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Abstract

Endosomal sorting plays a fundamental role in directing neural development. By
altering the temporal and spatial distribution of membrane receptors, endosomes
regulate signaling pathways that control the differentiation and function of neural cells.
Several genes linked to inherited demyelinating peripheral neuropathies, known as
Charcot-Marie-Tooth disease (CMT), encode proteins that directly interact with
components of the endosomal sorting complex required for transport (ESCRT). Our
previous studies demonstrated that a point mutation in the ESCRT component
hepatocyte growth factor-regulated tyrosine kinase substrate (HGS), an endosomal
scaffolding protein that identifies internalized cargo to be sorted by the endosome,
causes a peripheral neuropathy in the neurodevelopmentally-impaired feetering mice.
Here, we constructed a Schwann cell-specific deletion of Hgs to determine the role of
endosomal sorting during myelination. Inactivation of HGS in Schwann cells resulted in
motor and sensory deficits, slowed nerve conduction velocities, delayed myelination and
hypomyelinated axons, all of which occur in demyelinating forms of CMT. Consistent
with a delay in Schwann cell maturation, HGS-deficient sciatic nerves displayed
increased mRNA levels for several promyelinating genes and decreased mRNA levels
for genes that serve as markers of myelinating Schwann cells. Loss of HGS also altered
the abundance and activation of the ERBB2/3 receptors which are essential for
Schwann cell development. We therefore hypothesize that HGS plays a critical role in
endosomal sorting of the ERBB2/3 receptors during Schwann cell maturation, which

further implicates endosomal dysfunction in inherited peripheral neuropathies.



s
O
p-
@)
7p)
-
-
®
=
O
D
e
O
)
@)
O
<
@)
0p)
O
| -
-
)
Z
=)

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

Significance statement

Schwann cells myelinate peripheral axons, and defects in Schwann cell function
cause inherited demyelinating peripheral neuropathies known as CMT. Although many
CMT-linked mutations are in genes that encode putative endosomal proteins, little is
known about the requirements of endosomal sorting during myelination. In this study,
we demonstrate that loss of HGS disrupts the endosomal sorting pathway in Schwann
cells, resulting in hypomyelination, aberrant myelin sheaths, and impairment of the
ERBBZ2/3 receptor pathway. These findings suggest that defective endosomal trafficking
of internalized cell surface receptors may be a common mechanism contributing to

demyelinating CMT.

Introduction

The endocytic pathway consists of a series of membrane trafficking steps that
regulate the internalization of cell-surface receptors and lipids (Jovic et al., 2010;
McNally and Cullen, 2018). Internalized cargo is initially delivered to early endosomes,
where it is sorted into distinct endocytic routes (Naslavsky and Caplan, 2018). From
here, internalized receptors can be recycled back to the cell surface through recycling
endosomes, continue to activate signaling pathways while residing on early endosomes,
or sorted to late endosomes, and subsequently to lysosomes, for degradation (Goh and
Sorkin, 2013; Cullen and Steinberg, 2018). By controlling the trafficking of internalized
cell surface receptors in this spatial and temporal manner, the endosomal pathway
regulates the composition, distribution and density of receptors at the cell surface as

well as the fate of signaling complexes within the cell (Redpath et al., 2020).
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The ESCRT pathway aids in sequestering internalized cell surface cargo on the
endosome and determines how it is directed along the endolysosomal pathway (Hurley
and Emr, 2006; Hurley, 2008; Rusten et al., 2011). As part of the ESCRT complex, HGS
regulates the trafficking, degradation and recycling of a variety of cell surface receptors
(Hislop et al., 2004; Hanyaloglu et al., 2005; Yan et al., 2005; Huang et al., 2009;
Villasenor et al., 2016; Dauner et al., 2017; Haugen et al., 2017). The type of interaction
between components of the ESCRT pathway and the endosomal pathway influences
the fate of internalized cargo and, ultimately, how cells respond to external stimuli. For
instance, while HGS can downregulate the abundance of cell surface receptors by
sorting them to lysosomes (Bean et al., 2000; Raiborg et al., 2008; Belleudi et al.,
2009), it can also act as an endosomal scaffold that supports cell signaling (Huang et
al., 2009; Chanut-Delalande et al., 2010; Huang et al., 2010; Miura and Mishina,
2011b). However, little is known about how HGS and the endosomal pathway regulate
different signaling cascades in the context of the developing nervous system.
Numerous genes that encode proteins believed to regulate endocytic function have
been linked to demyelinating forms of CMT (Kalaydjieva et al., 2000; Hunter et al.,
2003; Street et al., 2003a; Bolis et al., 2007; Chow et al., 2007; Lupo et al., 2009; Horn
et al., 2012b; Sidiropoulos et al., 2012). Mutations in these genes have cell autonomous
effects in Schwann cells, resulting in defective formation or maintenance of myelin
sheaths (Barisic et al., 2008; Brennan et al., 2015). The endocytic deficits caused by
these mutations include defective endocytosis, inhibition of receptor recycling, and
impaired lysosomal sorting (Kachhap et al., 2007; Lupo et al., 2009; Lee et al., 2011;

Lee et al., 2012; Pietiainen et al., 2013). CMT-linked proteins have also been shown to



105  interact with components of the ESCRT pathway and play a role in their stability and
106  localization (Lee et al., 2012; Pietiainen et al., 2013; Li et al., 2015). For example,

107  mutations in Lipopolysaccharide-induced tumor necrosis factor (LITAF/SIMPLE) that are
108  linked to demyelinating CMT also reduce endosomal HGS levels (Street et al., 2003b;
109 Leeetal., 2012).

110 We previously showed that a point mutation in Hgs (Hgs") causes defective

111  myelination (Watson et. al., 2015). Although mice that are heterozygous for the Hgs"
112 allele showed differences in tactile sensitivity and performance in a forced swim test
113 compared to control (Watson et. al., 2015, Meier, 1967), it is not known if the

114 myelination deficit caused by this allele is also inherited in a dominant manner. To

115 examine the cell autonomous effects of loss of HGS on peripheral nerve development,
116  we therefore generated a mouse line that specifically deleted Hgs in Schwann cells.
117  Loss of HGS resulted in abnormal myelin sheaths and caused severe motor and

118  sensory deficits similar to those observed in demyelinating CMT (Zoidl et al., 1995;

119 Erdem et al., 1998; Colby et al., 2000; Barisic et al., 2008; Pisciotta and Shy, 2018).
120 HGS-deficient Schwann cells were also hyperproliferative and expressed increased
121  levels of promyelinating genes. In addition to altering the abundance and activation of
122 the myelin-inducing ERBB2/3 receptor tyrosine kinases that traffic through the

123 endosomal pathway in Schwann cells, deletion of Hgs also altered the activation of the
124  downstream AKT kinase. These findings suggest a critical role for endosomal sorting of
125 the ERBB2/3 receptors during Schwann cell maturation and for peripheral nerve

126  myelination.
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Materials and Methods
Animals

Wild type C57BL/6J mice were originally obtained from Jackson Laboratories,
and Hgs-floxed mice (which we refer to as Hgs” mice) that contain the

tm1a(EUCOMM)Wisi

Hgs allele of Hgs were obtained from Helmholtz Zentrum Mienchen -
German Research Center for Environmental Health (GmbH). Hgs" mice contain loxP
sites in the intronic sequences that flank exon 5 of the Hgs gene and were maintained
on a C57BL/6J background. These control Hgs" mice were indistinguishable from wild
type C57BL/6J mice. To delete exon 5 of the Hgs gene specifically in Schwann cells,
Hgs" mice were crossed to hemizygous POCre mice (B6N.FVB-Tg(Mpz-Cre)26Mes/J)
that were purchased from Jackson Laboratories (Stock number 017927). These POCre
transgenic mice express Cre recombinase under the control of the myelin protein zero
(Po, Mpz) promoter as early as embryonic day 14 (Feltri et al., 1999b). As a result, exon
5 of the Hgs gene is specifically deleted in the Schwann cells of the resulting C57BL/6-
Tg(Mpz-cre)26Mes Hgs™ "™ mice (which we refer to as POCreHgs" mice) that were
used in all subsequent experiments.

