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Abstract14

Computational models of rodent physiology implicate hippocampal theta as a key mod-15

ulator of learning and memory (Buzsaki & Moser, 2013; J. E. Lisman & Jensen, 2013), yet16

human hippocampal recordings have shown divergent theta correlates of memory forma-17

tion. Herweg et al. (2020) suggest that decreases in memory-related broadband power mask18

narrowband theta increases. Their survey also notes that theta’s role in memory appears19

strongest in contrasts that isolate retrieval processes and when aggregating signals across large20

brain regions. We evaluate these hypotheses by analyzing human hippocampal recordings cap-21

tured as 162 neurosurgical patients (N = 86 female) performed a free recall task. Using the22

irregular-resampling auto-spectral analysis to separate broad and narrow-band components23

of the field potential we show: 1) Broadband and narrowband components of theta exhibit24

opposite effects, with broadband signals decreasing and narrow-band theta increasing during25

successful encoding; 2) Whereas low-frequency theta oscillations increase prior to successful26

recall, higher-frequency theta and alpha oscillations decrease, masking theta’s positive effect27

when aggregating across the full band; 3) Theta’s effects on memory encoding and retrieval28

do not differ between reference schemes that accentuate local signals (bipolar) and those that29

aggregate across large reference (whole brain average). In line with computational models30

that ascribe a fundamental role for hippocampal theta in memory, our large-scale study of31

human hippocampal recordings shows that 3-4 Hz theta oscillations reliably increase during32

successful memory encoding and prior to spontaneous recall of previously studied items.33
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Significance statement34

Analyzing recordings from 162 patients we resolve a long-standing question regarding the role of35

hippocampal theta oscillations in the formation and retrieval of episodic memories. We show that36

broadband spectral changes confound estimates of narrowband theta activity, thereby accounting37

for inconsistent results in the literature. After accounting for broadband effects, we find that38

increased theta activity marks successful encoding and retrieval of episodic memories, supporting39

rodent models that ascribe a key role for hippocampal theta in memory function.40
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1 Introduction41

Since the classic work of (Scoville & Milner, 1957), we have known that the hippocampal formation42

plays a crucial role in human context-dependent (episodic) memory. Whereas lesion studies reified43

the single-case study of H.M. (Squire, Knowlton, & Musen, 1993), further advances in our under-44

standing of hippocampal physiology arose from recording field potentials and neuronal spiking in45

awake behaving mammals (e.g., O’Keefe & Dostrovsky, 1971; Knierim, Kudrimoti, & McNaughton,46

1995; McNaughton, Barnes, & O’Keefe, 1983). These studies led to discoveries regarding the role47

of theta oscillations and place cell activity in animal learning (see J. Lisman, Jensen, & Kahana,48

2001, for a review). While human scalp EEG studies had suggested some role for theta rhythms in49

cognitive processes (e.g., Schacter, 1977) it was only at the turn of the 21st century that depth-50

electrode recordings in neurosurgical patients specifically implicated theta oscillations in human51

spatial and verbal memory (Kahana, Sekuler, Caplan, Kirschen, & Madsen, 1999; Sederberg, Kahana, Howard,52

2003; Ekstrom et al., 2005). The ability to record neural activity from indwelling electrodes syn-53

chronized with computer-controlled memory experiments spawned a series of important discoveries54

regarding the electrophysiology of human learning and memory (Johnson & Knight, 2015)55

Despite recent progress in the neurophysiology of human memory, considerable confusion sur-56

rounds the role of hippocampal theta activity in key memory processes, such as successful encoding57

and retrieval. To isolate neural correlates of successful memory encoding, researchers typically58

sort studied items into two groups: those that are subsequently recalled or recognized and those59

that are subsequently “forgotten”. Neuroimaging studies employing this contrast have frequently60

identified the hippocampus as a region of increased haemodynamic activity during successful en-61

coding. To isolate neural correlates of memory retrieval, researchers often compare the period62

during which recollection occurs with a control period comprising either a matched deliberation63

interval (Burke, Sharan, et al., 2014) or a period preceding a retrieval error (Long et al., 2017).64

