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ABSTRACT

Ketamine is a well-characterized N-methyl-D-aspartate receptor (NMDAR) antagonist, although
the relevance of this pharmacology to its rapid (within hours of administration) antidepressant
actions, which depend on mechanisms convergent with strengthening of excitatory synapses, is
unclear. Activation of synaptic NMDARs is necessary for the induction of canonical long-term
potentiation (LTP) leading to a sustained expression of increased synaptic strength. We tested the
hypothesis that induction of rapid antidepressant effects requires NMDAR activation, by
utilizing  behavioral = pharmacology, western blot quantification of hippocampal
synaptoneurosomal protein levels, and ex vivo hippocampal slice electrophysiology in male
mice. We found that ketamine exerts an inverted U-shaped dose-response in antidepressant-
sensitive behavioral tests, suggesting that an excessive NMDAR inhibition can prevent
ketamine’s antidepressant effects. Ketamine’s actions to induce antidepressant-like behavioral
effects, up-regulation of hippocampal AMPAR subunits GluAl and GluA2, as well as
metaplasticity measured ex Vivo using electrically-stimulated LTP, were abolished by
pretreatment with other non-antidepressant NMDAR antagonists, including MK-801 and CPP.
Similarly, the antidepressant-like actions of other putative rapid-acting antidepressant drugs
(2R,6R)-hydroxynorketamine (ketamine metabolite), MRK-016 (GABAA05 negative allosteric
modulator), and LY341495 (mGluy; receptor antagonist) were blocked by NMDAR inhibition.
Ketamine acted synergistically with an NMDAR positive allosteric modulator to exert
antidepressant-like behavioral effects and activation of the NMDAR subunit GluN2A was
necessary and sufficient for ketamine-like antidepressant-like behavioral effects. We conclude
that NMDAR activation is necessary for the beneficial effects of ketamine and other rapid-acting
antidepressant compounds. Promoting NMDAR signaling or other approaches that enhance
NMDAR-dependent LTP-like synaptic potentiation may be an effective antidepressant strategy.

SIGNIFICANCE

The anesthetic and antidepressant drug ketamine is well-characterized as an N-methyl-D-
aspartate receptor (NMDAR) antagonist, though, the relevance and full impact of this
pharmacology to its antidepressant actions is unclear. We found that NMDAR activation is
necessary for the beneficial effects of ketamine and several other putative antidepressant
compounds. As such, promoting NMDAR signaling, or other approaches that enhance NMDAR-
dependent LTP-like synaptic potentiation in vivo may be an effective antidepressant strategy
directly, or acting synergistically with other drug or interventional treatments.
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INTRODUCTION

Depressive symptoms, including low mood, anhedonia, and suicidal ideation, can be
improved within hours following initiation of pharmacological treatment with racemic (R,S)-
ketamine (ketamine), and similar effects are also observed with ketamine’s (S)-ketamine
enantiomer (Berman et al., 2000; Zarate et al., 2006b; Murrough et al., 2013; Daly et al., 2018;
Fava et al., 2020). Ketamine is also effective in patients who are resistant to the beneficial effects
of chronic standard treatments (Zarate et al., 2006b; Murrough et al., 2013; Fava et al., 2020).
Despite this potential, the development of novel rapid-acting antidepressants is hampered by an
incomplete understanding of the mechanism(s) by which ketamine exerts its therapeutic actions
(Gould et al., 2019; Krystal et al., 2019).

Ketamine is a well-characterized N-methyl-D-aspartate receptor (NMDAR) antagonist,
acting non-competitively as an open channel blocker (Anis et al., 1983). Ketamine has long been
used as an anesthetic agent, with evidence supporting NMDAR inhibition as a primary
mechanism underlying these anesthetic effects, as well as its dissociative side-effects and abuse
potential (Zanos et al., 2018b). Hypotheses regarding ketamine’s antidepressant mechanism of
action have mainly focused on potential NMDAR inhibition-mediated processes. In particular, it
has been hypothesized that ketamine acts rapidly to treat depression by (i) preferential inhibition
of NMDARs localized to GABAergic interneurons leading to selective disinhibition of
excitatory glutamatergic neurons, increased glutamate release, and the resultant increase in
synaptic strength (Duman, 2014; Krystal et al., 2019), or (ii) transient ketamine-mediated
inhibition of spontaneously activated NMDARs, which results in a homeostatic reset of synaptic

strength (Kavalali and Monteggia, 2020, 2022). Both these hypotheses converge on mechanisms



s
O
p-
@)
7p)
-
-
®
=
O
D
e
O
)
@)
O
<
@)
0p)
O
| -
-
)
Z
-

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

that lead to an increase in synaptic strength of excitatory neuronal circuits, which are weakened
in affective disorders (Zanos et al., 2018a; Thompson, 2022).

However, clinically, other NMDAR open channel blockers, such as memantine and
AZD-6765, do not exert the full antidepressant profile of ketamine (Zarate et al., 2006a; Smith et
al., 2013; Zarate et al., 2013; Sanacora et al., 2014; Sanacora et al., 2017), nor do antagonists
selective for the GIuN2B subunit of the NMDAR (Preskorn et al., 2008; Ibrahim et al., 2012;
Paterson et al., 2015; Cerecor, 2016), or the NMDAR glycine co-agonist site (Park et al., 2020).
These human observations suggest that NMDAR inhibition cannot fully explain the rapid and
robust antidepressant actions of ketamine. Alternative hypotheses for ketamine’s antidepressant
actions include distinct targets, such as opioid receptors (Zhang et al., 2021; Hess et al., 2022;
Waulf et al., 2022), or a principal role of ketamine’s biologically active metabolites including
(2R,6R)-hydroxynorketamine (HNK), which is a weak NMDAR antagonist, to increase
glutamate release probability (Zanos et al., 2016; Pham et al., 2018; Fukumoto et al., 2019;
Aleksandrova et al., 2020; Riggs et al., 2020; Riggs et al., 2022; Wulf et al., 2022).

While there is considerable evidence of a correlation between rapid antidepressant
actions and potentiation of excitatory synapses in affect-regulating neuronal circuits, ketamine
actions to inhibit NMDAR function is difficult to reconcile, especially considering the critical
role of NMDAR activity in the induction of synaptic potentiation. Activation of NMDARS is
necessary for induction of canonical long-term potentiation (LTP) of excitatory synapses, leading
to maintained upregulation of synaptic strength. Specifically, increased glutamatergic
neurotransmission results in membrane depolarization mediated by postsynaptic a-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR) activation, the opening of the

NMDAR following the release of the Mg®" block, and Ca®" influx that facilitates postsynaptic
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plasticity including upregulation of synaptic AMPARs (Huganir and Nicoll, 2013). Such a
mechanism converges with evidence that ketamine can indirectly increase glutamatergic
neurotransmission (Moghaddam et al., 1997; Duman, 2014), resulting in downstream acute
activation and subsequent maintained upregulation of AMPARs (Maeng et al., 2008). We thus
tested the hypothesis that induction of rapid antidepressant effects requires NMDAR activation
by using other NMDAR antagonists (i.e., MK-801 and CPP) prior to administration of ketamine
and other putative rapid-acting antidepressant drugs. We also examined the role of synaptic

metaplasticity and GluN2A expression in mediating the effects of ketamine.
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MATERIALS AND METHODS
Animals