All mouse strains have been maintained in our breeding colony at the University
of Alabama at Birmingham, which is fully accredited by the Association for Assessment
and Accreditation of Laboratory Animal Care International (A3255-01). All efforts were
made to minimize animal suffering, and all research was performed in compliance with
the United States Animal Welfare Act and other federal statutes and regulations relating
to animals. Our studies adhered to the principles stated in the Guide for the Care and

Use of Laboratory Animals, United States National Research Council. In addition, all
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experiments were carried out with the approval of the University of Alabama at
Birmingham’s Institutional Animal Care and Use Committee (Protocol #21800). To
ensure that there was no gender bias, equal numbers of both female and male mice
were used in this study, and gender difference did not influence any of the reported
outcomes.

For genotyping mice, tail DNA was obtained by alkaline lysis extraction, and
polymerase chain reactions were performed using Mango Taq polymerase (Meridian
Biosciences, Cat# BIO-21083) according to the manufacturer’s instructions. Mice were
genotyped for the Hgs" allele using forward primer 5> AAGGGGGACACA
CAAGCAAAA-3’ and reverse primer 5-CAGCTGAGACTGCTGTGACA-3’, and the
presence of the POCre transgene was identified using forward primer 5’-
CCACCACCTCTCCATTGCAC-3 and reverse primer 5'-
ATGTTTAGCTGGCCCAAATG-3'. Thermocycling conditions were one cycle at 94°C for
2 min, 25 cycles at 94°C for 30 s, 58°C for 30 s and 72°C for 30 s, followed by a single
hold at 72°C for 7 min and then held at 4°C until resolution by agarose gel
electrophoresis.

Body and muscle mass analysis

Total body and gastrocnemius muscle masses were obtained from 1- and 4-
month-old POCreHgs” mice and Hgsﬂ controls. Masses were collected from at least 5
animals per genotype, with equal numbers of male and female mice used for each
genotype, and the values are reported as the average muscle or body mass + SEM.

Unpaired Student’s t-tests were performed to determine statistical significance.
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Behavioral analysis

Motor and sensory performance of Hgs” control mice and POCreHgs" mice were
evaluated at both 1 and 4 months of age from at least 5 animals per genotype, with
equal numbers of male and female mice used for each genotype. Mice were handled at
least two days prior to open field testing. Before each behavioral assay, mice were
allowed to habituate to the testing room for 30 min. On the test day, mice were placed in
the center of an open field arena (43 x 43 x 30 cm Plexiglas box), locomotion was
measured for 5 min by photo beam detectors, and recorded data was analyzed using
ENV-515 software (Med Associates).

Motor coordination and balance were assessed by placing mice on an
accelerating rotarod (ENV-575, Med Associates) and recording latency to fall. The
rotarod began rotating at 3.5 revolutions per minute (rpm) and accelerated to 35 rpm
over a 5 min period. Each mouse performed three trials a day, with a 15 min inter-trial
rest period, for three consecutive days. The presented latency to fall is the average of
the three daily averages for each mouse.

The Chatillon Ametek Force Gauge was used to assay forelimb grip strength,
and the maximum amount of force generated by the forelimbs was recorded. Each
mouse trial consisted of 12 repetitions of the assay with the two highest and two lowest
data points dropped from final analysis. Unpaired Student’s t-tests were performed to
determine statistical significance.

To test tactile sensitivity, mice were assessed using the von Frey filaments test.
Animals were habituated to an open gridded floor chamber for 10 min. A series of 12

von Frey fibers ranging from 0.02 to 8 g of force (North Coast Medical) was applied from



s
O
p-
@)
7p)
-
-
®
=
O
D
e
O
)
@)
O
<
@)
0p)
O
| -
-
)
Z
=)

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

below the mesh grid in ascending order beginning with the smallest fiber. Fiber
application was limited to the central region of the plantar surface to avoid the foot pads,
and the hind paw withdrawal threshold was determined. Unpaired Student’s t-tests were
performed to determine statistical significance.

Sciatic nerve morphology

Sciatic nerves were dissected from Hgs" and POCreHgs" mice, fixed in 3%
paraformaldehyde/2% glutaraldehyde in 0.2 M sodium cacodylate buffer for 1.5 h,
washed in 0.2 M sodium cacodylate, and then post-fixed in 1% osmium tetroxide for 1 h
in the dark. After thoroughly washing with 0.2 M sodium cacodylate, samples were
dehydrated in a graded acetone series of increasing concentration (50%, 75%, 90%,
95%, 100% x 4) for 10 min each step and infiltrated with epoxy resin (Electron
Microscopy Sciences) by rotating samples overnight in a 1:1 epoxy:acetone solution.
The following day, samples were rocked in fresh 100% epoxy for at least 3 x 2 h,
embedded, then polymerized in resin overnight at 65°C. Ultra-thin cross-sections were
collected using a Leica EM-UC6 ultramicrotome and stained for contrast with uranyl
acetate and lead citrate. Samples were viewed using an FEI Tecnai T-12 electron
microscope with a Hamamatsu digital camera.

Images for morphometric analysis were acquired from adjacent but non-
overlapping fields to measure large caliber axons (diameter > 1 micron), myelin
thickness, and axonal density. The g-ratio was calculated by dividing the axon diameter
by the axon + myelin diameter, and the relevant measurements were obtained with
Imaged software (NIH). At least 106 axons were quantified across at least two separate

fields for each animal. Micrographs taken at 470x magnification were utilized to

10
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measure the number of myelinated fibers, while micrographs taken at 1100x
magnification were used to determine g-ratios. The Kolmogorov-Smirnov test was used
to determine differences in the frequency of axon diameters.
Protein Isolation

Mice were deeply anesthetized with 5% isoflurane to minimize pain and distress
prior to rapid decapitation. Sciatic nerves and brains were dissected and homogenized
in modified RIPA buffer containing 50 mM Tris, pH 7.5, 150 mM NacCl, 5 mM MgCls, 0.5
mM EGTA, 1 mM EDTA, 0.5% SDS, 1% Triton X-100, and 1% sodium deoxycholate.
Complete protease inhibitor (Thermo Fisher Scientific), phosphatase inhibitor cocktail Il
(Thermo Fisher Scientific), iodoacetamide (Sigma), and n-ethylmaleimide (Sigma) were
added to the homogenization buffer according to the manufacturer’s instructions.
Tissues were disrupted using a mechanical homogenizer. Following homogenization,
samples were sonicated and centrifuged at 17000 x g for 10 min at 4°C to remove any
insoluble material, and supernatants were stored at -20°C. Protein concentrations were
determined using the BCA protein assay kit (Thermo Fisher Scientific).
Immunoblotting

Proteins were resolved on either 12% or 4-20% polyacrylamide gels and
transferred onto nitrocellulose membranes. A solution of 2% bovine serum albumin
(BSA) in tris-buffered saline with 0.1% Tween 20 (TBST) was used to block the
membranes. Primary and secondary antibodies (Abs) were diluted in a solution
containing 0.5% BSA in TBST. Primary Abs were used at a dilution of 1:1000 and
included: rabbit anti-HGS (Cell Signaling Technologies, RRID:AB_2798700), mouse

anti-HGS (Santa Cruz Technologies, sc-271925), mouse anti-MBP (Santa Cruz

11
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Technologies, sc-271524), mouse anti-MPZ (Santa Cruz Technologies, sc-18531),
rabbit anti-ERBB2 (Cell Signaling Technologies, #4290), rabbit anti-pERBB2 (Cell
Signaling Technologies, #2243), rabbit anti-ERBB3 (Cell Signaling Technologies,
RRID:AB_10691324) , rabbit anti-pERBB3 (Cell Signaling Technologies,
RRID:AB_2099709), rabbit anti-AKT (Cell Signaling Technologies, RRID:AB_331152),
rabbit anti-pAKT308 (Cell Signaling Technologies, RRID:AB_330302), rabbit anti-
pAKT473 (Cell Signaling Technologies, #4060), rabbit anti-ERK (Cell Signaling
Technologies, #4695), rabbit anti-pERK (Cell Signaling Technologies, #4370), rabbit
anti-GSK3p (Cell Signaling Technologies, #9315), rabbit anti-pGSK3p (Cell Signaling
Technologies, #9323), rabbit anti-NF2 (Cell Signaling Technologies, #6995), rabbit anti-
pNF2 (Cell Signaling Technologies, #9163). Mouse anti-ACTB (Abcam,
RRID:AB_303668) was used as a loading control. The goat anti-mouse horseradish
peroxidase-conjugated secondary Ab (Southern Biotechnology Associates, #6420-05)
and goat anti-rabbit horseradish peroxidase-conjugated secondary Ab (Southern
Biotechnology Associates, #3030-05) were used at a 1:6000 dilution. SuperSignal West
Pico Chemiluminescent Substrate (Thermo Fisher Scientific) was applied to each
nitrocellulose membrane and allowed to incubate for 5 min before exposing to film. Blots
were cropped to show reactive bands.
RNA-Seq library preparation and sequencing