In a recent review Herweg et al. (2020) identify a highly inconsistent pattern of findings, partic-65

ularly with regards to data from direct recordings from the human medial-temporal lobe (MTL).66

They find that most studies either report negative associations between MTL theta and memory, or67

mixed patterns of results with some electrodes exhibiting increases and others exhibiting decreases68
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in theta power. Herweg et al (2020) propose several possible accounts for the discrepancies across69

these studies. First, they suggest that estimates of theta-band spectral power are confounded70

with broadband power changes, with the former reflecting synchronous oscillations and the latter71

reflecting asynchronous broadband activity indicative of greater attentiveness or cognitive en-72

gagement (Burke, Ramayya, & Kahana, 2015; Hanslmayr, Staudigl, & Fellner, 2012; Miller et al.,73

2014; Voytek & Knight, 2015). They claim that the standard subsequent memory effect (SME)74

analysis will emphasize changes in global attention rather than memory-specific encoding processes,75

and suggest that negative effects largely reflect broadband activity which masks the positive theta76

effects in the data. Theta oscillations might emerge after making analytic corrections for broad-77

band changes. They also note that studies looking at retrieval processes - which are not bound to78

external stimuli and compare more similar attentive states - may be less susceptible to broadband79

confounds and therefore more suited to identify increases in hippocampal theta. Memory retrieval80

in a free recall task also depends critically on associative processes that bind items together based81

on a combination of their temporal and semantic relations (Kahana, 2020), which may themselves82

be linked to the strength of theta oscillations (Solomon, Lega, Sperling, & Kahana, 2019). Finally,83

they note that most magnetoencephalography (MEG) and scalp EEG studies find positive theta84

effects, often overlying frontal regions. While both invasive and non-invasive studies have yielded85

mixed results, the noticeably greater proportion of non-invasive studies reporting positive theta86

effects raises questions about how theta is impacted by the spatial resolution of the recording tech-87

nology and the referencing scheme applied to the signal. It may be that bipolar reference schemes88

used in many of the studies reporting decreases in theta may have filtered out theta increases that89

appear synchronously over larger brain areas.90

The present paper evaluates these accounts of the discrepant findings concerning hippocampal91

theta and memory. To do so, we analyze a large dataset comprising 162 neurosurgical patients fitted92

with hippocampal depth electrodes. Using standard wavelet methods we analyze spectral activity93

during encoding and retrieval phases of a delayed free recall task. We also separate broadband94

and narrowband components of spectral activity using irregular-resampling auto-spectral analysis95

(IRASA) (Wen & Liu, 2016). To evaluate the hypothesized role of hippocampal theta in memory96
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encoding, we analyze the period during which an item is studied and compare trials for which the97

stimulus is subsequently recalled or forgotten. At retrieval, we compare the period immediately98

preceding verbal recall with matched periods of deliberation, when patients are trying to recall but99

no items come to mind. Finally, we evaluate the hypothesis that local spatial referencing obscures100

theta’s role in memory by repeating the above comparisons separately using a global average101

reference of implanted electrodes (as compared with a bipolar reference that localizes activity to102

the differential voltage between neighboring channels).103

2 Materials and Methods104

2.1 Subjects105

We analyzed hippocampal depth-electrode recordings from 162 patients who participated in the106

DARPA-funded Restoring Active Memory project (e.g., Ezzyat et al., 2018; Solomon, Stein, et al.,107

2019; Solomon, Lega, et al., 2019; Phan, Wachter, Solomon, & Kahana, 2019). This publicly-108

shared dataset includes >300 patients with drug-resistant epilepsy who took part in memory109

testing while undergoing a neurosurgical procedure to localize seizure activity and functional tis-110

sue. These patients (N = 86 female, N = 17 left-handed) had a mean age of 38 (ranging from111

18 to 64). Researchers obtained informed consent from each patient and the research protocol112

was approved by the institutional review board (IRB) at the University of Pennsylvania and each113

participating hospital.114

Patients contributed variable numbers of trials (i.e. studied test lists) depending on the length115

of their hospitalization and their interest in participating. We analyzed data only from patients116

who recalled at least, on average, one word per list; we also limited this study to patients with117

at least one bipolar pair consisting of contacts localized within the hippocampus (see Electrode118