Male CD-1 mice (Charles River, Wilmington, MA), eight weeks of age, were housed in
groups of 4-5 per cage upon arrival. Animals were acclimated to the vivarium (University of
Maryland, Baltimore, MD) for at least one week after arrival and were maintained on a 12 hrs
light/dark cycle. For the social defeat experiments, 8-9 week old male C57BL/6J mice
(University of Maryland, Baltimore veterinary resources breeding colony) and retired male CD-1
breeders (Charles River Laboratories, NC, USA) were used. Food and water were provided ad
libitum. All experiments were approved by the University of Maryland Baltimore Animal Care
and Use Committee and were completed in accordance with the latest National Institutes of
Health Guide for the Care and Use of Laboratory Animals.
Materials

(RS-ketamine HCl and the NMDAR channel blocker MK-801 (Sigma-Aldrich, St.
Louis, MO) were dissolved in 0.9% saline and administered intraperitoneally in a volume of 7.5
mL/kg of body mass. The negative allosteric modulator of GABA4 receptors containing a5
subunits (GABA-NAM) MRK-016 (Tocris Bioscience, R&D Systems) was prepared in 100%
DMSO and injected at the volume of 1.25 ml/kg ip. (final volume was 40-50 uL). The
competitive NMDAR antagonist (£)-CPP (Tocris Bioscience, R&D Systems), the GIuN2A-
preferring NMDAR antagonist PEAQX hydrochloride (NIMH Chemical Synthesis and Drug
Supply Program), the positive NMDAR modulator rapastinel (Allergan Pharmaceuticals), and
the mGlu2/3 receptor antagonist LY341495 disodium salt (Tocris Bioscience, R&D Systems)
were dissolved in 0.9% saline and administered intraperitoneally in a volume of 7.5 mL/kg of

body mass. The GluN2A-selective NMDAR positive modulator GNE-5729 was synthesized by



s
O
p-
@)
7p)
-
-
®
=
O
D
e
O
)
@)
O
<
@)
0p)
O
| -
-
)
Z
-

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

WuXi (Shanghai, China) and characterized by the National Center for Advancing Translational
Sciences (NCATS) and was dissolved in a mixture of 10% DMSO, 10% cremaphor EL, 80%
saline solution and given at the volume of 4 mL/kg. Ketamine’s metabolite (2R,6R)-HNK was
synthesized and characterized by NCATS, dissolved in 0.9% saline, and was administered
intraperitoneally in a volume of 7.5 mL/kg of body mass. All additional chemicals and reagents
used in this study, unless otherwise noted, were of analytical or higher grade obtained from
Sigma-Aldrich.
Behavioral assays

All injections were performed by a male experimenter based on the findings of Georgiou
et al. (2022).

Forced-swim test (FST). During the FST, mice were subjected to a 6-min swim session in clear

Plexiglass cylinders (30 cm height x 20 cm diameter) filled with 15 cm of water (23 &+ 1°C). The
FST was performed in normal light conditions (800 Lux). Sessions were recorded using a digital
video camera. Immobility time, defined as passive floating with no additional activity other than
that necessary to keep the animal’s head above water, was scored during the last 4 min of the 6-
min test by a trained observer blind to the treatment groups. To assess interactions between
inhibition of the NMDAR and antidepressant actions of ketamine and other putative rapid-acting
antidepressants, an NMDAR antagonist or vehicle was administered 10 minutes prior to
ketamine, its active metabolite (2R,6R)-HNK, the GABA-NAM MRK-016, the mGlu2/3 receptor
antagonist LY341495, or saline, and mice were tested 24 hrs later to avoid acute effects of the
drugs (MK-801 has been eliminated and does not have effects 24 hrs post-treatment (Wegener et

al., 2011).
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Inescapable shock-induced escape deficits. The inescapable shock-induced escape deficits (or

learned helplessness) paradigm consisted of three different phases: inescapable shock training,
escapable shock screening, and the escapable shock test. On Day 1, the animals were placed in
one side of two-chambered shuttle boxes (34 cm height x 37 cm width x 18 cm depth; Coulbourn
Instruments, PA, USA), with the door between the chambers closed. Following a 5-min
adaptation period, 120 inescapable foot-shocks (0.45 mA, 15 sec duration, pseudo-randomized
average inter-shock interval of 45 sec) were delivered through the floor. During the escapable
shock screening session (Day 2), the mice were placed in one of the two chambers of the
apparatus for 5 min. A shock (0.45 mA) was then delivered, and the door between the two
chambers was raised simultaneously. Crossing over into the second chamber terminated the
shock. If the animal did not cross over, the shock terminated after 3 sec. A total of 30 screening
trials of escapable shocks were presented to each mouse with an average of 30-sec delays
between each trial. Mice that developed escape deficit behavior (>5 escape failures during the
last 10 screening shocks) received the assigned drug in a randomized blinded manner 24 hrs
following screening (Day 3) and 24 hrs prior to testing. For the experiments assessing the effects
of NMDAR antagonists on the actions of ketamine, (2R,6R)-HNK, or LY341495, pretreatment
with MK-801 and/or CPP preceded treatment by 10 min. For the sub-effective dose treatment
experiments (synergistic effect experiment), rapastinel and ketamine were administered at the
same time. During the escapable shock test phase (Day 4), the animals were placed in the shuttle
boxes and, after a 5-min adaptation period, a 0.45 mA shock was delivered concomitantly with
door opening for the first five trials, followed by a 2-sec delay prior to the door opening for the
next 40 trials as we previously established this response was sensitive to ketamine treatment

(Zanos et al., 2015). Crossing over to the second chamber terminated the shock. If the animal did
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not cross over to the other chamber, the shock was terminated after 24 sec. A total of 45 trials of
escapable shocks were presented to each mouse with 30-sec inter-trial intervals. The number of
escape failures was recorded for each mouse by computer software (Graphic State V3.1;
Coulbourn Instruments, Whitehall, PA, USA).

Chronic social defeat stress (CSDS) and sucrose preference. The day prior to the social defeat

phase of the experiment, male C57BL/6] mice were singly housed and presented with two
identical bottles containing either tap water or 1% (w/v) sucrose solution for assessing their
“baseline” sucrose preference. Then, experimental mice were introduced to the home cage (43
cm length x 11 ecm width x 20 cm height) of a resident aggressive retired CD-1 breeder
(prescreened for aggressive behaviors) for 10 min. Following this physical attack phase, mice
were transferred and housed in the opposite side of the resident’s cage divided by a perforated
Plexiglas divider, to maintain continuous, 24 h, sensory contact. This process was repeated daily
for 10 days, with experimental mice being introduced to a novel aggressive CD-1 mouse each
day. Following day 10, for assessing the post-defeat sucrose preference, mice were singly housed
and presented with two identical bottles containing either tap water or 1% (w/v) sucrose solution.
Twenty-four hrs later, sucrose preference was measured and the mice that underwent social
defeat stress were assigned to two groups: resilient (sucrose preference >70%) and susceptible
(sucrose preference <55%). Only susceptible mice were treated with ketamine and the other
compounds described below.

e Ketamine experiment: Susceptible mice were treated with saline or ketamine at the doses

of 10 or 100 mg/kg and sucrose preference was measured for an additional 24 hrs.
o MK-801 effects on ketamine's reversal of sucrose preference deficits: A different cohort

of mice underwent the social defeat paradigm (as described above). Susceptible mice
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were treated with saline or MK-801 10 prior to treatment with saline or ketamine (10
mg/kg) and sucrose preference was measured for an additional 24 hrs.