Total RNA from P14 sciatic nerves was isolated using RNA-STAT60 (Tel-Test).
mMRNA sequencing was performed on the lllumina NextSeq500 as described by the
manufacturer (lllumina, Inc.). Briefly, RNA quality was assessed using the Agilent 2100

Bioanalyzer. RNA with a RNA Integrity Number (RIN) of = 7.0 was used for sequencing

12



s
O
p-
@)
7p)
-
-
®
=
O
D
e
O
)
@)
O
<
@)
0p)
O
| -
-
)
Z
=)

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

library preparation. RNA passing quality control was converted to a sequencing ready
library using the NEBNext Ultra Il Directional RNA library kit as per the manufacturer’s
instructions (New England Biolabs). The cDNA libraries were quantitated using gqPCR in
a Roche LightCycler 480 with the Kapa Biosystems kit for lllumina library quantitation
prior to cluster generation. Cluster generation was performed according to the
manufacturer’s recommendations for onboard clustering. We generated between 30 to
35 million paired-end 75 bp sequencing reads per sample for transcript level
abundance.
Data assessment and systems biology analysis

STAR (version 2.7.3a) was used to align the raw RNA-Seq fastq reads to the
GRCm38 p6 Release M24 reference genome from Gencode (Dobin et al., 2013).
Following alignment, HTSeg-count (version 0.13.5) was used to count the number of
reads mapping to each gene (Anders et al., 2015). Normalization and differential
expression was then applied to the count files using DESeq2 (Love et al., 2014). For
generating networks, a data set containing gene identifiers and corresponding
expression values was uploaded into Ingenuity Pathway Analysis. Each identifier was
mapped to its corresponding object in Ingenuity’s Knowledge Base. A fold change cutoff
of £ 2 and padj < 0.05 was set to identify molecules whose expression was significantly
differentially regulated. These molecules, called Network Eligible molecules, were
overlaid onto a global molecular network developed from information contained in
Ingenuity’s Knowledge Base. Networks of Network Eligible Molecules were then
algorithmically generated based on their connectivity. The Functional Analysis identified

the biological functions and/or diseases that were most significant to the entire data set.

13
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Molecules from the dataset that met the fold change cutoff of + 2 and padj < 0.05 and
that were associated with biological functions and/or diseases in Ingenuity’s Knowledge
Base were considered for the analysis. Right-tailed Fisher's exact test was used to
calculate a p-value determining the probability that each biological function and/or
disease assigned to that data set was due to chance alone.
Quantitative PCR

Total RNA was isolated from the gastrocnemius muscles and sciatic nerves of
Hgs" and POCreHgs" mice using RNA-STAT60 and reverse transcribed using the
Superscript VILO cDNA synthesis kit (Thermo Fisher Scientific). Individual gene assays
were purchased from Applied Biosystems and included Achra (Mm00431629 _m1),
Achrb (Mm00680412_m1), Achrg (Mm00437419_m1), Achre (Mm00437411_m1),
Nrg1 (Mm01212130_m1), Cd44 (Mm01277165_m1), Btc (Mm00432137_m1),
Erbb2 (Mm00658541_m1), Erbb3 (Mm01159999_m1), Erbb4 (Mm01256796_m1),
Hdac1/2 (Mm02745760_g1), Sox10 (Mm01300162_m1), Nfatc4 (Mm00452375_m1),
Sox2 (Mm03053810_s1), Pou3f1 (Mm00456392_m1), Pou3f2 (Mm00843777_s1), c-
Jun (Mm07296811_s1), Krox20 (Mm00456650_m1), Nab1 (Mm01257272_m1),
Srebp (Mm00550338_m1), Mpz (Mm00485141_g1), Pmp22 (Mm01333393_m1)
and Mbp (Mm01266402_m1). The Tagman gene assay for Actb (Mm026195800_g1)
served as an internal control. gqPCR results are shown as the average of 3 cDNA
amplifications generated from 3 mice performed in triplicate.
Sciatic nerve immunohistochemistry.

Sciatic nerves were rapidly dissected and submerged overnight in 4%

paraformaldehyde (Sigma) in PBS and cryoprotected in 30% sucrose (Fisher Scientific)

14
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overnight before being embedded in optimal cutting temperature compound (Fisher
Scientific) and frozen at -80°C. Cryosections were cut at 10 um on a Leica 1850
cryostat, mounted on Superfrost charged slides, and stored at -80°C. Nerve sections
were blocked with 10% normal goat serum, 1% BSA, and 0.1% Triton X-100. Primary
Abs and Alexa Fluor-labeled secondary Abs (Thermo Fisher Scientific, RRID:AB_
2534744 and RRID:AB_2536524) were diluted 1:500 in PBS containing 2% normal goat
serum, 0.1% BSA, and 0.1% Triton X-100. Primary mouse anti-HGS (Bean et al., 2000)
and rabbit anti-Ki67 (Abcam, RRID:AB_443209) Abs were incubated overnight at 4°C.
Sections were washed three times with PBS containing 0.1% Triton X-100 and then
incubated with secondary Abs for 1 h at room temperature. Sections were then washed
three times with PBS containing 0.1% Triton X-100 and stained with DAPI. Images were
acquired using a Zeiss LSM-800 Airyscan confocal microscope (Carl Zeiss).

Teased sciatic nerves were isolated from P14 mice and submerged in Bouin’s
fixative (RICCA Chemical Company) for 15 min at 4°C. Nerves were then washed three
times in ice-cold PBS and stored overnight at 4°C. The perineurial sheath was then
removed, and axons were separated on Superfrost slides using a tuberculin needle.
Slides were dried overnight at room temperature and stored at -80°C. Nerves were then
permeabilized with methanol for 15 min at -20°C. Sections were blocked with 2.5%
normal donkey serum, 2.5% BSA, and 0.5% Triton X-100. Primary mouse anti-HGS
(Bean et al., 2000) and rabbit anti-EEA1 (Cell Signaling Technologies,
RRID:AB_11004515) Abs were diluted 1:200 in 2.5% normal donkey serum, 2.5% BSA,
and 0.5% Triton X-100 and incubated overnight at 4°C. Sections were washed three

times with PBS at room temperature and then incubated with secondary antibodies
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labeled with Alexa Fluor dye (Thermo Fisher Scientific, RRID:AB_ 2534744 and
RRID:AB_2536524) for 1 h at room temperature. Sections were washed three times
with PBS and then stained with DAPI. Images were acquired using a Zeiss LSM-
800 Airyscan confocal microscope (Carl Zeiss).
Muscle and neuromuscular junction (NMJ) analysis

For whole-mount immunostaining, mice were euthanized and the tibialis anterior
muscles were rapidly dissected and fixed in 2% paraformaldehyde for 1 h at 4°C.
Muscles were teased into fiber bundles and then washed with wash buffer (PBS
containing 1% Triton X-100) three times at room temperature for 15 min. Muscle
bundles were then blocked with wash buffer containing 2% BSA and 4% normal goat
serum for 1 h. To label AChRs, samples were incubated with 1 ug/mL a-bungarotoxin
conjugated with tetramethylrhodamine isothiocyanate (Thermo Fisher Scientific) for 1 h.
After being washed three times at room temperature for 15 min with wash buffer,
muscle fibers were incubated with primary Abs for 2 days at 4°C.