Recording: Localization and Preprocessing).119
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Figure 1: Methods. A) Patients performed a free recall task in which they were presented with a list of words
on a blank screen in sequence, completed a math distractor task, and were then prompted to recall as many of the
presented words as possible during a 30 second free recall period. B) Data for this analysis were collected from
electrodes located in the bilateral hippocampus across 162 patients. C) Distribution of the number of studied lists
across patients D) IRASA treats an EEG trace as a linear combination of an oscillatory component and a “fractal”
pink noise component which is assumed to follow a power law distribution. IRASA capitalizes on a mathematical
property of fractals called self-affinity that causes them to behave differently under re-sampling than other signals,
thereby allowing us to separate the components and obtain a purely oscillatory power spectrum.
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2.2 Experimental Design120

Patients completed a free recall task, in which they encoded a sequence of 12 words which appeared121

on a blank screen for 1600 ms each during a study phase. The spacing between words is jittered122

between 750 and 1000 ms. Following each study phase patients performed a 20 s arithmetic123

distractor task in which they solved problems of the form X + Y + Z =??, where X , Y , and124

Z were positive or negative numbers between 1 and 9. Responses were made on a keypad, with125

presentation of additional math problems following each response (i.e., a self-paced task). After126

the delay, a row of asterisks accompanied by an 800 Hz auditory tone signaled the start of the127

recall period. At this point patients recalled out loud all the words they could remember from128

the list in 30 seconds. They repeat this sequence 25 times to complete the experiment, but not129

all patients complete a full 25 trials. Many patients repeat this process for multiple experimental130

sessions.131

2.3 Electrode Recordings: Localization and Preprocessing132

Our study focuses specifically on neural recordings from the hippocampus, defined as including133

regions CA1, CA2, CA3, CA4, dentate gyrus, and subiculum. To localize the recording contacts134

of depth electrodes, first hippocampal subfields and MTL cortices were automatically labeled in a135

pre-implant, T2-weighted MRI using the automatic segmentation of hippocampal subfields (ASHS)136

multi-atlas segmentation method (Yushkevich et al., 2015). Next, post-implant CT images were137

manually annotated with the voxel coordinates of individual recording contacts in CT-space. Post-138

implant CT images were coregistered with presurgical T1 and T2 weighted structural scans with139

Advanced Normalization Tools (Avants, Epstein, Grossman, & Gee, 2008), aligning the locations140

of individual recording sites to the anatomical labels assigned through automatic segmentation.141

For the majority of subjects in this dataset, MTL depth electrodes that were visible on overlaid142

CT and MRI scans were then manually annotated with localizations within MTL subregions by143

neuroradiologists with expertise in MTL anatomy. The electrodes used in this analysis appear in144

Figure 1 in transformed MNI coordinate space. Algorithms that perform automatic segmentation145

and coregistration naturally introduce some imprecision, especially for patients with lesions or146

8



otherwise altered anatomy. Moreover, surgically implanted depth electrodes displace brain tissue147

and further complicate this task. Our confidence in these localizations stems from the manual work148

of the research team in visually inspecting the alignments and segmentations for every patient,149

and from the work of expert neuroradiologists checking the veracity of the anatomical labels.150

The original sampling rates for these recordings vary by hospital and patient, but are all at least151

500 Hz. For analysis, we resampled each recording to 500 Hz for consistency. We re-referenced the152

EEG using a bipolar montage in order to mitigate noise and increase the spatial resolution of the153

recordings, except for one analysis that explicitly compares this bipolar reference to a global (or154

whole-brain) average reference scheme. Applying a Butterworth bandstop filter of order 4 removed155

60 Hz line noise from the recordings.156

2.4 Separating broadband and narrowband effects with IRASA157

IRASA, introduced by Wen and Liu (2016), is a method for separating oscillations from the pink

noise background. We first assume that the EEG timeseries is a mixed signal containing both

fractal (f(t)) and oscillatory (x(t)) components.