Novel-object recognition test (NOR). The NOR test was carried out under dim light conditions

(~3-5 Lux). The NOR behavioral testing consisted of three different sessions during the same
day. During the habituation phase, the animals explored the NOR apparatus (40cm x 9cm x
23cm) for 10 min in the absence of objects. Immediately after, during the familiarization session
and without taking the test mouse outside the boxes, two identical objects were carefully and
silently fixed on the floor of the apparatus symmetrically 8.5 cm from the wall, and the animals
were allowed to explore the objects for a further 10 min. The objects were either two 50-mL
clear glass conical flasks (4.5 cm bottom diameter x 7 cm height) containing blue marbles or two
white-painted small glass vials (2.5 cm bottom diameter X 6 cm height). After familiarization
with the ‘familiar’ objects, mice were immediately returned to their home cages. Following a 50-
min delay, mice were placed back into the NOR apparatus, in which one of the ‘familiar’ objects
used during the familiarization session was replaced by a ‘novel’ object (retention phase). Mice
were permitted to freely explore the objects for 10 min. During both familiarization and retention
sessions, the objects were used in a counterbalanced between-groups manner. All the sessions
were videotaped by an overhead digital video camera. The retention sessions were manually
scored by a trained observer blind to the experimental groups, using the AnoStar scoring
software (Cleversys Inc., VA, US). Mice were considered to be interacting with the objects when
their head was facing the object in a pre-set distance of < I cm. A discrimination index was
calculated as the time a mouse was interacting with the novel object divided by the total time of

interaction with both the objects during the retention phase (Bevins and Besheer, 2006).
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Open-field test. This experiment was performed at 100 Lux. Mice were placed into individual
open-field arenas (50 cm length x 50 cm width x 38 cm height; San Diego Instruments, CA,
USA) for a 30-min locomotor assessment. Distance traveled was automatically analyzed using
TopScan v2.0 (CleverSys, Inc, VA, USA).
Western blots

To purify synaptoneurosomes, mouse hippocampi were dissected and homogenized in
Syn-PER Reagent (ThermoFisher Scientific, Waltham, MA, USA; Cat # 87793) with 1X
protease and phosphatase inhibitor cocktail (ThermoFisher Scientific, Waltham, MA, USA; Cat
# 78440). The homogenate was centrifuged for 10 min at 1,200 x g at 4 °C. The supernatant was
centrifuged at 15,000 x g for 20 min at 4 °C. After centrifugation, the pellet (synaptosomal
fraction) was resuspended and sonicated in N-PER Neuronal Protein Extraction Reagent
(ThermoFisher Scientific, Waltham, MA, USA; Cat # 87792). Protein concentration was
determined via the BCA protein assay kit (ThermoFisher Scientific, Waltham, MA, USA; Cat #
23227). An equal amount of protein (10-40 pug as optimal for each antibody) for each sample was
loaded into NuPage 4-12% Bis-Tris gel for electrophoresis. Gel transfer was performed with the
TransBlot Turbo Transfer System (Bio-Rad, Hercules, CA, USA). Nitrocellulose membranes
with transferred proteins were blocked with 5% milk in TBST (TBS + 0.1% Tween-20) for 1 hr
and kept with primary antibodies overnight at 4 °C. The following primary antibodies were used:
GluAl (Cell Signaling Technology, Danvers, MA, USA; Cat # 13185) and GluA2 (Cell
Signaling Technology, Danvers, MA, USA; Cat # 13607). The next day, blots were washed three
times in TBST and incubated with horseradish peroxidase-conjugated anti-mouse or anti-rabbit
secondary antibody (1:5000 to 1:10000) for 1 hr. After the final three washes with TBST, bands

were detected using enhanced chemiluminescence (ECL) with the Syngene Imaging System
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(G:Box ChemiXX9). After imaging, the blots were incubated in the stripping buffer
(ThermoFisher Scientific, Waltham, MA, USA; Cat # 46430) for 10-15 min at room temperature
followed by three washes with TBST. The stripped blots were incubated in blocking solution for
1 hr and incubated with the primary antibody directed against the respective protein or GAPDH
for loading control. Densitometric analysis of immunoreactive bands for each protein was
conducted using Syngene’s GenTools software. Protein levels were normalized to GAPDH. Fold
change was calculated by normalization to a saline-treated control group for each protein.
Hippocampal slice preparation and electrophysiology

After one week of acclimation, nine-week-old mice were randomly assigned to one of
four treatment groups [saline-saline (Sal-Sal); saline-ketamine (Sal-Ket); MK-801-saline (MK-
Sal); MK-801-ketamine (MK-Ket)] and, at the same time daily (09:30), animals were treated
with either saline or 0.1 mg/kg MK-801 followed by either saline or 10 mg/kg ketamine 10 min
later. One mouse within each cage received each of the four treatments. Animals were
anesthetized with isoflurane and sacrificed 24 hrs post-treatment.

Hippocampal slice preparation and electrophysiology experiments were conducted
generally as previously described (Preston et al., 2019; Brown et al., 2021). Briefly, brains were
removed and rapidly submerged in oxygenated (95% O, / 5% CO,), ice-cold dissection artificial
cerebrospinal fluid (ACSF; 120mM NaCl, 3mM KCI, 4mM MgCl,, I1mM NaH,PO,4, 26mM
NaHCOs, and 10mM glucose). The brain was mounted on its dorsal surface and sectioned along
the horizontal plane with a vibratome to acquire 400 pum slices containing the hippocampus. The
hippocampus was subdissected free from the rest of the slice and the CA3 subfield was removed.
These slices were then quickly placed in a humidified holding chamber at room temperature (20-

22°C). Following 90 min of recovery, slices were transferred to a submersion-type chamber and

12
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continuously perfused (1.5 mL/min; Ismatec Reglo ICC Digital Pump; Cole-Parmer, Vernon
Hills, IL) with oxygenated (95% O, / 5% CO,) ACSF (120mM NaCl, 3mM KCl, 1.5mM MgCl,,
ImM NaH,PO4, 2.5mM CaCl,, 26mM NaHCO;, and 10mM glucose) during recording
experiments. Schaffer collateral fibers were stimulated by placing a bipolar electrode (100 ps
duration at 0.05 Hz; FHC, Bowdoin, ME) in the stratum radiatum of the CA1 subfield and an
ACSF-filled glass recording pipette (3-5 MQ; World Precision Instruments, Sarasota, FL)
recorded a field excitatory postsynaptic potential (fEPSP) in the same layer of CA1.

The stimulus intensity was then modified to elicit 35% of the maximal fEPSP slope and
paired-pulse fEPSPs (50 ms interpulse interval) were recorded each min for five min. Following
paired-pulse recordings, individual stimulus pulses were applied every 20 s for 10 min and
baseline fEPSP responses were monitored. After recording baseline responses for 10 min, a high-
frequency stimulation (HFS) protocol (4x100 Hz/1 s train at 20 s intervals) induced long-term
potentiation, and fEPSP responses were monitored for the subsequent 60 min.