Primary Abs were diluted 1:400 for mouse anti-neurofilament heavy chain and
1:200 for mouse anti-SV2 synaptic vesicle proteins (Developmental Studies Hybridoma
Bank) in PBS containing 1% BSA, 10% normal goat serum, and 0.1% Triton X-100.
After being washed three times for 15 min at room temperature, samples were
incubated with secondary Abs conjugated with Alexa Fluor 488 dye (Invitrogen) at a
1:500 dilution for 1 day at 4°C. Samples were then washed three times for 30 min at
room temperature, mounted in PBS containing 50% glycerol, and stored at —20°C.
Images were captured using a Zeiss LSM-800 Airyscan confocal microscope. The size

of all endplates within the area captured were determined by tracing the circumference
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of the a-bungarotoxin-positive post-synaptic AChR cluster and computing the area using
Imaged software. The extent of overlap between the pre- and post-synaptic structures
was determined by examining 100 randomly selected NMJs in each muscle (Seburn et
al., 2006). Junctions where the nerve completely overlapped the AChRs on the muscle
were defined as fully innervated, NMJs with vacant receptor territory were defined as
partially innervated, and AChR plaques with no nerve associated were defined as
denervated.
Nerve electrophysiology

Bilateral sciatic motor nerve conduction studies (Ubogu et al., 2012; Dong et al.,
2016; Dong et al., 2017) were performed on each mouse using a portable
Keypoint® v5.11 electrodiagnostic system (Alpine Biomed Corporation) with waveforms
displayed on a Tecra S3 LCD monitor (Toshiba America). The distal latency, distal and
proximal compound motor action potential (CMAP) amplitude and duration, conduction
velocity, and total waveform duration were recorded for each mouse. Recordings made
from both nerves were averaged for each animal.
Data analysis

Western blots were digitized, and band densities were quantified with UN-SCAN-
IT gel digitizing software (Silk Scientific). Pixel totals were recorded and normalized to
the level of ACTB. Protein levels were reported as pixel density relative to controls. An
unpaired Student’s t-test was performed to determine statistical significance. All data
were analyzed using Prism Graphpad software by plotting the average +/- the standard
error of the mean. A minimum of 4 sciatic nerve extracts from each genotype were

analyzed for each protein of interest.
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Results
Schwann cell-specific deletion of Hgs

Our previous studies demonstrated that a methionine to valine substitution in the
cargo-binding domain of HGS caused motor and sensory neuropathies in teetering mice
(Watson et al., 2015a). Because HGS function was altered in all cell types in the
teetering mice, we could not differentiate if the neurological defects were due to
disruption of HGS in neurons or in Schwann cells. We therefore created a mouse line
that specifically deleted Hgs in Schwann cells to test if the loss of HGS in Schwann cells
is sufficient to cause a peripheral neuropathy. To inactivate Hgs in Schwann cells, we
crossed Hgs" mice, in which exon 5 of Hgs is flanked by loxP sites, with POCre
transgenic mice that express Cre recombinase from the myelin protein zero promoter
(MpzIPy) (Feltri et al., 1999a). The POCre promoter has been extensively used to ablate
the expression of genes specifically within Schwann cells (Bolis et al., 2005; Berti et al.,
2011; Orita et al., 2013; Beirowski et al., 2014b; Grove et al., 2017; Alvarez-Prats et al.,
2018). In the resulting POCreHgs" mice, Cre-mediated recombination deleted exon 5 of
the Hgs gene in Schwann cells, enabling us to investigate the role of HGS during
peripheral nerve myelination.

To assess Cre-mediated DNA recombination of the Hgsf’ allele, reverse
transcription PCR with primers that bordered exons 4 and 6 was used to examine RNA
from the sciatic nerves of P14 POCreHgs" and Hgs” mice. Whereas a single band that
corresponds to the 634 bp DNA fragment expected from exons 4, 5 and 6 of Hgs was
produced from the Hgs” sciatic nerve RNA, two distinct DNA fragments were generated

from the RNA obtained from the sciatic nerves of the 2-week-old POCreHgs" mice (Fig.
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404  1A). The larger, less abundant band was the same size as that found in the Hgs"

405  controls, and the smaller, more prominent band was consistent with the expected 510
406  bp fragment that contains exons 4 and 6 but lacks exon 5 of Hgs (Fig. 1A). DNA

407  sequencing of the two fragments generated from the POCreHgs" mice verified that the
408 larger band represented the typical splicing pattern of Hgs, while the faster migrating
409  band contained a deletion of exon 5 (Fig. 1B). Whereas the Hgs" allele is predicted to
410  generate a 776 amino acid protein, the deletion of exon 5 in the POCreHgs" mice is
411  expected to result in a frame-shift mutation that truncates HGS after 140 amino acids.
412 Although we have not detected this truncated form in POCreHgsﬂ sciatic nerves using an
413 antibody that recognizes the N-terminus of HGS (Figure 1-1), this fragment of HGS
414  lacks the FYVE domain that is essential for HGS to bind to endosomes.

415 Immunoblot analysis confirmed reduced HGS expression in sciatic nerve extracts
416  from 1- to 4-week-old POCreHgs" mice relative to controls (Fig. 1C and D). This

417  decrease in HGS expression was not observed in brain extracts from 4-week-old

418  POCreHgs" mice (Fig. 1C and D), which is consistent with the specificity of the POCre
419  promoter for Schwann cells. Immunostaining for HGS also showed a substantial

420  reduction in HGS in teased sciatic nerves from 2-week-old POCreHgs" mice compared
421  to controls. In control mice, HGS was detected in an expected punctate-like pattern in
422 the cytosol that partially overlapped the staining of the early endosomal antigen EEA1
423 (Fig. 1E).

424 A transcriptome database was recently generated to determine the

425 developmental and cellular profile of genes expressed in sciatic nerves (Gerber et al.,

426  2021). Examination of this database revealed that HGS is expressed in proliferating,
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immature, promyelinating, mature, and non-myelinating Schwann cells (Fig. 1F). HGS
expression was also detected in perineurial cells, endoneurial cells, epineurial cells,
immune cells, pericytes, vascular smooth muscle cells and pericytes/endothelial cells
(Fig. 1F). Therefore, the low levels of HGS that we detected in the sciatic nerves of the
POCreHgsﬂ mice by both immunoblotting and immunofluorescence likely represent HGS
expression in these other cell types. This residual level of gene expression is similar to
what has been reported when POCre has been used to delete other floxed alleles
(Beirowski et al., 2014a; Gomez-Sanchez et al., 2015; Logan et al., 2017).
Motor and sensory defects in POCreHgs" mice

POCreHgs" mice were born at a Mendelian frequency and were indistinguishable
from control Hgs" mice at birth. Although no difference in body mass was detected at
one month of age, the POCreHgs" mice were significantly smaller than controls by 4
months of age (Fig. 2A). In an open field assay to examine overall motor function, 4-
month-old POCreHgs” mice traveled significantly less than controls (Fig. 2B and Figure
2-1), but no difference was observed in the average velocity of the POCreHgs" mice
compared to controls (Fig. 2C). In addition, the grip strength of the POCreHgs" mice
was significantly reduced at 4 months of age (Fig. 2D), and the mice demonstrated a
decreased ability to stay on a Rotarod at both 1 and 4 months of age compared to
controls (Fig. 2E). By 4 months of age, the POCreHgs" mice also displayed decreased
tactile sensitivity when examined using the von Frey assay (Fig. 2F). These results
indicate that loss of HGS in Schwann cells results in both motor and sensory deficits in

the POCreHgs" mice.
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Motor nerve electrophysiology

To determine whether Schwan cell-specific loss of HGS altered the
electrophysiological properties of the peripheral nerves, we measured the amplitudes
and durations of the compound muscle action potentials (CMAPSs) of the calf muscles,
the distal latency, and the deduced velocities following distal and proximal sciatic nerve
stimulation (Fig. 3). Both distal and proximal CMAP amplitudes, which indirectly
measure the number of functional myelinated motor axons, were markedly reduced in 4-
month-old POCreHgs" mice compared to controls (Fig. 3A and B). In addition, the distal
and proximal CMAP durations were also significantly increased in the POCreHgsﬂ mice
(Fig. 3C and D), indicating conduction slowing and/or conduction block of myelinated
motor axons. Consistent with these findings, the distal CMAP latency was significantly
prolonged (Fig. 3E), and the conduction velocity was significantly reduced (Fig. 3F) in
the POCreHgs” mice compared to controls, both of which measure the conduction of the
fastest conducting motor axons. Together, these abnormal electrophysiological
properties indicate that Schwann cell loss of HGS causes a demyelinating peripheral
neuropathy.
Delayed myelination in HGS-deficient Schwann cells

