<0.001]$ were significant. The ROI differences were likely driven by the higher responses in V1 than in extra-striate cortex. This phenomenon has been observed in individuals with normal binocular vision (Hou et al., 2020). We further compared Anisos and Strabs near the peak IM responses (at 20% target contrast level) to Controls with two-tailed heteroscedastic t-tests. Strabs-with-fusion had significantly
lower SNR than control across all ROIs ($p<0.01$), while Anisos had significantly lower
SNR than Controls only at V3a ($p<0.05$). To determine whether the IM response is
significantly above the SNR floor level in Strabs, we performed a one-sample t-test
against an SNR of 1 for the peak IM. Responses in the Strab-with-fusion subgroup were
significant only at V1 ($p<0.05$), but not for extra-striate areas, whereas responses for the
no-fusion subgroup, were not significant in any ROI. This finding indicates that there are
latent interocular interactions in the visual cortex when contrast is increased in the
amblyopic eye of strabismic amblyopes. However, it appears this happens only for the
individuals with binocular fusion, although this latent binocular interaction is still
significantly weaker than that in normal binocular vision.

To explore the link between the IM responses and binocularity, we plot IM responses in
V1 and V3a as a function of stereoacuity for each participant in Fig. 2C. This relation
demonstrates that measurable stereoacuity is related to IM responses above the noise
floor (SNR = 1). Most anisometropic amblyopes have residual binocular function (i.e.,
have residual stereopsis as seen in Table 1) and show some level of interocular
interactions in visual cortex (Fig. 2C, red) whereas strabismic amblyopes (orange and
purple) with worse or non-measurable stereoacuity had IM responses near the noise
floor. This finding of reduced or absent interocular interaction is consistent with previous
psychophysical report of absence in binocular summation in strabismic amblyopia (Levi
et al., 1979). Furthermore, we also compared IM responses for 3 Strabs who had
measurable stereoacuity (1500"- 2000") to 3 Anisos who had poor stereoacuity (400"-
800"), as well as to the full group mean of Anisos and Strabs, as seen in Figure 3 (upper
The IM responses of the 3 Strabs with measurable stereopsis (Panel C) are similar to the 3 Anisos with the poorest stereopsis (Panel B). In particular, there is a tendency for the IM term to decrease with decreasing binocularity (going from Panel A to E), with a transition from a clear and strong peak IM response to non-existent IM responses in V1 (red).

II: Responses at self-term frequencies are significantly reduced along the visual cortical hierarchy in strabismic amblyopia

The use of dichoptic parallel grating stimuli in each eye modulated at distinct temporal frequencies allowed us to quantify spectral components associated with the individual stimuli from monocular inputs (responses at self-term frequencies).

Target responses from the amblyopic eye (2F1)

Figure 4A plots mean SNR of the target responses (2F1) from the amblyopic eye as a function of target contrast in various cortical areas, while the mask contrast was fixed at 20% in the fellow eye. As seen in Figure 4A, when target contrast was swept from 1.7% to 40%, the responses to the target across all ROIs were evident at around 7% to 10%
target contrast and then increased monotonically until it saturated at around 28% target contrast in the control (blue) group. The Aniso group (red) showed a similar pattern to the control group but had weaker responses, especially for V3a. The Strab group with fusion (orange) did not show target responses in all ROIs until the target contrast reached 20% and matched the mask contrast level. The Strab group without fusion (purple) barely showed target responses even at high target contrast level (28%) in areas V3a and hMT+. Equal variances were revealed for each factor (group: $p>0.05$; ROI: $p=0.05$, after removing one outlier in Controls $p>0.05$). An initial between-subject ANOVA with two factors (Group: Control, Aniso and Strab [combined subgroups]; ROI: V1, V3a, hV4, and hMT+ and LOC) revealed significance [$F(1,39) = 113.55, p<0.001$].

To reduce data dimensionality, we picked the peak response at 28% target contrast for the initial analysis. The interaction of ROI and group was significant [$F(8,72) = 1.19, p=0.049$], suggesting that there is a significant difference in groups at various ROIs.

Then, we further compared Aniso and Strab groups at the peak responses to the control group. The differences between Anisos and Controls did not reach significance in any of the 5 ROIs, after Bonferroni correction. For the combined Strab group, SNR was significantly weaker than that of the control group in V1 ($p<0.01$), V3a ($p<0.01$) and LOC ($p<0.001$) after Bonferroni correction, but the differences did not reach significance in hV4 and hMT+ after Bonferroni correction.