y(t) = f(t) + x(t)

Fractals are mathematically interesting for a number of reasons, but a property of particular im-

portance is that they exhibit self-affinity. This means that fractals are scale free; geometrically,

magnifying a portion of a fractal will produce qualitatively the same pattern. Expressed mathe-

matically, when a fractal time series is resampled by a factor h,

fh(t) , hHf(t)

which means that the statistical distribution of the resampled time series is the same as the sta-

tistical distribution of the original time series multiplied by a scaling term (The Hurst exponent H

is related to the time series’ auto-correlation). In the frequency domain, this self-affinity manifests
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even more directly as

Fh(ω) = hHF (ω)

which states that the Fourier transform after resampling is equal to the Fourier transform of the158

original time series multiplied by a scaling factor. This property is useful because resampling causes159

non-fractal signals to shift in the frequency domain. For an example of how signals typically shift160

in frequency space under resampling, consider an oscillation at 5 Hz in a recording sampled at 1000161

Hz. This oscillation completes a full cycle every 200 samples. If the recording is downsampled to162

500Hz, then essentially every other sample is removed. Now, the same 5 Hz oscillation completes a163

cycle in only 100 samples. Without properly correcting for the change in sampling rate, it appears164

as if the speed of the oscillation has doubled to 10 Hz. To operationalize the property of self-affinity,165

we use the discrete Fourier Transform to compute the autopower spectrum of the time series up-166

and down-sampled by a set of non-integer factors h. Taking the median across the full range of h167

values removes the shifted oscillatory peaks, leaving exactly the fractal component. Subtracting168

this fractal component from the overall power spectrum then isolates oscillations. Figure 1 shows169

an example of the method applied to simulated data. We refer the reader to the original methods170

paper (Wen & Liu, 2016) for a more mathematically detailed description of IRASA.171

2.4.1 Isolating rhythmic oscillations172

In order to isolate the oscillatory components of the neural power spectrum, we applied IRASA173

to an epoch of 300-1300ms following word presentation for every event in the task’s encoding174

phase. To study the electrophysiology of memory retrieval we repeated the analysis for the epochs175

from 800-50ms prior to recall vocalization. These time windows were chosen to balance the trade-176

off between having a sufficiently long window to assess power in the low theta band and being177

sufficiently specific to an individual, temporally punctate behavioral event.178

IRASA decomposes the power spectrum into fractal and oscillatory components for each event179

and channel within every patient. The choice of resampling factors h controls the extent to which180

the method is robust to outliers, but trades robustness for spectral smoothing that decreases our181

frequency resolution. As we wanted to ensure our analysis did not unintentionally include noise182
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artifacts created by large oscillations, but are also interested in having a high-resolution spectral183

decomposition that can distinguish between different narrowband effects, we chose a relatively184

conservative set of resampling factors from 1.1 to 2.0, linearly spaced by 0.05. This is the default185

set of resampling factors recommended and used in the original methods paper.186

As IRASA explicitly extracts only the fractal component from the power spectrum, in order

to isolate the oscillatory component we need to take the difference of the full spectrum and the

fractal component. This is simple enough, but poses a challenge when log-transforming to suppress

extreme values and normalize the data. If the fractal estimate is greater than the mixed power

spectrum, the oscillatory power will be negative and the log transform undefined. We therefore

introduce a Shifted Symmetric Log transform (SSL) to achieve the same goals without issue. This

transform is defined as follows:

SSL(x) =
x

|x|
log(1 + |x|)

This function retains the useful properties of the logarithm, but it is symmetric about the x-axis187

and does not go to negative infinity at very small values.188

2.4.2 Wavelet power189

We computed wavelet power at both encoding and retrieval to serve as a baseline against which we190

can compare our results using IRASA. We computed power at logarithmically spaced frequencies191

using Morlet wavelets with a width of 4 cycles. For this analysis, we included buffers on either192

side which corresponded to at least two cycles at the lowest frequency being analyzed (to avoid193

edge effects). At retrieval, we excluded recalls which were preceded by a vocalization during the194

buffer period preceding the epoch; we also implemented a mirrored buffer following the epoch in195

order to avoid contaminating our spectral estimates with vocalization artifacts from recall onset.196