We used transmission electron microscopy to examine transverse sections of
sciatic nerves from POCreHgs" and Hgs" mice at P7, P14, P28 and P120 (Fig. 4A-C). In
Hgsﬂ control mice, over 75% of the large diameter axons (>1 micron) were myelinated at
P7, and the proportion of myelinated axons progressively increased so that almost all of
the large caliber axons were myelinated by P28 (Fig. 4A and B), which is consistent with

what has been reported for wild type mice (Hahn et al., 1987). In contrast, the number
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of myelinated axons in the sciatic nerves of POCreHgs" mice was significantly reduced
at all ages examined (Fig. 4A and B). Instead of the typical myelinated axons, many
promyelinated axons were observed in the sciatic nerves from the P7, P14 and P28
POCreHgsﬂ mice; these are axons that are ensheathed in a 1:1 ratio by Schwann cells
but are not myelinated (Arroyo et al., 1998). Although promyelinated axons could also
be observed in POCreHgs" mice at P120, due to the presence of basal lamina onion
bulbs around some of these axons (Fig. 4A), they may also be in the process of being
re-ensheathed following segmental demyelination. The myelin sheaths from POCreHgs"
sciatic nerves were also significantly thinner than controls at all ages examined (Fig.
4C). The reduced number of myelinated axons and the thinner myelin sheaths in
POCreHgs" nerves correlated with reduced levels of myelin basic protein (MBP) and
myelin protein zero (MPZ) in the sciatic nerves of POCreHgs" mice (Fig. 4D).

Since a change in axon diameter has been reported in a number of peripheral
neuropathies, we compared the frequency distribution of axonal diameters found in the
sciatic nerves of POCreHgs" mice with controls. We found a significant reduction in
axonal diameter at P7, P14 and P28 (Fig. 4E), which could also contribute to the
hypomyelination observed in the POCreHgs” mice. To determine if defective myelination
in the POCreHgs” mice also results in axonal loss, we measured the numbers of large
caliber axons in sciatic nerve sections from control and POCreHgsﬂ mice at 4 months of
age. Despite a significant reduction in myelination (Fig. 4B), the number of axons
greater than 1 micron in diameter was not significantly different in the POCreHgs" sciatic

nerves compared to controls (Fig. 4F). There was also no significant difference in radial
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sorting of large diameter axons or the number of unmyelinated axon bundles in the
sciatic nerves of P3 POCreHgs" mice compared to controls (Fig. 4G-).

In addition to causing delayed and reduced myelination, loss of HGS in Schwann
cells resulted in aberrantly folded myelin sheaths. These were evident in the sciatic
nerves of both P28 and 6-month-old POCreHgs" mice (Fig. 5A-C). Conspicuously folded
myelin sheaths have been reported in humans and animal models of other inherited
demyelinating neuropathies (Azzedine et al., 2003b; Bolino et al., 2004; Bolis et al.,
2005; Robinson et al., 2008; Pereira et al., 2012) and are thought to be due to Schwann
cell autonomous deficits. Thus, HGS is required for both the proper induction of
myelination and the formation of structurally normal myelin sheaths.

Loss of HGS in Schwann cells alters NMJ and muscle development

Several reports have indicated developmental impairment and reduced synaptic
transmission at the NMJ in mouse models of CMT (Yin et al., 2004; Ang et al., 2010;
Sleigh et al., 2014; Spaulding et al., 2016; Cipriani et al., 2018; Nandini et al., 2019). To
investigate if loss of HGS in Schwann cells also disrupts the NMJ, we first examined the
gastrocnemius muscles and found a significant decrease in muscle mass in 4-month-old
POCreHgs" mice compared to controls (Fig. 6A). As impaired innervation can result in
reduced muscle development and upregulated expression of AChRs (Evans et al.,
1987; Goldman et al., 1988; Witzemann, 1989; Ang et al., 2010), we next measured the
AChR o, B, € and y subunit mRNA levels in the gastrocnemius muscles of 4-month-old
Hgs" and POCreHgs" mice. Although no differences were observed in AChR . or ¢
mRNA levels, there was a significant increase in the levels of both AChR fand

v subunit mMRNAs in POCreHgs" mice relative to controls (Fig. 6B). Since skeletal muscle
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denervation in animal models results in muscle atrophy and a significant increase in the
expression of the AChR y subunit (Witzemann, 1989; Eiber et al., 2019; Cetin et al.,
2020), our data suggests that Schwann cell loss of HGS impacts synaptic transmission
at the NMJ (Goldman et al., 1988; Adams et al., 1995; Kong et al., 2009; Vaden et al.,
2015; Watson et al., 2015a).

To examine motor endplate structure in the Hgs" and POCreHgs" mice, we
identified motor axons by immunostaining the tibialis anterior muscles for neurofilament
(NF) and synaptic vesicle protein 2 (SV2) and labeled the AChRs with FITC-conjugated
a-bungarotoxin (Fig. 6C). At 4 months of age, there was a reduction in fully innervated
NMJs and a corresponding increase in partially innervated NMJs in POCreHgsf’ mice
compared to controls (Fig. 6C and D). These results suggest that the impaired AChR
expression and reduced muscle mass in the POCreHgs" mice are due to changes in
NMJ integrity.

Transcriptome analysis of HGS-deficient sciatic nerves

To investigate the cause of arrested sciatic nerve myelination in the POCreHgs"
mice, we performed transcriptome analysis on sciatic nerve RNA from P14 POCreHgsﬂ
and Hgs" control mice. Principal component analysis demonstrated that the results from
both the control and the POCreHgs" sciatic nerves clustered into two distinct groups for
each genotype (Fig. 7A). Bioinformatics analysis revealed that the expression of 2469
genes was altered at least 2-fold in the POCreHgs" sciatic nerves compared to controls
(Fig. 7B and Figure 7-1), and the top 50 upregulated and top 50 downregulated genes

are shown in figures 7C and D. Gene Ontology and pathway analysis revealed an
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enrichment in genes that regulate cell proliferation, gliogenesis and myelination in the
sciatic nerves of the POCreHgs" mice (Fig. 7E and Figure 7-2, 7-3 and 7-4).
Increased cell-proliferation in HGS-deficient sciatic nerves

Transcriptome analysis of sciatic nerves from POCreHgsﬂ mice demonstrated a
striking enrichment of genes involved in cell proliferation and cell cycle control. To
investigate if the arrested myelination observed in the POCreHgs" mice was due to
changes in cell proliferation and/or Schwann cell differentiation, we first compared Ki67
staining in control and POCreHgs" sciatic nerves at P7 and P14. Consistent with a
previous report (Brown and Asbury, 1981), we observed the expected reduction in
proliferating cells in sciatic nerves from control mice at P14 compared to P7. Although
the percentage of Ki67 positive cells was not statistically different between the
POCreHgs" mice and controls at P7 (Fig. 8A and B), there was a significant increase in
the number of proliferating cells in the sciatic nerves of the POCreHgs" mice compared
to controls at P14 (Fig. 8A and C). These cells likely represent either proliferating
Schwann cells or infiltrating immune cells. A similar increase in the number of Ki67
positive cells has previously been found in other animal models of demyelinating
neuropathies (Perkins et al., 1981; Sancho et al., 2001) and is consistent with delayed
Schwann cell maturation.

Schwann cell differentiation is accompanied by a well-described and distinct
pattern of gene expression that defines immature Schwann cells, promyelinating
Schwann cells and myelinating Schwann cells (Jessen and Mirsky, 2005; Salzer, 2015).
To confirm our RNA transcriptome analysis that suggests a block in Schwann cell

maturation in the POCreHgsﬂ mice, we examined the expression of several markers of
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immature, promyelinating and myelinating Schwann cells from RNA isolated from the
sciatic nerves of P14 POCreHgs" and Hgs" mice using qPCR. Although we did not
observe any differences in the expression of the immature Schwann cell markers
Hdac1, Sox10 or Nfatc4 (Fig. 8D), there was an increase in the levels of several
promyelinating mRNAs, including Sox2, Pou3f1, Pou3f2, and c-Jun in the sciatic nerves
of the POCreHgs" mice as compared to controls (Fig. 8E). In addition, the mRNA levels
for Egr2, Nab1, Srebp1, Mpz, Pmp22, and Mbp, which are markers of myelinating
Schwann cells, were reduced in the sciatic nerves of P14 POCreHgsﬂ mice as compared
to controls (Fig. 8F). Consistent with our findings on the level of HGS at P14, the level of
Hgs mRNA was reduced by 70% in the POCreHgs" sciatic nerves (Fig. 8F). Thus, the
altered gene expression in HGS-deficient Schwann cells corresponds with the increase
in promyelinating Schwann cells observed in the sciatic nerves of the P14 POCreHgs"
mice (Fig. 4A).
Alterations in the ERBB2/3 pathway in HGS-deficient Schwann cells