Furthermore, we also compared target responses from the amblyopic eye (2F1) for 3 Strabs who had measurable stereoacuity (1500"- 2000") to 3 Anisos who had poor stereoacuity (400"- 800"), as well as to the full group mean of Anisos and Strabs, as
seen in Figure 3 (lower row). There is a tendency for the 2F1 responses to decrease with decreasing binocularity (going from Panel A to E), with a transition from a clear and strong response to weak or non-existent responses in V1 (red).

Mask responses from the fellow eye (2F2)

Figure 4B plots mean SNR of the mask responses from the fellow/dominant eye at 20% fixed contrast as a function of target contrast in various cortical areas, while the target contrast was swept from 1.7% to 40% in the amblyopic/non-dominant eye. As seen in Figure 4B, the responses to the mask (2F2) across all ROIs and all groups showed a similar masking trend as the target contrast increased: the responses to the mask frequency were high when target contrast was low (e.g., at 1.7%), and the responses decreased as the target contrast was increased to 40%. Equal variances were revealed for each factor (group: \(p>0.8\); ROI: \(p>0.8\)). An initial between-subject ANOVA with two factors (target contrast level: 1.7% and 40%; ROI: V1, V3a, hV4, and hMT+ and LOC) revealed significance \([F(1,39)=149.98, \ p<0.001]\). There were significant differences among the ROIs \([F(4,36)=4.47, \ p=0.005]\) and target contrast level \([F(1,39)=37.24, \ p<0.001]\), indicating a masking effect from the amblyopic/non-dominant eye to the fellow/dominant eye in various ROIs of 4 groups. However, there were not significant differences among groups \([F(2,39)=0.36, \ p=0.702]\). To reveal whether the masking effect has a similar trend across all groups, we further calculated the masking percent
defined as \((2F2 \text{ at } 1.7\% - 2F2 \text{ at } 40\%)/(2F2 \text{ at } 1.7\%\) across ROIs in 4 groups. A one-way between-subject ANOVA revealed no significant differences among groups \([F(2,39) = 0.05, p=0.956]\) and ROIs \([F(4,36) = 1.91, p=0.130]\), suggesting that the masking effect from the amblyopic eye to the fellow eye in both Anisos and Strabs was the same as the masking effect from the non-dominant eye to the dominant eye in Controls across V1 and extra-striate cortex. As our paradigm used a mask of fixed contrast in the dominant/fellow eye and as we did not include a mask-alone condition, we cannot directly compare the masking effect of each eye on the other.

III: A Dichoptic gain control model fits both self- and IM-term responses

We modified a gain control model (Tsai et al., 2012) that can simultaneously fit both self- and IM-term responses in a target + mask paradigm to account for dichoptic masking in our study. This variant of the Tsai et al. (2012) model included the excitation \((p)\) and divisive suppression \((q)\) components, which provided critical information regarding the excitatory and suppressive contributions to binocular contrast interactions at each level of the visual cortical hierarchy. The model fits are shown in Figure 5, where the black solid lines indicate the best fitting model. The corresponding fit parameters and values in each ROI are listed on the right side of the panels in each group. There are several critical observations from our model fits described below.

Insert Figure 5 about here
Excitatory and suppressive contributions to binocular contrast interactions

Our model fits revealed a different pattern of relationship between excitatory \((p)\) and suppressive \((q)\) contributions in binocular contrast interactions among Controls, Anisos and Strabs-with-fusion. We excluded the Strabs-without-fusion subgroup, because this group produced responses that were too weak to model. The excitatory \((p)\) contribution to binocular contrast interactions in Strabs was significantly smaller than those in Controls and Anisos (Fig. 6A), while the suppressive \((q)\) contribution was similar among the 3 groups (Fig. 6B). This is also further evident in Figure 6C, where the differences between the suppressive \((q)\) and excitatory \((p)\) exponents were significantly larger in Strabs (orange) across all ROIs, compared with those in Anisos and Controls. This finding indicates greatly reduced excitation in visual cortex of strabismic amblyopia, while suppressive interactions remain intact.