Data Analysis

Experimental groups were executed and analyzed by an experimenter blind to treatment
groups. Sample sizes were based upon our prior experience using the same paradigms. Distance
traveled, immobility time, and escape failures following administration of different doses of the
GluN2A-selective NMDAR positive allosteric modulator GNE-5729, as well as escape failures
(learned helplessness) and discrimination index (novel-object recognition) after administration of
different doses of ketamine were analyzed via one-way ANOVA. Effects of NMDAR
antagonists on the antidepressant-like behavioral (forced-swim test and learned helplessness),
biochemical (western blots), or novel-object recognition effects of ketamine or the other putative

rapid-acting antidepressant drugs were analyzed using two-way ANOVA, with factors
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‘pretreatment’ x ‘treatment’. Social defeat results were analyzed using a repeated measures
three-way ANOVA, with factors ‘pretreatment’ x ‘treatment’ x ‘experimental phase’ (repeated
factor). ANOVAs were followed by Holm-Sidak's multiple comparisons post-hoc test when
significance was reached (i.e., p<0.05). Electrophysiology data were digitized at 10 kHz, filtered
at 3 kHz, and analyzed with pCLAMP 10.7 software (Axon Instruments, Sunnyvale, CA). Slices
with an average baseline fEPSP slope value from 1-5 min that exhibited >10% variation
compared to 6-10 min were excluded from the analysis. Between-group comparisons were
analyzed via two-way analysis of variance (factor A: treatment; factor B: pretreatment) and
treatment means were separated via Holm-Sidik post-hoc comparisons. fEPSP values were
normalized to the average fEPSP slope response recorded during the last five min of baseline.
Individual normalized slope responses represent the average normalized slope value recorded at
20 s intervals successively over a one min period. LTP magnitude was calculated by averaging
the normalized fEPSP slope values 56-60 min after HFS. An average of four slices were
collected per animal, which were averaged to determine responses for slices from a given animal.
Reported n-values indicate the number of mice assessed. All statistical analysis and graphic
production were completed using GraphPad Prism version 9.2 (GraphPad Software Inc., San
Diego, CA). An «a level of 0.05 was used as the criterion for statistical significance. All data are
presented as mean + SEM. Statistical outliers (based on priori criteria) were determined and
removed from the dataset using the ROUT method (Motulsky et al., 2006), provided by
GraphPad Prism; parameter used: Q=1%. Out of a total of 846 mice used, 13 mice were excluded
from the analyses based on the outlier ROUT method identification. For a detailed description on

the exact statistical analyses used see Table 1.
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RESULTS
For full details on the statistical tests used, F values, and n numbers for each of the graphs
presented, sece Table 1.

High doses of ketamine do not exert antidepressant-relevant behavioral actions

We assessed the effects of different doses of ketamine to reverse escape failures
following learned helplessness induced by inescapable shocks. This model is sensitive to acute
administration of (R,S)-ketamine, but not to traditional antidepressants, when tested 24 hrs
following drug exposure (see Ramaker and Dulawa, 2017). Mice were given injections of
different doses of ketamine (1-100 mg/kg) and tested 24 hrs later in the learned helplessness test
(Fig 1A). Post-hoc analysis revealed that ketamine administration significantly reduced escape
failures of susceptible mice at the dose of 10 mg/kg (p = 0.026) and indicated a trend to reduce
escape failures at the dose of 30 mg/kg (p = 0.068). Doses of 1, 3, and 100 mg/kg were
ineffective, with 100 mg/kg completely preventing the antidepressant-like actions of ketamine
compared with the dose of 10 mg/kg (p = 0.023).

To further assess whether ketamine is antidepressant at high doses, we tested the effects
of ketamine to reverse sucrose preference deficits induced by 10 days of social defeat stress.
Either 10 or 100 mg/kg ketamine, or vehicle, was administered to mice that exhibited <55%
sucrose preference following chronic social defeat stress, and sucrose preference was assessed
over a 24 hr period after drug administration (Fig 1B). While ketamine at the dose of 10 mg/kg
reversed the deficit in sucrose preference, the dose of 100 mg/kg was ineffective in ameliorating

sucrose preference deficits in chronically stressed, susceptible mice.

NMDAR activity mediates antidepressant-relevant behavioral effects of ketamine
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To assess the role of NMDAR activity on ketamine’s antidepressant-like behavioral
actions, we gave mice an injection of the readily brain penetrant NMDAR channel blocker MK-
801 (0.1 mg/kg), followed by the administration of ketamine 10 min later, and tested these mice
for reversal of learned helplessness behavior 24 hrs after administration of ketamine (Fig 2A).
Ketamine’s antidepressant-relevant actions were absent in mice that received MK-801 prior to
ketamine (Fig 2A). Similarly, pretreatment with the competitive NMDAR blocker (+)-CPP
(which crosses the blood-brain barrier and exerts centrally-mediated behavioral actions
(Lehmann et al., 1987)) completely prevented the effect of ketamine on escape failures in
helpless mice (Fig 2B). Pretreatment with MK-801 also prevented ketamine’s actions on sucrose
preference in socially-defeated susceptible mice (Fig 2C) and immobility time in the forced-
swim test (Fig 2D). As in all the other tests, the forced-swimming procedure was conducted 24
hrs after drug administration, a time point long after any locomotor or anesthetic effects of
ketamine disappear.

These results might indicate that NMDAR activity is necessary for the antidepressant-like
behavioral actions of ketamine, or they could also simply indicate that a higher degree of
NMDAR inhibition generally prevents rapid antidepressant activity. We thus tested the
hypothesis that ketamine’s antidepressant-like action(s) converge with positive allosteric
modulators of the NMDAR, via co-administration of sub-effective doses of ketamine (3 mg/kg)
with a 1 mg/kg sub-effective dose of GLYX-13 (rapastinel), which was determined by
preliminary dose-response experiments. Rapastinel is an NMDAR positive allosteric modulator
with ECs effects on NMDAR subunits as measured in vitro of 9.8 pM (GluN2A), 9.9 nM
(GluN2B), 2.2 pM (GluN2C), and 1.7 pM (GluN2D) (Donello et al., 2019). The antidepressant-

related effects of Rapastinel, as well as the pharmacologically-related NMDAR positive
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allosteric modulator NYX-2925, were blocked with prior administration of the competitive
NMDAR antagonist CPP (Burgdorf et al., 2015; Khan et al., 2018). Rapastinel at the dose of 1
mg/kg was ineffective to induce any antidepressant-relevant behavioral actions on its own, but
the combination with the low (also sub-effective) dose of ketamine induced a synergistic effect
to reverse escape failures 24 hrs following administration, suggesting that NMDAR activation

possibly contributes to the antidepressant-like effects of ketamine (Fig 2E).

Blocking NMDAR activity prevents the antidepressant-relevant behavioral effects of rapid-

acting antidepressant drugs with distinct mechanisms

It is possible that our results could indicate only that excessive NMDAR inhibition
(arising from a combined administration of ketamine and other NMDAR antagonists (i.e., MK-
801 or CPP)) prevents the rapid antidepressant behavioral effects of ketamine. However, these
data could also provide a novel mechanism underlying ketamine’s rapid antidepressant action
involving NMDAR activation. In order to examine the critical role of NMDAR activation as a
general mechanism, we assessed whether pre-treatment with the NMDAR inhibitor MK-801
prior to administration of other preclinically characterized, putative rapid-acting antidepressants
also prevents their antidepressant-relevant behavioral actions.