Our transcriptome analysis showed that the NRG1/ERBB signaling pathway was
significantly upregulated in the sciatic nerves of the POCreHgs" mice (Figure 7-1 and 7-
2). Further examination of the mRNA levels of components in this pathway validated
the RNA-Seq results and demonstrated that the levels of Erbb3, Btc, Nrg1, and Cd44
were all significantly increased, while the level of Erbb2 was unchanged and the level of
Erbb4 was reduced, in the sciatic nerves of P14 POCreHgsﬂ mice compared to controls
(Fig. 9A), indicating that Schwann cell loss of HGS disrupts the regulation of

components of the ERBB signaling pathway.
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Since the ERBB2/3 receptors play an essential role in Schwann cell development
and myelination (Riethmacher et al., 1997; Garratt et al., 2000; Brinkmann et al., 2008),
we examined whether loss of HGS altered either the levels or activation of proteins in
the ERBB pathway. The activation of the ERBB2/3 receptors by NRG1 results in their
autophosphorylation, which can be measured using phospho-specific ERBB2/3 Abs.
Although there was no difference in the total levels of ERBB2 within the first 2 weeks of
postnatal development (Fig. 9B and C), the levels of phosphorylated ERBB2 were
significantly elevated in POCreHgs" mice compared to controls at both P7 and P14 (Fig.
9B and D). In contrast, we observed a significant increase in the levels of total ERBB3
in the sciatic nerve extracts of the POCreHgsﬂ mice at P14, but not at P7, when
compared to controls (Fig. 9E and F). Although we observed an increase in the levels of
pERBB3 in the sciatic nerves of the P14 POCreHgs" mice, this difference was not
significant when normalized against the total ERBB3 levels detected in the mice (Fig.
9G). These results are consistent with the transcriptome and gPCR results of increased
levels of Erbb3 mRNA without a corresponding change in Erbb2 mRNA in the sciatic
nerves of P14 POCreHgs" mice. Taken together, these data suggest that loss of HGS
altered the expression of components of the ERBB pathway and the activation of the
ERBB2 receptor in Schwann cells.
Loss of HGS impairs AKT signaling

The ERBB2/3 receptors activate several intracellular signaling pathways,
including the PIBK-AKT kinase and ERK pathways, which are essential for Schwann cell
development and myelination (Monje et al., 2006; Monje et al., 2008; Syed et al., 2010;

Newbern et al., 2011; Heller et al., 2014; Domenech-Estevez et al., 2016). To determine
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whether loss of HGS in Schwann cells affects these pathways, we examined the
activated state of these kinases using Abs that recognize the phosphorylated forms of
AKT and ERK. As AKT is phosphorylated at T308 by PDK1 and at S473 by mTORC2,
these experiments examined the phosphorylated state of AKT at both of these
positions. We found that pAKT (T308) was significantly reduced in sciatic nerve extracts
from P14 POCreHgs" mice compared to controls (Fig. 9H and 1). In contrast, no
significant differences were observed in pAKT (S473), pERK, or pGSK3p expression in
the sciatic nerves from P14 POCreHgsﬂ mice and controls (Fig. 9H and I). Although
HGS has also been shown to interact with NF2 and regulate its signaling (Gutmann et
al., 2001; Sun et al., 2002), when we examined the effect of Schwann cell-specific loss
of HGS on NF2, there was no significant difference in the levels of either total or
activated NF2 proteins in the sciatic nerves of the P14 POCreHgsﬂ mice compared to

controls (Fig. 9H and I).

Discussion

The identification of endosomal genes linked to demyelinating forms of CMT
motivated our interest to understand the role of the endocytic pathway during
myelination. In this study, we used a targeted Schwann cell-specific deletion of HGS to
disrupt the endosomal sorting pathway in Schwann cells and examine its effect on
peripheral nerve myelination. We found that loss of HGS delayed the transition of
promyelinating Schwann cells to myelinating Schwann cells and resulted in
hypomyelination and aberrant myelination of sciatic nerves, demonstrating that

endosomal sorting is required for the normal development of myelinating Schwann cells.
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631 Loss of HGS also resulted in increased levels of phosphorylated ERBB2 receptors,
632 increased levels of total ERBB3, and a reduction in the steady-state levels of

633  pAKT(T308), which reinforces the idea that the ESCRT pathway regulates the sorting of
634 the ERBB2/3 receptors and supports a growing body of evidence that ERBB2/3

635  signaling is disrupted in some demyelinating forms of CMT (Lee et al., 2017).

636 HGS is expressed in multiple cell types within the nervous system, including
637  neurons and Schwann cells. In our previous report (Watson et al., 2015b), we showed
638 that a point mutation in the cargo-binding domain of HGS resulted in thicker myelin
639 sheaths in the sciatic nerves of teetering mice. This phenotype differs from the

640  hypomyelination defects that occur when HGS is deleted specifically within Schwann
641 cells. However, as the teetering mutation also has dominant effects on both tactile
642  sensitivity and exercise-induced ataxia (Meier, 1967; Watson et al., 2015a), it is likely
643  that the differences in myelination between the two mouse models are due to a loss of
644  function of HGS in the POCreHgs" mice, as opposed to a gain of function in the

645  teetering mice, as well as the fact that the teetering mutation is expressed in both

646  neurons and Schwann cells.

647 The development of myelinating Schwann cells requires both extrinsic and

648 intrinsic cellular signals (Jessen and Mirsky, 2008). These signals control the

649  expression of both positive and negative regulators of myelination and ultimately

650 determine the onset and extent of myelination. In the POCreHgs" mice, loss of HGS
651  disrupted the maturation of myelinating Schwann cells, presumably by preventing the
652  repression of multiple negative regulators of myelination, such as Sox-2, ¢c-Jun and

653  Pax3, and/or preventing the induction of Egr2, a transcriptional factor required for
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myelination (Topilko et al., 1994; Decker et al., 2006). Similar to what we observed in
the HGS-deficient Schwann cells, overexpression of Sox-2 in Schwann cells inhibited
the induction of myelin proteins, increased cell proliferation and caused severe
hypomyelination (Roberts et al., 2017). These findings suggest that endosomal sorting
regulates essential cell signaling events that are required for the induction of
myelination.

Neuregulin 1 signaling through the ERBB2/3 receptors is critical for many
aspects of Schwann cell development, including cell proliferation, migration along
peripheral axons and the induction of myelination (Newbern and Birchmeier, 2010;
Salzer, 2015). As deficits in the ERBB2/3 signaling pathway are thought to contribute to
peripheral neuropathies, these receptors are seen as potential therapeutic targets for
the treatment of CMT (Massa et al., 2006; Fledrich et al., 2014; Lee et al., 2016, 2017).
A recent report demonstrated that HGS interacts with ERBB3 (Fosdahl et al., 2017),
suggesting that the ERBB3 receptor is a substrate for the ESCRT pathway in Schwann
cells. Our finding that loss of HGS increased ERBB3 levels without altering the steady-
state level of ERBB2 adds further support to the idea that HGS specifically traffics the
ERBB3 receptor through the endolysosomal pathway. Since the ERBB2/3 receptors are
thought to be internalized and trafficked as a heterodimer to the endosome (Sorkin and
Goh, 2009; Bertelsen and Stang, 2014), our data support the idea that these receptors
may dissociate and be sorted independently on the endosome (Lenferink et al., 1998).
While greater levels of phosphorylated ERBB2 is indicative of increased activation of
these receptors and is associated with enhanced ERBB signaling, we did not observe

any increases in phosphorylated AKT or ERK that would suggest activation of these
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downstream signaling pathways in the sciatic nerves of the POCreHgs" mice. Instead,
we detected decreased levels of pAKT(T308) in HGS-deficient sciatic nerves. A
decrease in pAKT(T308) levels was also observed in the sciatic nerves of mice with a
deletion of Tuberous Sclerosis Complex Subunit 1 in Schwann cells that caused
hyperactivation of the mTOR pathway during development (Figlia et al., 2017),
suggesting the presence of an inhibitory feed-back loop that regulates the PI3K
pathway. It is possible that the increased activation of pERBB2 in the POCreHgs" mice
may therefore have activated an inhibitory feedback loop leading to a reduction in
pAKT(308) (Figlia et al., 2018). Alternatively, AKT can be activated on the endosome
(Palfy et al., 2012; Ebner et al., 2017; Sugiyama et al., 2019), it is possible that impaired
trafficking of the ERBB2/3 receptors in POCreHgs" mice disrupted this signaling
pathway in Schwann cells. In a similar manner, HGS is required for the activation of
signaling pathways downstream of the bone morphogenic receptor by acting as a
scaffold to recruit TAK1 and SMAD1/5/8 signaling complexes to the endosome (Miura
and Mishina, 2011a).