Insert Figure 6 about here

Weaker contribution to binocular interactions from the amblyopic eye of strabismic amblyopes

We observed that the relative weight of the target contrast was on average of \(1.45 \pm 0.21\)SD across ROIs, compared to a weight of 1 in the mask eye in the control group. The unequal weights between the eyes for Controls are likely due to our stimulus setting, in which the target eye had swept contrast while the mask eye had a fixed
(Carandini et al., 1998; Dragoi et al., 2000). The Aniso group had a similar target weight (1.67 ± 0.37SD) to the control group. However, the Strab-with-fusion group had an average contrast weight of 0.33 ± 0.0.12SD across all ROIs except for area hMT+ ($W_{\text{target}} = 2$) (Fig. 7A, orange), which is at least 4 times smaller than the value of controls. This finding indicated that in strabismic amblyopes, the contribution of the amblyopic eye (target contrast) to binocular contrast interactions was attenuated. This suggests that binocular contrast interactions in the visual cortex are dominated by the visual input from the fellow eye in strabismic amblyopia and are extremely imbalanced compared to normal binocular vision.

Insert Figure 7 about here

Rightward shifts of contrast response function in amblyopia

Our model fits showed a rightward shift of contrast response function in amblyopic participants, particularly in strabismic amblyopes, compared to that in normal-vision observers. This is evident in Figure 7B, in which the values of the semi-saturation constant (sigma) across all ROIs, except for hMT+, were substantially increased in the Strab group. The Aniso group had slightly increased sigma in areas hMT+ and LOC, compared to the values in control group.
In our variant of the Tsai et al. (2012) model, we have added parameters (e.g., R_0 and W_{target}) to fit our dichoptic study. The parameter R_0 was an additive baseline parameter that was used to account for the SNR floor not being around 1. The parameter W_{target} was the relative contributions of the target and the mask contrast in our dichoptic study. To determine the contributions of these added parameters, we conducted nested model F-tests for the full model vs. reduced versions of the model where one parameter at a time was set at a fixed value. The reduced model variants include: $R_0 = 1$, $W_{\text{target}} = 1$, as well as $p = q$ for each of the three groups (Controls, Anisos and Strabs w/fusion) in both V1 and extra striate cortex (hV4). The tests revealed that the baseline parameter R_0 was significant in both V1 and hV4 for all three groups ($p < 0.01$). W_{target} was a significant fit parameter for all three groups in V1 ($p < 0.001$), but was only significant for the Strab w/fusion group in hV4 ($p < 0.001$). Recall that the W_{target} parameter in our study captures two contributions to the differential weighing of each eye’s input: 1) the attenuation of the input in the weaker eye (equivalent to the attenuation proposed by Baker et al. (2008) (Baker et al., 2008)); and 2) the differential effectiveness of the swept contrast stimulus in the non-dominant eye vs. the fixed contrast stimulus in the dominant eye. In our previous paper on data from normal-vision observers (Hou et al., 2020), we proposed that the relative lower weight of the fixed contrast input might be due to adaptation during the 8.24-s grating stimulus presentation. Previous electrophysiological studies have shown a strong orientation-selective adaptation in macaque V1 after prolonged exposure (>10 s) (Carandini et al., 1998; Dragoi et al., 2000). It is possible that these adaptation effects are less pronounced in hV4 for Controls and Anisos, leading to non-significant effects of keeping
the W_{target} parameter fixed. However, W_{target} has a significant effect for the Strab w/fusion group, both in V1 and in extra-striate cortex ($p < 0.01$), consistent with previous studies (Baker et al., 2008; Chadnova et al., 2017). Setting $p = q$ had a significant effect in both V1 ($p = 0.01$) and hV4 ($p = 0.001$) for the Strab w/fusion group, but not for the Control and Aniso groups ($p > 0.1$). These findings suggest that in addition to the attenuation of visual input from the weaker eye of strabismic amblyopes, the relative strength of excitatory and suppressive interactions is altered when binocularity is disrupted.