(2R,6R)-HNK is a metabolite of ketamine that has been shown to exert ketamine-like
antidepressant biobehavioral actions (Zanos et al., 2016; Pham et al., 2018; Fukumoto et al.,
2019; Lumsden et al., 2019; Zanos et al., 2019; Aleksandrova et al., 2020; Riggs et al., 2020),
without blocking NMDAR function at relevant concentrations (Suzuki et al., 2017; Zanos et al.,
2017b; Lumsden et al., 2019). As above, pretreatment with MK-801 at a dose of 0.1 mg/kg

completely prevented the antidepressant-like actions of (2R,6R)-HNK tested in the forced-swim
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test 24 hrs after administration (Fig 3A), whereas pretreatment with MK-801 at 0.03 mg/kg did
not (Fig 3B). The finding that (2R,6R)-HNK’s effects to change forced swimming behavior
required a higher dose of MK-801 compared to that required to reverse ketamine’s effects may
be reflecting that (2R,6R)-HNK itself is not an NMDAR antagonist at the brain concentrations
elicited by the dose used (Suzuki et al., 2017; Zanos et al., 2017b; Lumsden et al., 2019).
Negative allosteric modulators of GABA4 receptors containing a5 subunits (GABA-
NAM), which promote glutamate release and enhanced excitatory glutamatergic transmission,
have been shown to exert ketamine-like rapid and sustained antidepressant-relevant actions in
rodent tests (Fischell et al., 2015; Zanos et al., 2017a; Xiong et al., 2018; Troppoli et al., 2021).
As we found with ketamine and (2R,6R)-HNK, pretreatment with MK-801 (0.1 mg/kg)
prevented the anti-immobility actions of the GABA-NAM MRK-016 in the forced-swim test
(Fig 3C). We also found that MK-801 pretreatment (0.1 mg/kg) prevented the reversal of
helpless behavior following inescapable shock induced by both (2R,6R)-HNK (Fig 3D) and
MRK-016 24 hrs after their administration (Fig 3E). mGluy; receptor antagonists have been
shown to exert rapid antidepressant-relevant behavioral actions in rodent tests (Chaki et al.,
2004; Yoshimizu et al., 2006; Bespalov et al., 2008; Witkin et al., 2016), likely through
increasing glutamatergic neurotransmission in mood-regulating synapses. Similar to these earlier
reports we found that the mGluy; receptor antagonist, LY341495, reversed helpless behavior in
the learned helplessness test. Pretreatment with MK-801 (0.1 mg/kg) prevented this effect (Fig
3F). Together, these findings suggest a shared necessity of NMDAR activation for the behavioral
antidepressant effects of putative rapid-acting antidepressants with distinct mechanisms of

action.
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Role for NMDAR-mediated hippocampal plasticity in the effects of ketamine.

Ketamine and its (2R,6R)-HNK metabolite have been established to enhance SC-CA1
synaptic strength (Autry et al., 2011; Zanos et al., 2016; Aleksandrova et al., 2020; Riggs et al.,
2020; Riggs et al., 2022). Performance in novel object recognition task is mediated, in part, by
plasticity of SC-CAIl synapses, and is NMDAR activity-dependent (Clarke et al., 2010;
Warburton et al., 2013) (Fig 4A). We confirmed the earlier finding that ketamine increases
performance in the novel object recognition task (Papp et al., 2017; Willner et al., 2019;
Aleksandrova et al., 2020). The administration of ketamine was performed 24 hrs prior to testing
to avoid any ataxic and anesthetic effects of the drug. Specifically, ketamine (10 mg/kg)
increased the discrimination index in the novel object recognition test compared with saline-
treated mice in a 1 hour recognition memory task (Fig 4A; p = 0.0006). In contrast, the high dose
of ketamine (100 mg/kg) impaired short-term object recognition memory compared with controls
(Fig 4A; p=0.047).

To assess the role of NMDAR activity on the pro-cognitive effects of ketamine in the
novel-object recognition test we gave mice an injection of MK-801 (0.1 mg/kg), followed by the
administration of ketamine 10 min later, and tested these mice in the novel object recognition
task 24 hrs after administration of ketamine (Fig 4B). Ketamine administration increased the
time spent with the novel object compared with saline-treated controls (Fig 4B; p = 0.005);
however ketamine’s pro-cognitive actions were absent in mice that received MK-801 prior to
ketamine (Fig 4B; p =0.847 compared to the respective controls). Similar to high-dose ketamine,
the MK-801 treatment resulted in an overall effect to decrease novel object recognition

performance (p = 0.022; Table 1).
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Studies have reported that expression of the AMPA receptor GluA1 and GIuA2 subunits
in the hippocampus is increased 24 hrs after administration of ketamine to rodents, consistent
with the finding that enhanced AMPA receptor activity underlies ketamine’s sustained
antidepressant-relevant behavioral effects (Maeng et al., 2008; Li et al., 2010; Autry et al., 2011;
Zanos et al., 2016). We administered saline or the NMDAR channel blocker MK-801 (0.1
mg/kg), followed by the administration of ketamine 10 min later, and collected hippocampi from
these mice at 24 hrs. While ketamine administration induced an enhancement of both GluA1l
(Fig 4C, D; p = 0.043) and GluA2 (Fig 4C, E; p = 0.024) AMPAR subunits, MK-801
pretreatment abolished this effect of ketamine for both the GluAl (p = 0.682) and GluA2 (p =
0.756) subunits (Fig 4C-E).

Ketamine administration to rodents has been found to induce a metaplastic effect on ex
vivo SC-CA1 synaptic activity, resulting in enhanced long-term potentiation (LTP) (Burgdorf et
al., 2013; Graef et al., 2015; Widman et al., 2018). We administered vehicle or ketamine (10
mg/kg) 10 min after administration of vehicle or MK-801 (0.1 mg/kg). Ketamine treatment
induced a metaplastic effect on LTP magnitude 24 hrs after ketamine treatment, an effect that
was blocked by MK-801 pretreatment (Fig 4F, G). Post-hoc comparisons revealed a significant
increase in LTP magnitude in SAL-KET-treated mice compared to SAL-SAL controls (p =
0.012) (Fig 4H). Pretreatment with MK-801 prevented the ketamine-induced enhancement of
LTP magnitude (Fig 4H; p=0.004; MK-801-KET vs SAL-KET). These data suggest that the
metaplastic effect of ketamine on LTP magnitude at the SC-CA1 synapse in mouse hippocampal

slices requires NMDAR activation.

GIuN2A activity mediates antidepressant actions of ketamine
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A convergent enhancement in excitatory neurotransmission in brain areas including
prefrontal cortex and hippocampus, has been characterized as a key mechanism that underlies
ketamine’s rapid antidepressant action (Thompson, 2022). Generally, synaptic NMDARs
primarily contain GluN2A subunits, which mediate long-term synaptic plasticity and display
faster kinetics, whereas GluN2B receptor subunits are expressed extrasynaptically and display
slower kinetics (Traynelis et al., 2010; Paoletti et al., 2013). Furthermore, the positive modulator
rapastinel that we found augmented the effects of ketamine (Fig 2E) has reported selectivity to
GluN2A compared to GluN2B (Donello et al., 2019). Therefore, we hypothesized a primary role
of GluN2A-containing receptors in ketamine’s actions described above. We administered saline
or the GIuN2A subunit-selective NMDAR antagonist PEAQX (at the doses of either 5 mg/kg or
30 mg/kg), followed by the administration of ketamine 10 min later, and assessed the reversal of
helpless behaviors 24 hrs later. Pretreatment with PEAQX at the doses of 5 mg/kg and 30 mg/kg
completely prevented the antidepressant-like actions of ketamine to reverse learned helplessness
(Fig 5A; p= 0.016 and p = 0.022, respectively, compared with SAL-KET mice).