2.5 Statistical Analyses197

Our primary question in analyzing item encoding is the following: how does power at a given198

frequency (e.g. theta) behave as a function of subsequent recall status? In answering this question199

we want to account for individual differences as well as session-level effects; memory performance200
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and power might differ across patients or event across different recording sessions for the same201

individual. Accordingly, we fit a linear mixed effects model for each frequency of interest using the202

lmer4 package in R (Bates, Mächler, Bolker, & Walker, 2015) which predicts channel-averaged203

power as a function of subsequent recall (1 for success and 0 for failure), with random slopes204

and intercepts for the effects of subject, session, and trial (studied word list). To ensure proper205

estimation of the effects and their standard errors, we started with a maximal model and incremen-206

tally reduced the model complexity to remove zero-variance components and avoid singularities207

in the estimated variance-covariance matrix (Matuschek, Kliegl, Vasishth, Baayen, & Bates, 2017;208

Bates, Kliegl, Vasishth, & Baayen, 2018). Our analysis of memory retrieval followed the same pro-209

cedure and model, but the binary memory success variable represented successful memory retrieval210

(as opposed to baseline deliberation) rather than successful memory encoding (as determined by211

subsequent recall).212

We report effects at each frequency of interest as β coefficients from this model, and use a213

Wald test to evaluate statistical significance. We then correct for multiple comparisons by using214

the Benjamini-Hochberg procedure for controlling false discovery rate. This method is appropriate215

when tests are positively correlated, as are spectral estimates at similar frequencies.216

2.6 Data and Code Availability217

Raw electrophysiogical data used in this study are available upon request from https://memory.psych.upenn.edu218

Analysis and data visualization code is also available for direct download from https://memory.psych.upenn.e219

The Python implementation of the IRASA method used for this study is publicly available at220

https://github.com/pennmem/irasa, and other custom processing scripts used for this project221

can be found at https://github.com/pennmem/.222

3 Results223

As our analyses sought to elucidate the role of hippocampal theta oscillations in episodic memory224

encoding and retrieval, we identified all patients with hippocampal electrodes in the multi-center225

12



Restoring Active Memory project (see Methods). Out of a total of N=281 patients who completed226

the same free recall task, 162 had at least one bipolar electrode pairs whose contacts both fell within227

the hippocampal formation defined as including regions CA1, CA2, CA3, CA4, dentate gyrus, and228

subiculum, but excluding non-hippocampal MTL regions such as perirhinal and parahippocampal229

cortices. Each patient performed a memory task in which they studied 12 words which they230

attempted to recall following a brief arithmetic distractor task (see Fig.1A for a schematic of231

the experimental task). During the 30 s recall period, patients attempted to say as many words232

as they could remember from the most recent list, in any order. Each patient contributed data233

from multiple study-test trials (see Methods for details). As patients performed this memory task,234

intraparenchymal depth electrodes captured hippocampal field potentials (Figure 1B; see Methods235

details regarding electrode localization).236

The present study seeks to clarify the role of hippocampal neural oscillations in the formation237

and retrieval of episodic memories. As most prior work involving direct brain recordings used stan-238

dard spectral decomposition procedures (e.g., wavelet transforms, multi-tapers, other windowed239

FFT methods, etc.) these studies cannot disambiguate oscillations from broadband components240

of neural activity underlying successful mnemonic function. To address this limitation, we ana-241

lyzed neural signals using the irregular-resampling auto-spectral analysis (IRASA), which exploits242

the fractal properties of the power-law distributed broadband component to isolate it from the243

mixed power spectrum (see Methods). Figure 1c shows how IRASA decomposes a simulated EEG244

trace into broadband and narrowband components. The simulated data in 1c contain a single245

sine wave at a known frequency (“narrowband”) and pink noise (“broadband”). IRASA estimates246

this broadband component (see Methods) and subtracts it from the mixed autopower spectrum to247

isolate the residual oscillatory power.248

The formation of episodic memories occurs when patients study words for a subsequent recall249

