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Abstract 33 

 34 

The amplitude envelope of speech is crucial for accurate comprehension. Considered a key stage in 35 

speech processing, the phase of neural activity in the theta-delta bands (1 - 10 Hz) tracks the phase of the 36 

speech amplitude envelope during listening. However, the mechanisms underlying this envelope 37 

representation have been heavily debated. A dominant model posits that envelope tracking reflects 38 

entrainment of endogenous low-frequency oscillations to the speech envelope. Alternatively, envelope 39 

tracking reflects a series of evoked responses to acoustic landmarks within the envelope. It has proven 40 

challenging to distinguish these two mechanisms. To address this, we recorded magnetoencephalography 41 

while participants (n=12, 6 female) listened to natural speech, and compared the neural phase patterns to 42 

the predictions of two computational models: An oscillatory entrainment model and a model of evoked 43 

responses to peaks in the rate of envelope change. Critically, we also presented speech at slowed rates, 44 

where the spectro-temporal predictions of the two models diverge. Our analyses revealed transient theta 45 

phase-locking in regular speech, as predicted by both models. However, for slow speech we found 46 

transient theta and delta phase-locking, a pattern that was fully compatible with the evoked response 47 

model but could not be explained by the oscillatory entrainment model. Furthermore, encoding of 48 

acoustic edge magnitudes was invariant to contextual speech rate, demonstrating speech rate 49 

normalization of acoustic edge representations. Taken together, our results suggest that neural phase 50 

locking to the speech envelope is more likely to reflect discrete representation of transient information 51 

rather than oscillatory entrainment. 52 

  53 
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Significance statement 54 

 55 

Oganian and colleagues probe a highly debated topic in speech perception – the neural mechanisms 56 

underlying the cortical representation of the temporal envelope of speech. It is well established that the 57 

slow intensity profile of the speech signal, its envelope, elicits a robust brain response that “tracks” these 58 

envelope fluctuations. The oscillatory entrainment model posits that envelope tracking reflects phase 59 

alignment of endogenous neural oscillations. Here the authors provide evidence for a distinct mechanism. 60 

They show that neural speech envelope tracking arises from transient evoked neural responses to rapid 61 

increases in the speech envelope. Explicit computational modeling provides direct and compelling 62 

evidence that evoked responses are the primary mechanism underlying cortical speech envelope 63 

representations, with no evidence for oscillatory entrainment.  64 
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Introduction 65 

Speech comprehension is essential to human communication. A major computational step in neural 66 

processing of speech is the extraction of its amplitude envelope, the overall intensity of speech across 67 

spectral bands. The speech envelope is dominated by fluctuations in the range of ~1–10Hz, which are 68 

temporally correlated with the syllabic structure of speech, and the removal of which from speech 69 

severely impairs intelligibility (Drullman et al., 1994a, 1994b). Many studies have shown a consistent 70 

relationship between the phase of band-limited low-frequency neural activity measured in M/EEG over 71 

auditory cortical areas and the phase of the amplitude envelope of speech, a phenomenon widely known 72 

as envelope tracking (Ahissar et al., 2001; Luo & Poeppel, 2007). The strength of envelope tracking is 73 

correlated with speech intelligibility, suggesting that it could constitute an essential stage in speech 74 

comprehension (Abrams et al., 2008; Peelle et al., 2013). However, the neural computations underlying 75 

speech envelope tracking are controversial (Gwilliams, 2019; Obleser & Kayser, 2019; Zoefel, ten Oever, 76 

et al., 2018).   77 

A dominant theory of speech envelope tracking posits that it reflects the entrainment (i.e., phase 78 

alignment) of endogenous neural oscillations to envelope fluctuations. According to this, phase correction 79 

is driven by discrete acoustic landmarks in the speech signal and occurs primarily for oscillators in the 80 

delta-theta range (1-10 Hz), matching the syllabic rate of the speech signal (Ding et al., 2015; Zoefel, 81 

2018; Giraud & Poeppel, 2012). Functionally, oscillatory entrainment is thought to benefit speech 82 

processing via the self-sustaining property of oscillating dynamical systems, resulting in automatically-83 

driven temporal prediction of upcoming information (Haegens & Zion Golumbic, 2018; Helfrich et al., 84 