As GluN2A-specific blockade prevented the antidepressant-like effects of ketamine, we
then tested whether the GIuN2A NMDAR positive modulator GNE-5729 may produce
antidepressant-like behavioral effects comparable to those of ketamine. The effect of GNE-5729
at doses ranging from 0.1-3 mg/kg on the locomotor activity of mice was evaluated, where we
found that only the dose of 3 mg/kg reduced distance travelled compared with vehicle-treated
mice (Fig 5B inset; p = 0.027). The doses of 0.1, 0.3, and 1 mg/kg GNE-5729 did not alter the
locomotion of mice compared with the controls (Fig 5B). We next assessed the ability of GNE-
5729 to induce antidepressant-like behaviors. GNE-5729 (3 mg/kg) induced a significant

decrease in immobility time of mice in the forced-swim test compared with the control mice
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tested 24 hr after administration (Fig 5C; p = 0.030), indicative of the antidepressant-like
efficacy of this GluN2A NMDAR positive allosteric modulator. In the learned helplessness
paradigm, GNE-5729 at the dose of 1 mg/kg also significantly decreased escape failures of
helpless mice compared to vehicle-treated controls when tested 24 hrs after administration (Fig
5D; p = 0.029). None of the other doses changed immobility time or escape failures in the
forced-swim and learned helplessness tests, respectively (Fig SC, D). Collectively, these results
indicate that GIuN2A activation is necessary and sufficient to induce behavioral ketamine-like

effects.
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DISCUSSION

We hypothesize that the antidepressant effects of ketamine are mediated by the induction
of NMDAR activation-dependent synaptic plasticity. Specifically, increases in synchronous
neuronal activation and glutamate release lead to acute activation of NMDARs and the induction
of persistent changes in synaptic strength and plasticity that underlie maintained therapeutic
actions after the drug is no longer present. Such an NMDAR activation mechanism converges
with increased glutamate release probability—either through ketamine disinhibition via acting on
interneurons or hydroxynorketamine’s direct action—resulting in postsynaptic AMPAR
activation, membrane depolarization release of NMDAR magnesium block, NMDAR activation,
calcium influx and consequential postsynaptic plasticity including upregulation of synaptic
AMPARs. We tested the role of NMDAR activation in the antidepressant actions of ketamine 24
hr following administration of the drug (where no relevant brain concentrations of ketamine are
present), confirming that ketamine exerts an inverted U-shaped dose-response in previously
unassessed behavioral outcomes. Our findings suggest that NMDAR inhibition induced by
higher doses of ketamine prevents antidepressant-related effects of ketamine that are triggered by
lower doses. New findings include that (i) ketamine’s persistent antidepressant-like behavioral
actions are blocked following acute pretreatment with either a competitive (CPP) or channel
blocking (MK-801) NMDAR antagonist, (ii) an otherwise ineffective low dose of ketamine acts
synergistically with an NMDAR positive allosteric modulator to exert a persistent
antidepressant-like behavioral effect, (iii) the antidepressant-like actions of other rapid-acting
antidepressant drug classes in development (that do not block the NMDAR themselves) are
similarly blocked by NMDAR inhibition, (iv) ketamine-induced up-regulation of hippocampal

AMPAR subunits GluA1 and GluA2 are blocked by acute NMDAR inhibition, (v) ketamine-
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induced metaplasticity measured ex Vvivo using electrically-stimulated LTP is blocked by
NMDAR inhibition, and (vi) pharmacological activation of the NMDAR subunit GIuN2A is
sufficient to exert antidepressant-like behavioral effects.

In humans, the typical dose/route of ketamine administration used in clinical
antidepressant studies is 0.5 mg/kg administered during a 40-min intravenous infusion. 1.0
mg/kg can be also effective, while a lower dose appears to be generally less effective (Fava et al.,
2020). However, there are no controlled studies to date that have compared these to higher doses.
Previous preclinical studies have demonstrated that antidepressant-like effects following
administration of ketamine are consistently observed in animal experiments when subanesthetic
doses are administered, but these actions are absent at higher doses near or within the range used
for anesthesia (Duncan et al., 1998; Li et al., 2010; Chowdhury et al., 2012; Zanos et al., 2016;
Chowdhury et al., 2017; Miller et al., 2018; Hibicke et al., 2020; Kim and Monteggia, 2020). To
our knowledge, all previous reports have used the forced swimming test rodent behavioral assay.
Our current results add to these reports, further showing a U-shaped dose response in the reversal
of learned helplessness. We also found that 10 mg/kg ketamine effectively reversed the
deleterious effects of chronic social defeat stress on anhedonia as measured by the sucrose
preference test, whereas the dose of 100 mg/kg was ineffective. We note that at the 24 hr time
point of testing, ketamine and its metabolites are eliminated from mice (below detectable limits
by 2 hr), and any anesthetic or other side effects of ketamine have been absent for over 23 hr
(Zanos et al., 2018b).

We also found that ketamine’s persistent antidepressant-like behavioral actions are
blocked following pretreatment with other NMDAR antagonists. In particular, we demonstrated

that pre-administration of the non-competitive antagonist MK-801 blocks ketamine’s
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antidepressant-like effects, as measured in the forced swimming test, learned helplessness test,
and recovery of sucrose preference following chronic social defeat stress. Similarly, pretreatment
with the competitive NMDAR antagonist CPP also blocked ketamine’s effects to reverse learned
helplessness. We conclude that NMDAR activation is required for ketamine’s ability to induce
the antidepressant-relevant behavioral responses to ketamine. We also conclude that the failure
of higher doses of ketamine to induce antidepressant-like behavioral responses is due to the
block of some critical fraction of NMDARSs that is needed for the induction of antidepressant-
relevant actions.

Our studies identified that the antidepressant-like actions of other putative rapid-acting
antidepressant drugs are blocked by NMDAR inhibition. Specifically, we found that the
antidepressant-like behavioral effects of ketamine’s metabolite (2R,6R)-HNK and the GABA-
NAM MRK-016 in the forced swimming and learned helplessness tests, as well as the
antidepressant-like effects of the mGluys receptor antagonist LY341495 in the learned
helplessness test, were prevented by pre-administration with MK-801. We note that prevention
of (2R,6R)-HNK’s effects to change forced swimming behavior (Fig 3A, B) required a higher
dose of MK-801 compared to that required to reverse ketamine’s effects (Fig 2D), potentially
reflecting the fact that (2R,6R)-HNK is not an NMDAR antagonist at the doses used here (Suzuki
et al., 2017; Zanos et al., 2017b; Lumsden et al., 2019). We have previously shown that
antidepressant-relevant doses of (2R,6R)-HNK increase the probability of glutamate release
independent of NMDAR inhibition, potentially via a mechanism convergent with mGlu, receptor
signaling (Zanos et al., 2016; Zanos et al., 2019; Riggs et al., 2020; Riggs et al., 2022). MRK-
016 is an aS-selective GABA-NAM that exerts rapid antidepressant-like and anti-anhedonic

actions in addition to restoring stress-weakened synapses in the hippocampus, presumably by
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disinhibition of excitatory activity (Fischell et al., 2015; Zanos et al., 2017a; Xiong et al., 2018;
Troppoli et al., 2021). Consistent with this, we found that ketamine acts synergistically with the
NMDAR positive allosteric modulator rapastinel to exert an antidepressant-like behavioral
effect. These results support the conclusions that rapid-acting antidepressant compounds share a
common downstream NMDAR-activation dependent effector mechanism, despite their wide
range of independent upstream targets.