Response gain reduced at V1 in amblyopia

We have seen that the response strength in general was weaker in amblyopia including both the Aniso and Strab groups, compared to the strength in the control group (Figs 2A and 4A). These were also characterized primarily by changes to the response gain factor (R_m), which are evident in Figure 8. Previous studies have shown that the response gain in V1 was about a factor of 2 higher than in extra-striate cortex in normal binocular vision (Hagler, 2014; Hou et al., 2020). We observed a similar phenomenon in the control (Fig. 8A) and Aniso (Fig. 8B) groups in our study, although the Aniso group had slightly weaker response strength in V1 with a broader distribution of bootstrapped values compared to the control group. However, no significant differences were found between the Control and Aniso groups across all ROIs. Strabs had substantially reduced strength in V1 compared to the Control group, as seen in the histograms in Figure 8C. Except for area hMT+, all ROIs had significantly weaker response gain in Strabs than in controls.
Our model fits show that the low response strength of the Strab group is consistent with a reduced excitation p across all ROIs (Fig. 6A), as well as low response gain R_m (Fig. 8C), compared to the control group. To determine whether the weak responses in the Strab group are better characterized by a low response gain (R_m), or by low excitatory (p) exponent, we refit the model keeping one of these terms fixed, while allowing the other terms to vary. Both variants yielded good fits to the data with the value of R_m, inversely related to the value of p. However, the main characteristic of the fits (whether p or R_m was fixed) was that the suppressive exponent (q) had to be greater than the excitatory exponent (p) to obtain a good fit of the model, further indicating that excitation was truly weaker in strabismic amblyopia. Model variants that constrained the ratio q/p to 1 generally provided worse fits to the data.

Discussion

In the present study, we investigated neural dynamics of normal and disrupted binocular contrast interactions along the visual cortical hierarchy, including V1 and extra-striate cortical areas V3a, hV4, HMT+ and LOC, using source-imaged SSVEP and frequency-domain analysis of dichoptic stimuli over a wide range of relative contrast between the two eyes. We found that there are two forms of binocular interactions in the visual cortex that are disrupted severely in strabismic amblyopia, but not in anisometropic amblyopia. One form is a direct measure of interocular interaction represented by IM-
terms between inputs from the two eyes, which was found greatly disrupted in the visual
cortical hierarchy of strabismic amblyopes (Fig. 2). This finding is consistent with a
previous VEP study using a similar approach on strabismic monkeys (Baitch et al.,
1991) and a behavioral study that reported an absence of binocular summation in
human strabismus and amblyopia (Levi et al., 1979). Another form is self-term
responses to individual stimuli, which were also found greatly reduced in the visual
cortex of strabismic amblyopes. This finding is consistent with an MEG study of V1 in
human strabismic amblyopes (Chadnova et al., 2017). Importantly, the current study
further quantified the magnitude of these effects with a gain-control model that includes
a more complete profile of excitatory and suppressive contributions in binocular
interactions. Similar to our previous results in participants with normal binocular vision
(Hou et al., 2020), we were able to document these interactions along the human visual
cortical hierarchy, including V1 and extra-striate cortex in disrupted binocular vision,
such as strabismic amblyopia.

Excitatory contributions to binocular interactions are reduced in strabismic
amblyopia, while suppression contributions are intact

Our model fits revealed different patterns of binocular interaction along the visual
cortical hierarchy in normal and disrupted binocular vision, particularly in terms of
excitatory and suppressive contributions. Our fit results showed greatly reduced
excitation (p) in both V1 and extra-striate areas V3a, hV4 and LOC, except for hMT+, in
human strabismic amblyopia (Fig. 6A), while suppressive interactions (q) remained
intact with no change compared to normal vision observers (Fig. 6B). This finding
suggests that while strabismic amblyopia disrupted the normal excitatory interactions between the two eyes, cortical inhibitory binocular connections were not disrupted, which lead to a dominance of suppressive interactions in striate and extrastriate (Fig. 6C). This finding is in agreement with physiological reports of V1 and V2 in amblyopic macaque monkeys (Hallum et al., 2017) who found that excitatory drive from the fellow eye dominated amblyopic visual cortex, especially in more severe amblyopes, but that suppression from both the amblyopic eye and the fellow eye was prevalent in all amblyopic animals. Our results provide robust electrophysiological evidence supporting the proposal that disruption of binocularity in strabismus or amblyopia is due to preferential loss of excitatory intrinsic connections between neighboring ocular dominance columns, leaving only inhibitory projections in the majority of neurons (for a review, see Sengpiel and Blakemore (Sengpiel & Blakemore, 1996)). Furthermore, our study provides a more complete profile regarding how excitatory and suppressive interactions contribute to the disruption of binocularity in humans not only in V1, but also in various extra-striate visual cortices.