2019). 85 

However, recent work has demonstrated that phase alignment of low-frequency neural activity can be the 86 

outcome of transient neural responses rather than oscillatory dynamics (Breska & Deouell, 2017; Capilla 87 

et al., 2011). This becomes pertinent in the case of speech, as it has been suggested that the speech 88 

envelope is encoded in evoked responses to the same acoustic landmarks that supposedly drive the 89 

entrainment process. Recent electrophysiology recordings suggest that these events are peaks in the rate 90 
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of amplitude envelope change, marking the perceived onset of vowels. To date it remains unclear, which 91 

of these processes drive phase adjustments in speech envelope tracking. The two competing models have 92 

drastically disparate functional and mechanistic implications (Bree et al., 2021; Doelling & Assaneo, 93 

2021; Ruhnau et al., 2020; Zoefel et al., 2019).  94 

To address this, we combined a model-based computational approach with neurophysiological (MEG) 95 

recordings of neural responses in an ecologically valid context, using natural continuous speech. We 96 

implemented an oscillatory entrainment model and an evoked responses model, quantified the spectral 97 

content and temporal dynamics of neural activity predicted by each model in response to speech, 98 

identified diverging model predictions, and tested them against MEG data.  99 

Our modeling approach had two critical features. First, we analyzed phase patterns as event-locked to 100 

acoustic landmarks. This allowed us to have an extremely high number of events (2106 within-101 

participant), and to probe phase alignment in a time-resolved manner. Particularly, it enabled us to 102 

quantify reverberation following a phase-reset, a hallmark of oscillatory processes. Second, we 103 

additionally presented continuous speech at, equally intelligible, 1/3 of its original rate. In natural speech, 104 

the speech rate, and hence the expected frequency of an entrained oscillator, overlaps with the spectral 105 

content of evoked responses. Moreover, the duration of an evoked response is longer than the time 106 

between phase-resetting events, where oscillatory reverberation is expected to occur. We hypothesized 107 

that slowing speech would solve both. 108 

This manipulation also allowed us to address the neural mechanisms of speech rate normalization, 109 

listeners’ ability to adjust perceptual processes to differences in speech rate. It has previously been 110 

proposed that speech rate normalization relies on shifts in the frequency of the phase-locked oscillator 111 

towards the speech rate (Kösem et al., 2018; Nourski et al., 2009; Pefkou et al., 2017). Here we examined 112 

this hypothesis in naturalistic speech. 113 

 114 

Methods 115 

Participants 116 
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Twelve healthy, right-handed volunteers (six females; age range 22-44 years, median 25 years) 117 

participated in the study. All participants were native speakers of English. All participants provided 118 

informed written consent and received monetary compensation for their participation. The study was 119 

approved by the University of California, San Francisco Committee on Human Research.  120 

 121 

Speech stimulus  122 

Participants listened to two stories (one male, one female speaker) from the Boston University Radio 123 

Speech Corpus (BURSC, Table S1 for full stimulus transcripts) (Ostendorf et al., 1995), each once at 124 

regular speech rate and once slowed to 1/3 speech rate. Overall, the stimuli contained 26 paragraphs (each 125 

containing 1 - 4 sentences) of 10 – 60 s duration, with silent periods of 500 – 1100 ms inserted between 126 

paragraphs to allow measuring onset responses in the MEG without distortion from preceding speech. 127 

Boundaries between paragraphs corresponded to breaks between phrases, such that silences were 128 

perceived as natural. Speech stimuli were slowed using the Pitch Synchronous Overlap and Add 129 

(PSOLA) algorithm, as implemented in the software Praat (Boersma & Weenik, 2019), which slows 130 

down the temporal structure of the speech signal while keeping its spectral structure constant (Moulines 131 

& Charpentier, 1990). Overall, the regular speech stimulus was 6.5 min long and the slowed stimulus was 132 