task. To identify the spectral correlates of successful encoding we examined the 1 second interval250

beginning 300 ms following item presentation, thereby excluding brain signals related to perceptual251

processing of the presented word. Spectral analyses of hippocampal field potentials during this252

encoding period typically show a tilt in the power spectrum, with decreases in low frequency253
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Figure 2: Subsequent Memory Effect. Comparison of spectral power for successful and unsuccessful memory
encoding events (remembered - forgotten) based on hippocampal depth electrode recordings from 300-1300ms
following item presentation. Values represent fixed effect coefficients for the effect of successful recall on spectral
power. A red asterisk indicates that the effect size is significant after correcting for multiple comparisons (p < .05).
A) Power computed using traditional Morlet wavelets. B) The mixed power spectrum (before separating broadband
and narrowband effects) shows the expected theta and alpha decreases, analogous to the results using wavelets. C)
The fractal power spectrum (broadband only) likewise shows broad decreases in low frequency. D) The oscillatory
power spectrum, which is computed as the difference of the mixed and fractal power specra, exhibits an increase in
theta power, while retaining the same decrease in alpha power.

power and increases in high frequency power predicting subsequent recall (Burke, Long, et al.,254

2014; Ezzyat et al., 2017; Fellner et al., 2019). This spectral tilt manifests as a flattening of the255

overall spectrum in log-log space, resulting in a change in the power law exponent. IRASA, by256

isolating the power-law distributed background and removing that component from the power257

spectrum, reveals a more accurate estimate of the narrowband oscillatory patterns that coexist258
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with broadband changes.259

As shown in Figure 2, the mixed autopower spectrum - analogous to traditional wavelet or260

multitaper methods - shows the expected theta decreases during successful encoding. Likewise,261

the isolated broadband component shows decreases in theta power. The oscillatory spectrum,262

however, shows theta increases. The estimates of effect size and significance derive from the mixed263

effects model described in Methods, which predicts power at a frequency of interest as a function264

of recall status, while accounting for the effects of subject and session.265

Our finding of a small but reliable positive theta subsequent-memory effect in the human hip-266

pocampus contrasts with previous studies that found predominantly negative theta effects using267

wavelet methods and aggregate indices of hippocampal activity. These results confirm the hy-268

pothesis offered by Herweg et al. (2020) that broadband decreases in low frequency activity mask269

narrowband increases in theta activity. Given that aggregating hippocampal recordings from 162270

patients only yielded a modest positive theta SME, it is likely that many studies comprising smaller271

samples would not be powered to detect this effect (e.g., Sederberg, Schulze-Bonhage, Madsen, Bromfield, Litt,272

2007). We next turn to the question of memory retrieval, asking whether isolation of narrow-band273

spectral components can resolve mixed findings regarding theta’s role in retrieval processes.274

We used the same decomposition approach to estimate oscillatory power during a 750 ms275

epoch between 800 ms and 50 ms prior to recall onset. The theta increase observed during276

encoding is even more pronounced at retrieval; it even shows up in traditional power decom-277

positions like Morlet wavelets and IRASA’s mixed spectrum (see Figure 3A,B). Positive theta278

during retrieval has previously been reported from intracianial electrodes in the right tempo-279

ral pole (Burke, Sharan, et al., 2014), but these findings were called into question by subse-280

quent studies with far greater statistical power showing either decreases or no significant effect281

(Solomon, Lega, et al., 2019; Weidemann et al., 2019). We note that most prior work averaged282

wavelet power over the traditional theta band from either 3 or 4 Hz to 8 Hz, which blends together283

the positive and negative effects shown in Figure 3. Assessing a more continuous spectrum instead284

of averaging within bands, we recover a strong positive effect at low frequencies. So, oscillatory285

power obtained with IRASA for the memory retrieval contrast matches the results obtained using286
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traditional wavelet power, though we do obtain somewhat better resolution that reveals multiple287

distinct components in the high theta/alpha range.288

Figure 3: Memory Retrieval Contrast. Comparison of successful retrieval events and matched baseline
deliberation events which we treat as “failed recall”. Power at logarithmically spaced frequencies were computed
for the 750ms preceding recall vocalization. Values represent fixed effect coefficients for the effect of successful recall
on spectral power. A red asterisk indicates that the effect size is significant after correcting for multiple comparisons
(p < .05). Subplots show A) wavelet power, B) IRASA mixed power, C) IRASA fractal power, and D) IRASA
oscillatory power.