We observed an increased number of myelin outfoldings in the sciatic nerves of
HGS-deficient mice at both P28 and 6-months of age, and this finding suggests that
HGS is required for the proper formation and maintenance of myelin sheaths. Myelin
outfoldings are characteristic of CMT4B1 and CMT4B2, both of which are severe
demyelinating neuropathies (Azzedine et al., 2003a; Bolino et al., 2004; Bolis et al.,
2005; Delague et al., 2007; Robinson et al., 2008; Horn et al., 2012a) caused by
mutations in the Myotubularin-related protein 2 (MTMR2) and 13 (MTMR13),

respectively. MTMRs catalyze the dephosphorylation of phospholipids (Bolis et al.,
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2007), which are docking sites for the recruitment of signaling molecules to internal
membranes. HGS possesses a FYVE domain, which binds PI(3)P and is necessary for
its association with the endosome (Komada and Soriano, 1999). It is interesting to note
that, like our HGS-deficient Schwann cells, loss of MTMR2 leads to myelin outfoldings
and increased levels of pERBB2 (Bolino et al., 2004; Bolino et al., 2016).
Downregulation of NRG1 signaling in Mtmr2 knockout Schwann cells rescues the
myelin outfoldings, suggesting that deficits in phospholipid signaling can result in
localized changes in ERBB signaling and focal enhancement in myelination (Bolino et
al., 2016). We speculate that, in a similar manner, loss of HGS disrupts the sorting of
ERBB receptors, leading to enhanced focal myelination and the production of myelin
outfoldings. Future studies will examine if these outfoldings are localized to the
paranodal regions of POCreHgs" mice, as is observed in the MTMR2-deficient mice.

As a master regulator of endosomal sorting (Kobayashi et al., 2005; Komada and
Kitamura, 2005), the requirements of HGS during peripheral nerve myelination are likely
to extend beyond those of just the ERBB2/3 receptors. However, the studies detailed in
this report provide evidence for the requirement of endosomal sorting of the ERBB2/3
receptors during peripheral nerve myelination and offer possible new targets for

therapeutic intervention in the treatment of peripheral neuropathies.
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Figure Legends

Figure 1. Schwann cell-specific deletion of Hgs. (A). Agarose gel electrophoresis of the
RT-PCR products generated from the sciatic nerves of postnatal day (P) 14 Hgs" and
POCreHgsﬂ mice using primers that flank exons 4 and 6. The wild type Hgsﬂ allele
contains exons 4, 5, and 6 of Hgs whereas the conditional allele generated from Cre-
mediated deletion of exon 5 only contains exons 4 and 6 as confirmed by (B) DNA
sequence analysis of the RT-PCR products showing the splicing pattern of the Hgs
mRNA. The arrows indicate the splice site junctions between either exons 4 and 5 in the
wild type allele or exons 4 and 6 in the conditional allele. (C) Representative
immunoblot and (D) quantitation showing reduced HGS levels in sciatic nerve extracts
from POCreHgs" (POCre+) mice at P7 (p = 4.61 x 10®), P14 (p = 1.19 x 10®), and P28
(p = 8.58 x 10°°) but not in total brain extracts from P28 P0OCreHgs" mice (p = 0.26)
relative to Hgs” controls (POCre-). ACTB was used as a loading control. Data are shown
as mean + SEM, n = 3.

Student’s t-test was used to determine whether there was a significant difference in the
means of the datasets. (E) Immunofluorescence showing localization of HGS (green),
EEA1 (red) and DNA (DAPI, blue) in teased sciatic nerve sections from P14 POCreHgs"
and Hgs" control mice. (F) Transcriptomics of sciatic nerves demonstrating HGS
expression in proliferating Schwann cells (prol. SC), immature Schwann cells (iSC),
promyelinating Schwann cells (pmSC), mature Schwann cells (mSC), transition
Schwann cells (tSC), non-myelinating (Remak) Schwann cells (nm(R)SC), perineurial
cells (PnC), endoneurial cells (EnC), epineurial cells (EpC), immune cells (IC), pericytes

and vascular smooth muscle cells (Per/VSMC) and pericytes/endothelial cells (Per/EC*)
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over various stages of postnatal development (Gerber et al., 2021). Representative
immunoblot using an antibody recognizing the amino-terminus of HGS is shown in
Extended data Figure 1-1.

Figure 2. Motor and sensory function in Hgs” and POCreHgs" mice. (A) Total body mass
(1 month p = 0.62, 4 month p = 0.035), (B) distance traveled in open field (1 month p =
0.53, 4 month p = 0.0087), (C) average velocity in open field (1 month p = 0.32, 4 month
p = 0.42), (D) fore-limb grip strength (grams force(gf)) (1 month p = 0.16, 4 month p =
8.66 x 10), and (E) latency to fall during rotarod analysis (1 month p = 0.0043, 4 month
p = 1.0 x 10%) of Hgs" and POCreHgs" mice. (F) Mechanical allodynia determined by
von Frey assay of Hgs" and POCreHgs" mice (p = 1.4 x 10™*). Data are shown as mean
+ SEM, n > 5 mice per genotype. Mann-Whitney test was used to determine whether
there was a significant difference in the means of the datasets. Representative open
field traces for 4 month-old Hgs” and POCreHgs" mice are shown in Extended data

Figure 2-1.

Figure 3. Sciatic nerve electrophysiology in 4-month-old Hgs" and POCreHgs" mice. (A)
Amplitude of distal CMAP (p = 1.08 x 10®), (B) amplitude of proximal CMAP (p = 1.1 x
10), (C) distal total waveform duration (p = 2.02 x 10™""), (D) proximal total waveform
duration (p = 1.08 x 10°), (E) distal latency (p = 0.021), and (F) conduction velocity (p =
1.1 x 10°°) measured from both the right and left sciatic nerves and averaged for each
Hgs" and POCreHgs" mouse. Data are shown as mean + SEM, n = 10 mice per

genotype.
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Mann-Whitney test was used to determine whether there was a significant difference in

the means of the datasets.

Figure 4. Hypomyelination of sciatic nerves in POCreHgs" mice. (A) Representative
electron micrographs of sciatic nerves from P7, P14, P28 and P120 Hgs” and
POCreHgs" mice. Arrows indicate basal lamina onion bulbs. (B) Quantitation of the
percent of myelinated axons (P7 p =2.11 x 10°, P14 p = 1.48 x 10*, P28 p = 3.92 x
10, P120 p = 1.48 x 10™) and (C) the g-ratio (P7 p =3.0 x 10°, P14 p=3.23x 108,
P28 p = 4.4 x 10°°, P120 p = 0.0021) in sciatic nerves from Hgs” and POCreHgs" mice.
Data are shown as mean £ SEM, n = 4. Student’s t-test was used to determine whether
there was a significant difference in the means of the datasets. (D) Representative
immunoblots showing the levels of myelin basic protein (MBP) and myelin protein zero
(MPZ) from sciatic nerve extracts of P7, P14, P28, and P120 Hgs" and POCreHgs" mice.
ACTB was used as a loading control. (E) Cumulative frequency plots showing the
distribution of axon size in Hgs” and POCreHgs" mice at P7 (p = 4.61 x 10°®), P14 (p =
1.19 x 10°), and P28 (p = 8.85 x 10™°). The Kolmogorov-Smirnov test was used to
determine significance. n = 4. (F) Quantitation of axons > 1 micron in sciatic nerves
from 4-month-old Hgs" and POCreHgs" mice (p = 0.22). Data are shown as mean +
SEM, n = 3. Student’s t-test was used to determine whether there was a significant
difference in the means of the datasets. (G) Representative electron micrograph of axon
bundles and quantitation of (H) axons per bundle (p = 0.9287, n = 3) and (I) axon

bundles per 100 pm? (p= 0.93, n = 4) from sciatic nerves of P3 Hgs" and POCreHgs"
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mice. Data are shown as mean + SEM. Student’s t-test was used to determine whether

there was a significant difference in the means of the datasets.