19.5 min long. An example excerpt of the stimulus at slow and regular speech rate is provided in the 133 

extended data section for download. 134 

 135 

Procedure and stimulus presentation 136 

All stimuli were presented binaurally at a comfortable ambient loudness (~ 70 dB) through MEG 137 

compatible headphones using custom-written MATLAB R2012b scripts (Mathworks, 138 

https://www.mathworks.com). Speech stimuli were sampled at 16 kHz. Participants were asked to listen 139 

to the stimuli attentively and to keep their eyes closed throughout.  140 

Participants listened to the radio stories once at regular and once at slowed rate in separate but interleaved 141 

blocks, such that each participant heard one story first at regular speech rate and the other at slowed 142 
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speech rate. Comprehension was assessed with 3-4 multiple choice comprehension questions posed after 143 

each story (Table S2 for list of comprehension questions.). For each participant, a different randomly 144 

selected subset of questions was used for each block. Percentage correct was compared between regular 145 

and slow blocks using a two-sided paired t-test. 146 

 147 

Neural data acquisition and preprocessing 148 

MEG recordings were obtained with a 275-axial gradiometers whole-head MEG system (CTF, 149 

Coquitlam, British Columbia, Canada) at a sampling rate of 1,200 Hz. Three fiducial coils were placed on 150 

the nasion and left and right pre-auricular points to triangulate the position of the head relative to the 151 

MEG sensor array. The position of the patient’s head in the device relative to the MEG sensors was 152 

determined using indicator coils before and after each recording interval to verify an adequate sampling 153 

of the entire field. The fiducial markers were later co-registered onto a structural magnetic resonance 154 

imaging scan to generate head shape (Teichmann et al., 2013). 155 

 156 

Data analysis and modeling 157 

All analyses were conducted in MATLAB R2019a - MATLAB R2021b  (Mathworks, 158 

https://www.mathworks.com) using custom-written scripts and the FieldTrip toolbox (Oostenveld et al., 159 

2011).  160 

 161 

Acoustic feature extraction 162 

We extracted the broad amplitude envelope of speech stimuli by applying rectification, low-pass filtering 163 

at 10 Hz, and down-sampling to 100 Hz, to the original stimulus waveform (in this order). We then 164 

calculated the derivative of the resulting envelopes as a measure of its rate of change. Finally, we 165 

extracted the sparse time series of local peaks in the amplitude envelope (peakEnv) and its derivative 166 

(peakRate). All features are depicted in Figure 1A, for an example stimulus excerpt. Overall, the stimulus 167 

set contained 2106 peakRate and 2106 peakEnv events per speech rate condition.  168 
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 169 

Evoked response and oscillatory entrainment models for IEPC simulation 170 

We implemented two computational models that predict neural activity in response to continuous speech, 171 

one based on oscillatory entrainment and another based on evoked responses. We then submitted their 172 

output to the same phase analysis as for MEG data. We assumed that both processes were driven by 173 

peakRate events, based on our analysis of responses to acoustic landmarks and previous work (Oganian & 174 

Chang, 2019). As input, each model received a time series that contained peakRate values, scaled within 175 

speech rate between 0.5 and 1, at times of peakRate events, and zeros otherwise. We scaled to this range 176 

as our analyses revealed that neural phase alignment to speech is normalized within each speech rate, and 177 

that its magnitude for the bottom quantile is ~50% of the top quantile (see Results, Figure 5). To capture 178 

the variable latency of the neural response to non-transient sensory events such as acoustic landmarks, we 179 

added random temporal jitter (gaussian distribution, SD = 10 and 30 ms in regular and slow speech, 180 

respectively) to the timestamp of each peakRate event. Subsequent phase analyses were conducted using 181 

the original, non-jittered time stamps. To account for the non-uniform spectral impact of the 1/f noise that 182 

is typical to neurophysiological measurement, we added noise with this spectral content to the predicted 183 

neural response output by each model, with a signal-to-noise ratio of 1/10. To create the noise, we filtered 184 

gaussian white noise to the 1/f shape with the Matlab function firls.m. The temporal and amplitude jitter 185 

parameters were fitted to maximize the similarity between the predicted and observed spectrotemporal 186 

patterns of phase alignment. Importantly, to not favor one model, this was done across both models and 187 

speech rates. To ensure that results would not be biased by the introduction of simulated random noise, 188 

we repeated the randomization procedure 2560 times for each model and each speech rate (64 iterations 189 

of temporal noise X 40 iterations of amplitude noise), calculated the phase analyses (below) on the 190 

predicted neural signal from each randomization, and then averaged across randomizations. 191 