Herweg et al (2020) proposed that choice of referencing scheme may potentially contribute289

to the apparent inconsistencies between non-invasive and invasive analyses of theta’s role in290

memory. Scalp EEG and MEG studies often report positive theta correlates of memory encod-291

ing and retrieval (Klimesch, Doppelmayr, Russegger, & Pachinger, 1996; Hanslmayr et al., 2011;292

Kaplan et al., 2012; Fellner, Bäuml, & Hanslmayr, 2013; Staudigl & Hanslmayr, 2013; Backus, Schoffelen, Szeb293
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2016) whereas many highly powered intracranial studies have failed to show these effects. The two294

most commonly employed - and practically distinct - methods of voltage referencing are the bipo-295

lar reference and the average reference. In a bipolar scheme, the potential difference is calculated296

between pairs of neighboring electrodes. This is effectively a spatial filter, as any signal shared297

by both electrodes will be eliminated by the differencing operation. An average reference is more298

sensitive to global changes in field potentials; it is calculated by averaging the potential measured299

at all electrodes, and subtracting that average from each one. Herweg et al (2020) observe that300

increases in theta power reported in scalp EEG and MEG studies with average referencing often301

exhibit a broad topography across the scalp, centered around frontal electrodes, and suggest that302

these effects might have been attenuated in intracranial studies that frequently used bipolar refer-303

encing schemes. This is because bipolar referencing acts as a spatial high-pass filter, attenuating304

theta effects that occur synchronously across neighboring electrodes.305

Comparing the memory-related power changes measured with each referencing scheme did306

not reveal any reliable differences (see Figure 4). An FDR-corrected paired t-test comparing307

bipolar to average reference (for 126 patients with monopolar recordings) did not identify significant308

differences between the oscillatory power estimates for the two referencing schemes at any of the309

frequencies of interest.310

4 Discussion311

We sought to resolve long-standing controversies regarding the role of hippocampal theta in learning312

and memory. To do so, we reanalyzed a large dataset of human hippocampal activity recorded as313

neurosurgical patients performed multiple trials of a verbal delayed free recall task. Our dataset314

comprised 797 hippocampal recordings across 162 patients. Whereas previous research found315

inconsistent theta correlates of successful encoding and recall, we find narrow-band 4-Hz oscillations316

to consistently increase during successful encoding (Figure 2) and preceding spontaneous free recall317

(as compared with matched deliberation periods, Figure 3). Further, we show that increases in318

theta activity appear similarly whether measured using a local spatial filter (bipolar referencing)319

or a more global filter (referencing to the average of all electrodes, see Figure 4).320
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Figure 4: Comparison of referencing schemes. Average effect sizes for successful vs unsuccessful memory
contrasts A) with bipolar reference at encoding, B) with average reference at encoding, C) with bipolar reference
at retrieval, and D) with average reference at retrieval. The isolated oscillatory power spectra did not differ
significantly based on the spatial filter applied to the data.

Although many studies report theta-correlates of memory in broader memory regions, only a321

few studies specifically isolate hippocampal signals. Fell et al. (2011) analyzed hippocampal theta322

during memory encoding in a continuous recognition procedure. Analyzing ∼100 hippocampal323

electrodes they found a significant interaction between pre- and post-stimulus presentation changes324

in theta power, with significant prestimulus theta increases predicting subsequent recognition.325

During the post-stimulus item encoding period they found a modest decrease in theta (p ∼ 0.10) for326

subsequently recognized items. Sederberg, Schulze-Bonhage, Madsen, Bromfield, McCarthy, et al.327

(2007) analyzed hippocampal subsequent memory effects in a delayed free recall task. Their328

study, which included 186 hippocampal recordings detected reliable high-frequency increases during329

successful encoding, but they failed to observe reliable theta effects. In a much larger analysis of330

hippocampal recordings in delayed recall (401 hippocampal electrodes) Long, Burke, and Kahana331