Imbalanced contribution to binocular contrast interactions between the eyes in strabismic amblyopia

One of the critical parameters in our model fits is contrast weight in the amblyopic eye (W_{target}), which determines the relative contribution of the two eyes in binocular contrast interactions (the mask contrast had a fixed weight of 1). Our model fits revealed that the relative contribution of the amblyopic eye (target contrast) to binocular contrast interactions in strabismic amblyopes was about a factor of 3 weaker than that of the
fellow eye (mask contrast) across all ROIs, except for area hMT, which showed a similar weight to the control group (Fig. 7A). However, the relative contribution of the amblyopic eye to binocular contrast interactions in anisometropic amblyopia was similar to the non-dominant eye of the control group. This indicated that the visual inputs from the two eyes are extremely imbalanced in strabismic amblyopes, but not in anisometropic amblyopes, compared to normal binocular vision. This finding is consistent, at least in part, with a previous study that measured responses of single units in V1 of strabismic monkeys to dichoptic stimuli and attributed the observed binocular deficits to a reduction in functional inputs from one eye rather than an aberrant form of binocular interaction (Smith et al., 1997). A previous source-imaged MEG study (Chadnova et al., 2017) also reports a similar effect in human strabismic amblyopes. Chadnova et al. (2017) reported that the average attenuation in the amblyopic eye in V1 was about 0.21 relative to the fellow eye, indicating that the amblyopic eye is 5 times weaker than the fellow eye. One of the reasons why our data showed less disruption of binocular interactions (amblyopic eye is only 3 times weaker) might be because we only include strabismic amblyopes with fusion in the model fits. Overall, our results with low W_{target} values in strabismic amblyopes along with the findings from single-neuron recordings and MEG/EEG measurements are in agreement with the proposal of attenuation of the visual input from the amblyopic eye in a psychophysical study (Baker et al., 2008). However, our study differs from these studies (Smith et al., 1997; Chadnova et al., 2017; Baker et al., 2008), as it reveals not only weak input from the amblyopic eye of strabismic amblyopes (low W_{target}), but also poor excitation (low p_{term}), resulting in poor binocular interactions.
Selectivity in disruption of binocularity in extra-striate cortex

Our model fits revealed selective disruption of binocularity in the extra-striate cortex in both anisometric and strabismic amblyopia. For example, while other extra-striate areas showed greatly increased imbalance to binocular interactions between the eyes \((W_{\text{target}}-0.33, \text{Fig. 6A})\) and sigma \((\text{Fig. 7B})\), as well as excitation \((p)\) \((\text{Fig. 6A})\), area hMT+ showed normal values of these parameters in strabismic amblyopes, as compared to the control group. The difference between excitation \((p)\) and suppression \((q)\) in hMT+ was also smaller than in other extra-striate areas \((\text{Fig. 6C})\). It is not clear why hMT+ is relatively spared from disruption of binocular contrast interaction, as previous studies have not specifically investigated binocularity in extra-striate cortex.

Another example of selective disruption of binocularity in the extra-striate cortex is that interocular interactions \((\text{IM responses})\) in the Aniso group were significantly reduced in V3a compared to the control group \((\text{Fig. 2B})\), while responses in other extra-striate areas \((\text{i.e., hV4, hMT+ and LOC})\) were similar in these two groups. The Strab group had diminished IM responses in all extra-striate areas; therefore, the selective disruption of binocularity in the extra-striate areas is less clear. This finding points to the important role of V3a in processing binocular vision and disparity information in monkeys \((\text{Hubel et al., 2015; Tsao et al., 2003})\) and humans \((\text{Cottereau et al., 2011})\). Compared to other areas in extra-striate cortex, our results indicate that V3a is more vulnerable to...
disrupted binocularity, which is consistent with its role as an important cortical area for binocular vision.

Latent binocular interactions in amblyopic visual cortex

Our study revealed that there are latent interocular interactions in the visual cortex when stimulus contrast is increased to the amblyopic eye in strabismic amblyopes. We found that although strabismic amblyopia had greatly reduced interocular interactions represented by the IM responses, individuals with residual binocular fusion, but not individuals without fusion, showed a weak IM response in V1 at high contrast in the amblyopic eye (Fig. 2A, left panel). This is consistent with a behavioral study in human strabismic amblyopia that reported the presence of binocular summation when the contrast in the amblyopic eye was adjusted to equate monocular sensitivities (Baker et al., 2007). Our results provided electrophysiological evidence of latent interocular interactions in early visual cortex in strabismic amblyopes who have residual binocular functions, such as fusion. In contrast, anisometropic amblyopes had a pattern of interocular interaction (IM responses) that was only slightly weaker than the pattern for individuals with normal binocular vision. This is likely because individuals with anisometropic amblyopia had residual binocular function, such as reduced but measurable stereoacuity, while the majority of strabismic amblyopes had severely disrupted binocular function and had non-measurable stereoacuity (see Table 1). Thus, our results are consistent with McKee et al. (2003) study (McKee et al., 2003), which suggests that binocularity is a good index of visual contribution of the amblyopic eye.
In conclusion, our model fits revealed different patterns of binocular interaction between normal and amblyopic vision. In addition to attenuation of visual input from the non-fixating weaker eye, strabismic amblyopia had significantly reduced excitatory contributions to binocular interactions while leaving suppressive contributions intact. Our results provided robust evidence supporting the view that disruption of binocular interactions in strabismus or amblyopia is due to preferential loss of excitatory interactions between the eyes.
References