For the oscillator model, peakRate events induce phase corrections of a fixed-frequency oscillator whose 192 

frequency is centered on the speech rate (5.7 and 1.9 Hz for regular and slow speech, respectively), as is 193 

assumed by oscillatory entrainment models and confirmed in previous work (Breska & Deouell, 2017; 194 
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Large & Snyder, 2009). Following Large & Snyder (Large & Snyder, 2009), this process was modeled 195 

using a coupled oscillator dynamical system: 196 𝑑𝜃𝑑𝑡 = 2𝜋𝐹 − 𝑐 ∙ 𝑠(𝑡)𝑟 ∙𝑠𝑖𝑛 𝑠𝑖𝑛 𝜃  𝑑𝑟𝑑𝑡 = 𝑟(1 − 𝑟 ) + 𝑐 ∙ 𝑠(𝑡) ∙𝑐𝑜𝑠 𝑐𝑜𝑠 𝜃  
The system produces periodic limit cycle behavior at a radius of r = 1 (attractor point) and a frequency F 197 

in the absence of input (s(t) = 0) and follows phase correction towards an angle of 𝜃 = 0 when presented 198 

with input (s(t) > 0). The magnitude of phase correction depends on the strength of the input, the current 199 

angle, and the coupling parameter c. At low values of c, no oscillator was able to entrain to speech, 200 

whereas at high values, entrainment spread across all oscillator frequencies. Crucially, as predicted, at 201 

intermediate values, only the oscillator with the correct frequency was entraining to our speech stimulus 202 

(Fig. 2B). We thus focused on an oscillator model with intermediate entrainment strength and oscillator 203 

frequency corresponding to the speech rate in each task condition for further analyses. Specifically, the 204 

value of c was set such that the maximal phase correction possible (when s(t) = 1 and 𝜃 =  or − ) 205 

would be 70% of the maximal phase shift. We reconstructed the predicted response as: 𝑃𝑟𝑒𝑑𝑅𝑒𝑠𝑝 =206 𝑐𝑜𝑠 𝑐𝑜𝑠 𝜃  ∙ 𝑟 .  207 

peakRate events trigger a prototypical evoked response with its amplitude proportional to the strength of 208 

the input. For the evoked response model, this process was modeled using a linear convolution of the time 209 

series of peakRate events with the waveform of an evoked response to peakRate events. The latter was 210 

estimated directly from the MEG data, using a time-delayed linear encoding model (Temporal Receptive 211 

Field, TRF (Holdgraf et al., 2017; Oganian & Chang, 2019)), with a time window of -150 to 450 ms 212 

relative to peakRate events. While we found no effect of speech slowing on the shape of the neural 213 

response to peakRate events in our previous intracranial work (Oganian & Chang, 2019), we assumed that 214 

neural responses recorded with MEG will be additionally shaped by other speech features that occur in 215 

temporal proximity to peakRate events (e.g., vowel onsets), even though our dataset did not allow us to 216 
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explicitly model such additional features. Rather, we estimated the evoked response separately within 217 

each speech rate. We used the TRF approach instead of simple averaging due to the high rate of peakRate 218 

events (average interval ~170 ms), which would have distorted the averaging-based estimate due to 219 

overlap between evoked responses. 220 

 221 

MEG data preprocessing 222 

Offline data preprocessing included (in this order) artifact rejection with dual signal subspace projection 223 

(DSSP) and down-sampling to 400 Hz. DSSP is a MEG interference rejection algorithm based on spatial 224 

and temporal subspace definition (Sekihara et al., 2016). Its performance has been recently validated 225 

using clinical data (Cai et al., 2019). In all subsequent analyses of segmented data, segments containing 226 

single sensor data above 1.5pT and visually identified artifacts (including muscle, eye blink, and motion) 227 

were flagged as bad events and removed from further processing (0.2 % of segments).  228 