(2014) observed negative theta SMEs during successful encoding, and null-effects in the theta band332
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during successful retrieval (Burke, Long, et al., 2014). Lega, Jacobs, and Kahana (2012) examined333

237 hippocampal recordings during delayed free recall (as in Sederberg et al., 2007). Recognizing334

the possibility that spectral measures confound broadband and narrowband (oscillatory) effects,335

Lega applied an oscillation detection algorithm (Caplan et al., 2003) to filter for electrodes that336

exhibited narrowband oscillations in each of several frequency bands. Analyzing these channels337

revealed both positive and negative theta effects at different electrodes. Although Lega’s study338

revealed striking positive theta effects at specific electrodes, it found an even larger number of339

hippocampal recordings that exhibited narrow-band decreases, thus offering a potential explanation340

for the negative and null-results described above.341

Standard methods used to analyze spectral EEG power (such as wavelets, multi-tapers and342

windowed FFTs) mix narrow-band and broad-band signals, leaving open the possibility that a343

negative broadband effect can mask a positive narrowband effect, and vice-versa. When analyzed344

in this manner, our study replicated a number of previously published studies in showing decreased345

hippocampal theta power during the encoding of subsequently forgotten items (e.g., Burke et al.,346

2014; Solomon et al., 2019). By using irregular-resampling auto-spectral (IRASA), however, we347

revealed a positive relation between 4-Hz theta and successful memory encoding that tends to be348

obscured by a large negative relation between broadband power and encoding success.349

Although we used IRASA to isolate narrow-band power, a number of other methods have350

been developed to address this problem, usually by modelling the 1/f background and considering351

deviations or residuals to be true narrowband, synchronous oscillations. The Better Oscillation352

Detection Method (Caplan, Madsen, Raghavachari, & Kahana, 2001) characterizes oscillations by353

measuring when narrowband power exceeds a power threshold above the fitted 1/f spectrum354

for a specified number of cycles at the frequency of interest; a newer method called FOOOF355

(Donoghue et al., 2020) identifies oscillations by assuming they are Gaussians superposed on top356

of a 1/f distribution and selecting oscillatory peaks through an iterative fitting algorithm. We357

expect that using these related methods would lead to similar results regarding the increase in358

theta with successful memory encoding.359

Comparing the period immediately preceding correct recall of a studied item with matched360
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deliberation intervals revealed that while low-frequency (4 Hz) theta increased, higher-theta band361

power decreased. In this case, separating narrow- and broad-band power did not prove necessary362

to uncover the positive correlation between theta activity and successful recall. Finally, Herweg363

et al hypothesized that bipolar referencing may obscure theta increases by filtering out activity364

correlated across multiple neighboring electrodes. Our comparison of bipolar and average references365

reveals clear theta increases irrespective of referencing scheme.366

This study does not discuss, nor directly account for, differences in epilepsy etiologies across367

patients or in epileptic activity across trials. While these and other clinical factors are outside the368

scope of this paper, as they do not bear directly on our hypotheses, they may bear on the study of369

memory in patients with epilepsy more generally. (Camarillo-Rodriguez et al., 2022; Quon et al.,370

2021).371

Hanslmayr et al. (2012) and Hanslmayr, Staresina, and Bowman (2016) propose that broad-372

band and narrowband spectral activity have distinct and complementary roles in memory encod-373

ing: broad low-frequency desynchronization across the brain supports increased representation of374

information content, while narrowband theta power increases reflect the hippocampus organizing375

and encoding that information. Our data are consistent with this theory, as we observe simulta-376

neous decreases in broadband, fractal power and increases in narrowband, oscillatory theta power377

during memory encoding. Numerous other computational models of memory, mostly informed by378

studies in rodents, assign a prominent role for theta in both memory formation and retrieval. Our379

decomposition of narrowband and broadband components of human hippocampal field potentials380

reveals increases in narrow-band theta during both successful encoding and retrieval, supporting381

the applicability of these models to human episodic memory.382
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