Legends:

Figure 1. Illustration of stimuli and experimental design. A. Dichoptic setting for a pair of parallel gratings that were contrast-reversed with unique temporal frequency in each eye, viewed through cross-polarized goggles. The target contrast in the amblyopic/non-dominant eye was swept from 1.7% to 40% in 10-logarithmic steps within a 10-second interval, while the mask contrast in the fellow/dominant eye was fixed at 20%. B. Fourier spectrum and dominant response components in V1 from one participant, with both target and mask contrasts set at 20%, for purposes of illustration. C. Illustration of cortical regions of interest (ROIs) defined by structural and functional MRI from a sample participant.

Figure 2. Profile of IM responses in the visual cortical hierarchy. Error bars denote SEM. Colors denote groups as described in the legend. A. Mean signal-to-noise ratio (SNR) of IM responses as a function of target contrast in 4 groups: Controls, Anisos and Strabs with and without binocular fusion. Across all ROIs, the peak IM responses were near 20% target contrast (vertical dash lines), where the target contrast matched mask contrast. B. IM responses measured at 20% target contrast in 4 groups, where both the
target and mask contrast were at 20%. Horizontal dashed lines indicate SNR floor of 1.

Colored asterisks indicate statistical significance of group comparisons to Controls; and the black asterisk indicates t-test against an SNR level of 1. *, ** and *** indicate p<0.017, <0.01 and <0.001 significance levels, respectively. C. IM responses (SNR) at 20% target contrast in V1 (left panel) and V3a (right panel) as a function of stereoacuity in individual participants.

Figure 3. Mean signal-to-noise ratio (SNR) of IM (upper row) and self-term (2F1, lower row) responses as a function of target contrast in various visual areas in the Aniso group (A), 3 Anisos with poor stereoacuity (400°-800°) (B), 3 Strabs with measurable stereoacuity (1500°-2000°) (C), the Strab with fusion group (D) and the Strab with no fusion group (E). Colors denote cortical areas. Data for A, D and E are replotted from Figs. 2A and 4A.

Figure 4. Mean signal-to-noise ratio (SNR) of self-term responses as a function of target contrast in different visual areas in 4 groups. Error bars denote SEM. Colors denote groups. Vertical dashed lines indicate matched target and mask contrasts at 20%. A, SNR to target stimuli that were swept from 1.7% to 40% of contrast in the amblyopic/non-dominant eye. B, SNR to mask stimuli that were fixed at 20% of contrast in the fellow/dominant eye.
Figure 5. Fits of a variant of the Tsai et al. (2012) model to self-term and IM-term responses in different visual areas in 3 groups: Controls, Anisos and Strabs-with-fusion. Data are replotted from Fig. 2A and Fig. 4AB. Target responses at 2F1 from the amblyopic/non-dominant eye are shown in red; mask responses at 2F2 from the fellow/dominant eye are shown in blue, and the IM responses at F1+F2 representing interocular interactions from the two eyes are shown in green. Error bars denote SEM. Black solid lines indicate the best fitting model. The corresponding fit parameters in each ROI are listed on the right side of the panels for each group. The fit parameters are: semi-saturation value (θ), excitatory (β) and suppressive (λ) factors, response gain (R_m), weight of the amblyopic eye relative to the fellow eye (W_{target}), goodness of fit (R^2). R_0 indicates a baseline parameter for each response component.

Figure 6. Estimated values of excitation (p) and suppression (q) from Figure 5 across ROIs in the 3 groups. Colors denote groups. Error bars denote standard deviation, estimated from bootstrap samples. A, Across ROIs, excitatory (β) values were on average 2.4, 1.9 and 0.8 in the control, Aniso and Strab groups, respectively. B, Across ROIs, suppressive (q) values were on average of 2.7, 2.2 and 2.4 in Strab, Aniso and control group, respectively. C, The differences between suppressive (q) and excitatory (p) exponents were significantly larger in the Strab group (orange) across all ROIs, compared with those in the Aniso and control groups. The areas highlighted in green
and pink indicate suppression (q) and excitatory (p) dominance, respectively. *, ** and *** indicate $p<0.017$, $p<0.01$ and $p<0.001$ significance levels, respectively.