Canonical SC-CA1 LTP, mediated by NMDAR activation, is maintained by upregulation
of postsynaptic GluA1 and GluA2 (Huganir and Nicoll, 2013). The novel object recognition task
is established to involve SC-CA1 potentiation and to be NMDAR activity-dependent (Clarke et
al., 2010; Warburton et al., 2013). The function of this hippocampal synapse may also have
relevance to the cognitive deficits observed in depression and may be reversed by ketamine (see
Gill et al., 2021). Here, we demonstrated that a 10 mg/kg dose of ketamine improved novel
object discrimination. Furthermore, the effectiveness of 10 mg/kg ketamine in enhancing novel
object discrimination was blocked by pre-administration with MK-801. Consistent with a
ketamine-mediated activation of NMDAR signaling, we identified that ketamine-induced up-
regulation of AMPAR subunits GluA1 and GIuA2 in a synaptoneurosome preparation from the
hippocampus 24 hrs after administration, was blocked by the prior administration of MK-801.
These data are consistent with previous observations that antidepressant-relevant doses of
ketamine produce effects on plasticity-mediated cellular signaling pathways that are not
observed at higher doses (Duncan et al., 1998; Li et al.,, 2010; Chowdhury et al., 2012;
Chowdhury et al., 2017; Kim and Monteggia, 2020)

In vivo administration of ketamine has been reported to enhance ex vivo SC-CA1 LTP

(Burgdorf et al., 2013; Graef et al., 2015; Widman et al., 2018). Similarly, the NMDAR PAMs
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rapastinel and NYX-295 induce a similar metaplasticity (Burgdorf et al., 2013; Burgdorf et al.,
2015; Khan et al., 2018). Ketamine and its metabolite (2R,6R)-HNK ameliorate impaired SC-
CA1 LTP measured in anesthetized Wistar-Kyoto rats 3.5 hrs after drug injection (Aleksandrova
et al., 2020). Bath application of ketamine has also been reported to induce enhanced synaptic
potentiation in hippocampal slices obtained from mice treated with ketamine 7 days prior to slice
collection (Kim et al., 2021). Here, we report that the metaplastic effect of ketamine on ex vivo
electrically-stimulated LTP assessed 24 hr following administration is blocked by the prior
administration of MK-801. While it is unclear if SC-CA1 function is directly related to
ketamine’s antidepressant actions, or if such changes are generally representative of ketamine-
induced plasticity of excitatory synapses (Thompson, 2022) these findings suggest that ketamine
induces NMDAR-activation-dependent process that enhances LTP induction. We note that while
concentrations in the range of 1 and 20uM of ketamine are reported to enhance SC-CA1 synaptic
strength in hippocampal slices, a higher concentration of 100uM does not have this effect, which
can also be blocked by APV (Kim and Monteggia, 2020; Izumi et al., in press). Ketamine
(50uM) also blocks LTP induced in nucleus accumbens slices, which may explain a lack of
ketamine in vivo dopamine-dependent plasticity in this region (Simmler et al., 2022).

Finally, we report that pharmacological activation of NMDAR subunit GluN2A with
GNE-5729 is sufficient to exert antidepressant-like behavioral effects when tested in both the
forced swimming and learned helplessness assays of antidepressant efficacy (maximally
effective at 3 and 1 mg/kg respectively). We also show that pretreatment with the GluN2A
antagonist PEAQX prevents the antidepressant-like effects of ketamine in the learned
helplessness assay, suggesting that ketamine requires, and potentially acts via, GIuN2A

activation to exert its antidepressant behavioral actions.
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Our results support targeting NMDAR-dependent LTP-like synaptic potentiation as an
effective antidepressant strategy. Our findings implicate ketamine-induced SC-CA1 synaptic to
be NMDAR-activation dependent, but it remains to be determined whether such changes are
necessary, or unique, to this synapse. A focus on the strength of inhibition of NMDAR signaling
to develop future treatments of depression may be counterproductively resulting in drugs that
prevent increases in NMDAR-activation dependent increases in synaptic strength necessary for

efficacy.
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Figure Legends

Figure 1. High doses of ketamine do not elicit antidepressant-relevant behavioral actions in
mice. Mice received an injection of vehicle or different doses of racemic ketamine and were
assessed for antidepressant-like responses 24 hr later. (A) Ketamine at the dose of 10 mg/kg
significantly decreased escape failures in helpless mice, whereas the doses of 1, 3, 30, and 100
mg/kg did not exert significant antidepressant-relevant reductions in escape failures in the
learned helplessness paradigm. (B) Similarly, ketamine at the dose of 10 mg/kg reversed the
decrease in sucrose preference of mice that underwent chronic social defeat stress whereas the
high dose of 100 mg/kg did not elicit such an antidepressant-related response. Mice were tested
for sucrose versus water preference during the 24 hr period following drug administration. Data
are the mean + SEM. * p<0.05; *** p<0.001 as indicated by Holm-Sidék post-hoc comparisons.
See Table 1 for complete details on the statistical analyses and precise group sizes.
Abbreviations: CSDS, chronic social defeat stress; KET, racemic ketamine; SAL, saline; Treat,

treatment.

Figure 2. Blocking NMDAR activity prevents the antidepressant-relevant behavioral effects
of ketamine. (A) Mice received an injection of vehicle or the NMDAR channel blocker MK-801
(0.1 mg/kg) and 10 min later they received an injection of vehicle or racemic ketamine (10
mg/kg). MK-801 pretreatment prevented the antidepressant-relevant behavioral actions of
ketamine in the learned helplessness paradigm. (B) Similarly, pretreatment with the competitive
NMDAR blocker (+)-CPP (10 mg/kg) blocked ketamine’s antidepressant-relevant actions in the
learned helplessness paradigm. (C) MK-801 (0.1 mg/kg) pretreatment also prevented the anti-

anhedonic actions of ketamine in mice that underwent chronic social defeat stress, as measured
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by the sucrose preference test. (D) MK-801 (0.03 mg/kg) pretreatment prevented ketamine’s
actions on immobility time in the forced-swim test. (E) Co-administration of sub-effective doses
of ketamine with the NMDAR positive modulator rapastinel induced a synergistic reduction of
escape failures in helpless mice in the learned helplessness paradigm. In all paradigms mice were
tested 24 hr following drug administration. Data are the mean = SEM. * p<0.05; ** p<0.01; ***
p<0.001 as indicated by Holm-Sidak post-hoc comparisons. See Table 1 for complete details on
the statistical analyses and precise group sizes. Abbreviations: CSDS, chronic social defeat

stress; KET, racemic ketamine; SAL, saline; Treat, treatment.

Figure 3. Blocking NMDAR activity prevents the antidepressant-relevant behavioral effects
of other rapid-acting antidepressant compounds. (A-B) Mice received an injection of vehicle
or the NMDAR channel blocker MK-801 and 10 min later were given an additional injection of
vehicle or ketamine’s metabolite (2R,6R)-hydroxynorketamine (HNK; 10 mg/kg) and tested in
the forced swim test 24 hr later. While (A) the dose of 0.1 mg/kg MK-801 completely prevented
the antidepressant-like behavioral actions of (2R,6R)-HNK, (B) 0.03 mg/kg MK-801 did not
prevent (2R,6R)-HNK’s actions to decrease immobility time in the forced-swim test. MK-801
pretreatment (0.1 mg/kg) prevented the antidepressant-relevant behavioral actions of (C) the
negative allosteric modulator of GABA, receptors containing a5 subunits (GABA-NAM) MRK-
016 in the forced-swim test. MK-801 pretreatment (0.1 mg/kg) prevented the antidepressant-like
effects of (D) (2R,6R)-HNK, (E) MRK-016 and (F) the mGlu2/3 receptor antagonist LY341495
in the learned helplessness paradigm 24 hr following drug administration. Data are the mean +

SEM. * p<0.05; ** p<0.01; *** p<0.001 as indicated by Holm-Sidék post-hoc comparisons. See
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Table 1 for complete details on the statistical analyses and precise group sizes. Abbreviations:

KET, racemic ketamine; SAL, saline.