 229 

Sensor selection 230 

To focus analyses on responses originating in temporal auditory areas, we selected sensors based on the 231 

magnitude of the group-averaged M100 response to the onset of utterances (independent of responses to 232 

acoustic features within the utterance, which were the focus of subsequent analyses). For this purpose, we 233 

segmented the broadband signal around utterance onsets (- 200 to 500 ms), averaged these epochs across 234 

utterances and participants, applied baseline correction (-200 ms to 0 ms relative to utterance onset), and 235 

extracted the M100 amplitude as the average activity between 60-100 ms after utterance onset. We then 236 

selected the ten sensors with maximal M100 responses from each hemisphere. All subsequent analyses 237 

were conducted on these 20 sensors. 238 

 239 

Event related analysis and sensor selection 240 

For broadband evoked response analysis, we first extracted the broadband signal by band-pass filtering 241 

the data between 1 and 40 Hz (second-order Butterworth filter).  242 
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To identify which landmark in the speech envelope drives evoked responses, we analyzed evoked 243 

responses to peakRate and peakEnv events. We reasoned that with alignment to an incorrect landmark, 244 

evoked responses would have reduced magnitude due to smearing, and latency that is shifted away from 245 

the acoustic event. For this purpose, we segmented the broadband signal around acoustic landmark events 246 

(-100 to 300 ms), averaged these epochs across events within each participant separately for peakRate and 247 

peakEnv events, and applied baseline correction (-100 ms to 0 ms relative to event onset). Based on our 248 

previous work (Oganian & Chang, 2019), we hypothesized that peakRate events would be the driving 249 

acoustic landmark. We compared evoked responses to peakRate and peakEnv using timepoint by 250 

timepoint t-tests. 251 

 252 

Time-Frequency decomposition  253 

Identical time-frequency (TF) analyses were performed on the continuous MEG data and on the 254 

continuous simulated signal from the Evoked Response and Oscillatory Entrainment models. To evaluate 255 

the instantaneous phase of the signal at individual frequency bands (logarithmically spaced between 0.67 256 

and 9 Hz, 0.1 octave steps), we applied non-causal band-pass Butterworth filters around each frequency 257 

of interest, performed the Hilbert transform, and obtained the amplitude and phase as the absolute value 258 

and phase angle, respectively, of the Hilbert signal. Filter order was chosen to achieve maximal 3 dB of 259 

passband ripple and at least 24 dB of stopband attenuation. We conducted this TF analysis with a narrow 260 

filter width (±0.1 octave of the frequency of interest) for analyses of spectral patterns to increase 261 

frequency resolution, and again with a wider filter (±0.5 octave) for analyses of temporal dynamics to 262 

increase temporal resolution.  263 

 264 

Cerebro-acoustic phase coherence (CAC) 265 

To assess cerebro-acoustic phase coherence between the speech envelope and MEG responses, the speech 266 

envelope was processed using the same procedure that was applied to the MEG responses: Down-267 

sampling and TF analysis using the wide filter settings. Phase locking between the speech envelope and 268 
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MEG response was calculated across the entire duration of every utterance within each frequency band, 269 

using the Cerebro-acoustic phase coherence (CAC): 270 

𝐶𝐴𝐶(𝜑) =  1𝑁 𝑒𝑥𝑝 (𝑖 ∗ (𝑝ℎ(𝜑, 𝑡) − 𝑝ℎ𝑠(𝜑, 𝑡)))  

 271 

where 𝜑 is the center frequency of a frequency band, T is the number of time samples in an utterance, ph 272 

is the phase of the neural signal, and phs is the phase of the speech envelope in band 𝜑 at time t. To 273 

equate the number of time points entering the analysis for slow and regular speech, slow speech 274 

utterances were split into three equal parts before CAC calculation, and resultant CAC values were 275 

averaged. CAC was averaged across sensors for each hemisphere.  276 

A priori, we hypothesized that CAC would differ between conditions in the frequency bands 277 

corresponding to the average frequency of peakRate events in each rate condition (regular: 5.7 Hz; slow: 278 

1.9 Hz, Figure 1B). We tested this hypothesis using a 3-way repeated-measures ANOVA with factors 279 

frequency band (high/low), factor speech rate (slow/regular), and hemisphere (left/right). To test for 280 

further differences in each frequency band, we assessed the effect of speech rate and hemisphere onto 281 

CAC using a two-way repeated-measures ANOVA with factor speech rate (slow/regular) and hemisphere 282 

(left/right). Significance in this analysis was Bonferroni-corrected for multiple comparisons across bands.  283 