Figure 7. Target contrast weight (A) and sigma (B) estimated from the fits in Figure 5 across ROIs in 3 groups. Colors denote groups. Error bars denote standard deviation from the bootstrap samples. A, The relative values of target weight (W_{target}) in the amblyopic eye across all ROIs, except for hMT+, were greatly increased in the Strab group compared to the values in the control and Aniso group. B, The values of sigma across all ROIs, except for hMT+, in Strab group were also increased, compared to the values in control and Aniso group. *** indicates $p<0.001$ significance level.

Figure 8. Histograms of response gain (R_m) from the bootstrap samples across ROIs in Control (left), Aniso (middle) and Strab (right) groups. Colors denote the ROIs. The response gain (R_m) in Strabs was lower across all ROIs, except for hMT+, compared to the control group. R_m was a factor of 2 higher in V1 than in extra-striate cortex in both control and Aniso group. The vertical dashed line marks the mean response gain in V1 for the control group. ** and *** indicate $p<0.01$ and $p<0.001$ significance levels, respectively.
Table 1. Clinical details of participants with amblyopia

<table>
<thead>
<tr>
<th>Participant</th>
<th>Visual acuity (logMAR)</th>
<th>Fellow eye</th>
<th>Amblyopic eye</th>
<th>Stereo Acuity</th>
<th>Deviation</th>
<th>Fusion</th>
<th>History</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>49 f</td>
<td>-0.2</td>
<td>0.498</td>
<td>800"</td>
<td>ortho</td>
<td>yes</td>
<td>patching done</td>
</tr>
<tr>
<td>2</td>
<td>21 m</td>
<td>-0.097</td>
<td>0.341</td>
<td>200"</td>
<td>ortho</td>
<td>yes</td>
<td>patching done</td>
</tr>
<tr>
<td>3</td>
<td>52 f</td>
<td>-0.04</td>
<td>0.518</td>
<td>200"</td>
<td>ortho</td>
<td>yes</td>
<td>patching done</td>
</tr>
<tr>
<td>4</td>
<td>48 f</td>
<td>0</td>
<td>0.301</td>
<td>70"</td>
<td>ortho</td>
<td>yes</td>
<td>patching done</td>
</tr>
<tr>
<td>5</td>
<td>50 m</td>
<td>0</td>
<td>0.7</td>
<td>800"</td>
<td>ortho</td>
<td>yes</td>
<td>patching done</td>
</tr>
<tr>
<td>6</td>
<td>50 f</td>
<td>0</td>
<td>0.739</td>
<td>200"</td>
<td>ortho</td>
<td>yes</td>
<td>patching done</td>
</tr>
<tr>
<td>7</td>
<td>26 f</td>
<td>-0.04</td>
<td>0.518</td>
<td>400"</td>
<td>ortho</td>
<td>yes</td>
<td>no patching</td>
</tr>
<tr>
<td>8</td>
<td>24 m</td>
<td>-0.02</td>
<td>0.224</td>
<td>70"</td>
<td>ortho</td>
<td>yes</td>
<td>no patching</td>
</tr>
<tr>
<td>9</td>
<td>32 f</td>
<td>-0.04</td>
<td>0.498</td>
<td>70"</td>
<td>ortho</td>
<td>yes</td>
<td>no patching</td>
</tr>
<tr>
<td>10</td>
<td>21 f</td>
<td>-0.097</td>
<td>0.301</td>
<td>100"</td>
<td>ortho</td>
<td>yes</td>
<td>patching done</td>
</tr>
<tr>
<td>11</td>
<td>27 m</td>
<td>-0.097</td>
<td>0.602</td>
<td>n/a</td>
<td>ET 16</td>
<td>yes</td>
<td>no patching</td>
</tr>
<tr>
<td>12</td>
<td>61 m</td>
<td>0</td>
<td>0.756</td>
<td>2000"</td>
<td>XT 4, R/L 20, DVD</td>
<td>yes</td>
<td>patching done</td>
</tr>
<tr>
<td>13</td>
<td>48 f</td>