Figure 4. Blocking NMDAR activity prevents the pro-cognitive and synaptic actions of
ketamine. (A) Mice received an injection of vehicle or different doses of racemic ketamine and
were tested for short-term novel object recognition memory 24 hr after drug administration.
Ketamine (10 mg/kg) enhanced the discrimination index, indicative of a pro-cognitive effect,
whereas a higher dose of ketamine (100 mg/kg) impaired object recognition memory. (B)
Administration of the NMDAR channel blocker MK-801 (0.1 mg/kg) 10 min prior to ketamine
(10 mg/kg) prevented the pro-cognitive effect of ketamine in the novel-object recognition test.
(C) Representative western blot images for GluAl and GluA2 AMPAR subunits from
hippocampal synaptoneurosomes. (D,E) Pretreatment with MK-801 prevented the ketamine-
induced enhancement of synaptoneurosomal levels of GluA1 and GluA2 AMPAR subunits. (F)
Traces composed of representative sweeps from 5 min pre-tetanus (grey) and 56-60 min post-
tetanus (black) from SAL-SAL, SAL-KET, MK-801-SAL, and MK-801-KET treatment groups.
(G,H) Pretreatment with MK-801 prevented the metaplastic effect of ketamine on long-term
potentiation magnitude at the SC-CA1 synapse. Data are the mean = SEM. * p<0.05; ** p<0.01;
#¥% p<(.001 as indicated by Holm-Sidak post-hoc comparisons. See Table 1 for complete details
on the statistical analyses and precise group sizes. Abbreviations: HFS, high-frequency

stimulation; KET, racemic ketamine; LTP, long-term potentiation; MK, MK-801; SAL, saline.

Figure 5. The antidepressant-like actions of ketamine are mediated through GIluN2A

activity. (A) Mice received an injection of vehicle or the GIuN2A-selective NMDAR negative
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allosteric modulator PEAQX (5 or 30 mg/kg) followed by an injection of vehicle or ketamine (10
mg/kg) 10 min later, and then were tested for reversal of helpless behavior 24 hr later. PEAQX
pretreatment, at both doses administered, prevented the antidepressant-relevant actions of
ketamine to decrease escape failures of helpless mice. (B) The GluN2A-selective NMDAR
positive allosteric modulator GNE-5729 induced a decrease in locomotor activity of mice in the
open-field test only at the highest dose administered (3 mg/kg). (C) In the forced-swim test,
GNE-5729 at the dose of 3 mg/kg significantly reduced immobility time of mice, indicative of an
antidepressant response. (D) Similarly, the dose of 1 mg/kg of GNE-5729 significantly reduced
escape failures of helpless mice. Data are the mean + SEM. * p<0.05; *** p<0.001 as indicated
by Holm-Sidak post-hoc comparisons. See Table 1 for complete details on the statistical analyses

and precise group sizes. Abbreviations: KET, ketamine; SAL, saline; VEH, vehicle.
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Figure/Statistical test

Number of mice (as

Factorial effects

Interaction effect

appear in graph)
Qverall effects for Figure 1
Factor 'treatment’
1A one-way ANOVA n=7776,77 Fis3s) = 4.10; p=0.005
Factor 'treatment’ Factor 'CSDS phase’ Factor 'treatment’ x 'CSDS phase’
1B two-way RM ANOVA n=386,7 Fa10) = 1.288; p=0.299 F>38) = 84.300;  p<0.0001 Flass) = 2.737; p=0.043
Overall effects for Figure 2
Factor 'pre-treatment’ Factor 'treatment’ Factor 'pre-treatment’ x 'treatment’
24 two-way ANOVA n=13,13,13,14  |Fl14s =3.333;  p=0.074 Flies) = 5.134;  p=0.028 Fiies = 1.742; p=0.193
2B two-way ANOVA n=16,16,17,17 Fi162) = 2.900; p=0.094 Fi162) = 4.625; p=0.035 F162) = 5.317; p=0.025
Factor 'treatment’ x 'phase’ Factor 'pre-treatment’ x 'treatment’ Factor 'pre-treatment’ x 'treatment’ x 'phase’
2C three-way RM ANOVA n=6,6,7,6 Fraa2) = 2.316; p=0.111 Fii21) = 6.452; p=0.019 Fia2) = 3.278; p=0.048
Factor 'pre-treatment’ Factor 'treatment’ Factor 'pre-treatment’ x 'treatment’
2D two-way ANOVA n=389099 F131) = 4.109; p=0.051 Fi131) = 3.230; p=0.082 Fl131) =7.313; p=0.011
Factor 'co-treatment’ Factor 'treatment” Factor 'pre-treatment’ x 'treatment’
2E two-way ANOVA n=793838 Fl10s) = 10.020;  p=0.004 Flis = 7.631;  p=0.010 Fl108) = 7.606; p=0.010
Qverall effects for Figure 3
Factor 'pre-treatment’ Factor 'treatment’ Factor 'pre-treatment’ x 'treatment’
3A  two-way ANOVA n=28989 Fi130) = 6.804; Fri30) = 43.040;  p<0.0001 Fri0) = 6.202; p=0.019
38 two-way ANOVA n=8999 Fl131) = 5.795; Fi131=5261;  p=0.029 Fi1s1) = 9.041; p=0.005
3C two-way ANOVA n=88,9,8 Fl129) = 6.209; Fii9) = 3.499;  p=0.072 Fi109) = 6.077; p=0.020
3D two-way ANOVA n=11,8,1110  [F(1s6 = 11.060; Fi1s6) = 44.570;  p<0.0001 Fi136) = 19.760; p<0.0001
36 two-way ANOVA n=8,10,7,10  |Fas =5.753; Fi1s5 = 6.958;  p=0.012 Fi1s5) = 3.737; p=0.061
3F__two-way ANOVA n=871038 Fli20) =9.865;  p=0.004 Fli0) = 7.547;  p=0.010 Fi20) = 11.540; p=0.002
Overall effects for Figure 4
Factor 'treatment’
4A  one-way ANOVA n=8.828 Fi221) = 15.28; p<0.0001
Factor 'pre-treatment’ Factor 'treatment’ Factor 'pre-treatment’ x 'treatment’
4B two-way ANOVA n=87,7,8 Fli6) = 16.410;  p<0.001 Fi1.26) = 7.356; Fi106) = 5.937; p=0.022
4D two-way ANOVA n=10,10,10,10 |Fj13¢ = 4.468;  p=0.042 Fi136) = 1.963; Fi1s6) = 3.944; p=0.054
4E  two-way ANOVA n=10,10,10,10 |Fu6 =1.253;  p=0.270 Fi136) = 4.389; Fi1s6) = 2.729; p=0.107
4H  two-way ANOVA n=8556 Flio0 = 11.630;  p=0.003 Fi120) = 4.616; Fl120) = 6.246; p=0.021
Overall effects for Figure 5
Factor 'pre-treatment’ Factor 'treatment’ Factor 'pre-treatment’ x 'treatment’
54 two-way ANOVA n=677777 |[Fass=1320;  p=0.280 Fiss) = 7.287;  p=0.011 Flos5) = 4.796; p=0.014
Factor 'treatment’
5B one-way ANOVA n=6,66,77 Faz7) = 2.469; p=0.069
5C one-way ANOVA n=28,88,8,8 Flas) = 2.469;
5D one-way ANOVA n=9.3828.38,78 Fisa2 =2.110;