Figure 5. Deletion of HGS in Schwann cells leads to aberrant myelination. (A)
Representative electron micrographs of sciatic nerve sections from P28 and P180 Hgs"
and POCreHgs" mice. Quantitation of myelin outfoldings in (B) P28 (p = 0.0002) and (C)
P180 (p = 0.0023) mice. Data are plotted as the percentage of fibers that were found to
be defective and are shown as mean + SEM, n = 4. Student’s t-test was used to

determine whether there was a significant difference in the means of the datasets.

Figure 6. Effects of HGS deletion in Schwann cells on gastrocnemius mass, motor
endplate structure and AChR expression. (A) Gastrocnemius muscle mass from 4-
month-old Hgs" and POCreHgs" mice (p = 0.0020). Data are plotted as mean + SEM, n
= 6 mice per genotype. Student’s t-test was used to determine whether there was a
significant difference in the means of the datasets. (B) gPCR analysis of AChR-a (p =
0.068), AChR-B (p = 3.0 x 10°°), AChR-¢ (p = 0.57), and AChR-y (p = 5.0 x 10°)
mRNAs from the gastrocnemius muscles of 4-month-old Hgs" and POCreHgs" mice.
Data are plotted relative to the amount detected in Hgsf’ controls and are shown as
mean + SEM, n = 3. Student’s t-test was used to determine whether there was a
significant difference in the means of the datasets. (C) Tibialis anterior muscles from 4-
month-old Hgs” and POCreHgs" mice stained with Abs for neurofilament (NF) and the
synaptic vesicle protein 2 (SV2) to detect motor neuron terminals (green) and with

TRITC-labeled a-bungarotoxin to detect AChRs (red). (D) Quantification of NMJs
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revealed that 89.97% of the NMJs were fully innervated and 10.03% of the NMJs were
partially innervated in the Hgs" mice, while 77.45% of the NMJs were fully innervated (p
= 0.0036) and 22.55% were partially innervated (p = 0.0046) in the POCreHgs" mice at 4
months of age. Data are plotted as mean + SEM, n = 4 mice per genotype. Student’s t-
test was used to determine whether there was a significant difference in the means of

the datasets.

Figure 7. Transcriptome analysis of Hgs" and POCreHgs" sciatic nerves. (A) Principal
component analysis results show that gene expression in P14 Hgsﬂ and POCreHgsﬂ
sciatic nerves segregate into two separate groups for each genotype. (B) Volcano plot
of transcriptome data displaying the pattern of genes altered at least 2-fold in sciatic
nerves of P14 POCreHgs" mice compared to Hgs” controls (p < 0.05). Heat map of the
top 50 significantly (C) upregulated and (D) downregulated genes in the sciatic nerves
of P14 POCreHgs" mice compared to Hgs” controls. Gene Ontology showing the (E)
biological processes altered in the POCreHgsﬂ sciatic nerves compared to controls. n =
2 mice per genotype. DESeq2 annotated results with normalized counts for P14 Hgs"
and POCreHgs" transcriptome analysis are shown in Extended data Figure 7-1. Gene
Ontology analysis describing Biological Pathways, Cellular Components and Molecular
Functions altered in the POCreHgsﬂ sciatic nerves are shown in Extended data Figure 7-

2, 7-3 and 7-4 respectively.

Figure 8. Maturational deficits in HGS-deficient Schwann cells. (A) Sciatic nerve

sections from P7 and P14 Hgs" and POCreHgs" mice were stained for the proliferating
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antigen marker Ki67 (red) and with DAPI to detect DNA (blue). Quantitation of the
number of proliferating (Ki67-positive) nuclei from (B) P7 (p = 0.12) and (C) P14 (p =
4.51 x 10°®) Hgs" and POCreHgs" mice. Data are shown as mean + SEM, n = 4 mice per
genotype. Student’s t-test was used to determine whether there was a significant
difference in the means of the datasets. Quantitation of MRNA levels in the sciatic
nerves of P14 POCreHgs" mice for genes that serve as markers of (D) immature (Hdac?
p= 0.77, Sox10 p = 0.15, Nfatc4 p = 0.50), (E) promyelinating (Sox2 p = 1.0 x 10,
Pou3f1 p =1.0 x 10, Pou3f2 p = 8.0 x 10, c-Jun p = 0.0032), and (F) myelinating
(Egr2p=3.0x 10, Nab1 p = 0.0011, Srebp1 p = 0.0050, Mpz p = 7.0 x 10*, Pmp22 p
=9.0x 10™ Mbp p = 4.0 x 10*) Schwann cells relative to levels found in Hgs" controls.
The level of Hgs mRNA was reduced 70% in POCreHgs" mice relative to controls (p =
0.0011). Data are shown as mean + SEM, n = 3 mice per genotype. Student’s t-test
was used to determine whether there was a significant difference in the means of the

datasets.

Figure 9. Altered expression of the ERBB2/3 pathway in sciatic nerves of HGS-deficient
mice. (A) Quantitation of mMRNA levels of components in the ERBB pathway in sciatic
nerves of P14 POCreHgs" and Hgs" mice (Erbb2 p=0.51, Erbb3p = 8.0 x 10* Btcp =
1.0x 107, Nrg7 p=5.14x10"°, Cd44 p = 1.0 x 107°, Erbb4 p = 1.0 x 10™*). Data are
shown as mean + SEM and are plotted relative to levels found in Hgs” control mice, n =
3 mice per genotype. Student’s t-test was used to determine whether there was a
significant difference in the means of the datasets. (B) Representative immunoblots and

(C) quantitation of ERBB2 (P7 p = 0.71, P14 p = 0.14) and (D) pERBB2 normalized to
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total ERBB2 (P7 p = 0.0127, P14 p = 0.00741). (E) Representative immunoblots and (F)
quantitation of ERBB3 (P7 p = 0.34, P14 p = 0.0034) and (G) pERBB3 normalized to
total ERBB3 (P7 p = 0.647, P14 p = 0.0736) in sciatic nerve extracts of Hgs" and
POCreHgsﬂ mice. ACTB was used as a loading control. Data are shown as mean +
SEM, n = 3 mice per genotype. (H) Representative immunoblots of the levels of
pAKT(T308), pAKT(S473), AKT, pERK, ERK, pNF2 NF2, pGSK3 and GSK3, and (I)
quantitation of pAKT(T308) (p = 0.038), pAKT(S473) (p = 0.74), pERK (p = 0.55), pNF2
(p=0.7925) and pGSK3p (p = 0.1467) levels in sciatic nerve extracts from P14 Hgs"
and POCreHgs” mice. ACTB was used as a loading control. Data are shown as mean +
SEM, n =4 mice per genotype. Student’s t-test was used to determine whether there

was a significant difference in the means of the datasets.
Figure 1-1. Immunoblot of P14 Hgsﬂ and POCreHgs” sciatic nerves probed with an
antibody against the amino-terminus of HGS. An antibody recognizing amino acids 121-

173 of HGS was used to probe P14 sciatic nerve extracts.

Figure 2-1. Open field traces of 4-month-old Hgs" and POCreHgs" mice. Representative

traces of the overall tracking pattern of 4-month-old mice during a 5 min period.

Figure 7-1. DESeqg2 annotated results with normalized counts for P14 sciatic nerves

from Hgs" and POCreHgs" mice.
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Figure 7-2. Gene Ontology Analysis of genes with a fold change > + 2 and g-value <
0.05 between Hgs" and POCreHgs" mice showing biological pathways affected by

Schwann cell deletion of Hgs.

Figure 7-3. Gene Ontology Analysis of genes with a fold change > + 2 and g-value <
0.05 between Hgsﬂ and POCreHgsﬂ mice showing cellular components affected by

Schwann cell deletion of Hgs.

Figure 7-4. Gene Ontology Analysis of genes with a fold change > + 2 and g-value <
0.05 between Hgsﬂ and POCreHgsﬂ mice showing molecular functions affected by

Schwann cell deletion of Hgs.
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