<td>-0.097</td>
<td>0.498</td>
<td>n/a</td>
<td>XT 10</td>
<td>yes</td>
<td>surgery & patching</td>
</tr>
<tr>
<td>14</td>
<td>42 f</td>
<td>-0.077</td>
<td>0.224</td>
<td>n/a</td>
<td>L/R 15</td>
<td>yes</td>
<td>no patching</td>
</tr>
<tr>
<td>15</td>
<td>36 f</td>
<td>-0.097</td>
<td>0.538</td>
<td>n/a</td>
<td>ET 4</td>
<td>yes</td>
<td>surgery & patching</td>
</tr>
<tr>
<td>16</td>
<td>54 f</td>
<td>-0.077</td>
<td>0.224</td>
<td>1500"</td>
<td>ET 16, R/L 6</td>
<td>yes</td>
<td>surgery & patching</td>
</tr>
<tr>
<td>17</td>
<td>53 m</td>
<td>-0.04</td>
<td>0.341</td>
<td>n/a</td>
<td>ET 20, R/L 4</td>
<td>yes</td>
<td>no patching</td>
</tr>
<tr>
<td>18</td>
<td>34 f</td>
<td>0</td>
<td>0.377</td>
<td>n/a</td>
<td>XT 30, L/R12</td>
<td>yes</td>
<td>surgery & patching</td>
</tr>
<tr>
<td>19</td>
<td>67 f</td>
<td>-0.02</td>
<td>0.518</td>
<td>2000"</td>
<td>XT 8</td>
<td>yes</td>
<td>surgery & patching</td>
</tr>
<tr>
<td>20</td>
<td>34 f</td>
<td>0</td>
<td>0.518</td>
<td>n/a</td>
<td>XT 8</td>
<td>yes</td>
<td>surgery & patching</td>
</tr>
<tr>
<td>21</td>
<td>52 f</td>
<td>0</td>
<td>0.756</td>
<td>n/a</td>
<td>XT 20</td>
<td>No</td>
<td>no patching</td>
</tr>
<tr>
<td>22</td>
<td>53 f</td>
<td>-0.137</td>
<td>0.518</td>
<td>n/a</td>
<td>XT 2, L/R 17</td>
<td>No</td>
<td>surgery & patching</td>
</tr>
<tr>
<td>23</td>
<td>28 f</td>
<td>-0.097</td>
<td>0.498</td>
<td>n/a</td>
<td>XT 10, R/L12</td>
<td>No</td>
<td>no patching</td>
</tr>
<tr>
<td>24</td>
<td>65 f</td>
<td>0</td>
<td>0.301</td>
<td>n/a</td>
<td>ET 16, R/L 8</td>
<td>No</td>
<td>surgery & patching</td>
</tr>
<tr>
<td>25</td>
<td>29 m</td>
<td>-0.097</td>
<td>0.341</td>
<td>n/a</td>
<td>XT 12, R/L 4</td>
<td>No</td>
<td>patching done</td>
</tr>
<tr>
<td>26</td>
<td>58</td>
<td>m</td>
<td>S&A</td>
<td>-0.04</td>
<td>0.836</td>
<td>n/a</td>
<td>XT 14, L/R 14, DVD</td>
</tr>
<tr>
<td>------</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
<td>-------------------</td>
</tr>
<tr>
<td>27</td>
<td>26</td>
<td>f</td>
<td>S&A</td>
<td>-0.097</td>
<td>0.224</td>
<td>n/a</td>
<td>XT 25</td>
</tr>
</tbody>
</table>

A: anisometric amblyopia; S: strabismic amblyopia; S&A: mixed strabismus and anisometropia.

Deviation at near distance (33 cm) with the best optical correction is shown in prism diopters. DVD:

disassociated vertical deviation; XT: exotropia. ET: esotropia; L/R: left-eye hypertropia; R/L: right-eye hypertropia. “n/a” indicates that stereoacuity was not measurable with Random-Dot Stereo Butterfly (Stereo Optical Company, Inc).
A Target Mask
Swept contrast Fixed contrast
6.07 Hz 8.5 Hz

B

Fourier spectrum (Hz)
Amplitude (uV)

C

MRI scan

ROIs:
V1 V3a hV4 hMT+ LOC
A IM responses as a function of target contrast

B IM responses at 20% target contrast

C IM responses vs. stereoacuity
A Target response (2F1)

B Mask response (2F2)
suppression (q) dominance

Excitation (p) dominance

Control
Aniso
Strab w/Fusion

V1 V3a hV4 hMT+ LOC

A

B

C

Difference of q and p

**

*

*