 284 

Inter-event phase coherence (IEPC) 285 

Both IEPC analyses were conducted on the actual MEG data and the neural responses predicted by the 286 

evoked response and oscillatory entrainment models. To assess neural phase locking around peakRate 287 

events, we segmented the continuous phase data around peakRate events (see below), and obtained a 288 

time-resolved inter-event phase coherence (IEPC) (Lachaux, Rodriguez, Martinerie, & Varela, 1999). For 289 

each timepoint, IEPC was calculated using the following formula: 290 

𝐼𝐸𝑃𝐶(𝜑, 𝑡) =  1𝑁 𝑒𝑥𝑝 (𝑖 ∗ 𝑝ℎ (𝜑, 𝑡))  
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where N is the number of events, 𝑝ℎ is the phase of the neural signal in trial k, for the frequency band 𝜑 291 

and timepoint t. IEPC were first calculated within each of the selected sensors, then averaged across 292 

sensors.  293 

 294 

Spectral patterns of IEPC 295 

To assess the spectral distribution of phase-locking following peakRate events with increased frequency 296 

resolution, we segmented the phase data outputted by the narrow filter TF analysis around peakRate 297 

events (-500 to 500 ms) and calculated the IEPC. To prevent distortion of the estimated phase by 298 

subsequent peakRate events, we only used ones that were not followed by another peakRate event within 299 

the 0-500 ms window (n=813 within each participant). To identify whether in this time window and 300 

frequency range there was a significant increase in IEPC in the MEG data, the resulting time x frequency 301 

IEPC was compared with the pre-event baseline using 2-D cluster-based permutation t-tests (Maris & 302 

Oostenveld, 2007) with 3000 permutations, a peak t threshold of p < 0.01, and a cluster threshold of p < 303 

0.01. Baseline IEPC was calculated as the average IEPC between -400 ms to -100 ms relative to event 304 

onset in each frequency band.  305 

To compare between model predictions and data, IEPC spectral profiles were calculated, separately for 306 

each speech rate condition, by averaging IEPC TF images following peakRate event onset across a time 307 

window that conforms to one cycle of an oscillator whose frequency matches the speech rate, i.e. 0-170 308 

ms at regular speech rate and 0 – 500 ms at slowed speech rate. 309 

 310 

Temporal extent of IEPC  311 

To assess the temporal extent of IEPC between peakRate events, we focused on the slowed speech 312 

condition, where phase-locking originating from the evoked response and from putative oscillatory 313 

entrainment occupy distinct spectral bands. We segmented the phase data outputted by the broad filter TF 314 

analysis around peakRate events (-500 to 1000 ms). with a temporal interval of more than two oscillatory 315 

cycles for half an octave around the frequency of peakRate events (1.9 Hz) - that is at least 1040 ms to the 316 
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next peakRate (n = 114 peakRate events per participant). As this analysis was focused on the temporal 317 

dynamics of IEPC, we examined IEPC dynamics as a function of time, averaged across single frequency 318 

bands in this range. For the MEG data, this time course was tested against a theoretical chance level, 319 

defined as the expected IEPC value for randomly sampling a matched number of angles from a uniform 320 

Von-Miese distribution.  321 

 322 

Effect of peakRate magnitude on IEPC 323 

In each rate condition, peakRate events were split into five quantiles, and IEPC was separately calculated 324 

within each quantile. Then, we extracted the average IEPC in the theta band (4 – 8 Hz) across all the time 325 

points for one cycle of the given frequency band after the event. IEPC in each quantile was compared 326 

using 2-way ANOVA with factors quantile and speech rate (regular speech, slow speech).  327 

 328 

Effect sizes and power 329 

With over 1000 events (trials) per participant, our data set is well-powered beyond what is typically 330 

discussed in psycholinguistic studies, where the number of trials is mostly limited by stimulus selection 331 

(e.g., (Brysbaert, 2019)). For all comparisons we report post-hoc power analyses with effect sizes (dz) 332 

and beta power, calculated with the software G*power ((Faul et al., 2009)).  333 

 334 

Results 335 

Speech Envelope Tracking for regular and slow speech as seen in MEG 336 

 337 

[Figure 1 about here] 338 

 339 

We recorded MEG while participants (n = 12) listened to continuous speech containing 2106 instances of 340 

each envelope landmark, at the original rate (Regular speech condition 6.5 minutes duration), and once 341 

slowed to 1/3 of the original speech rate (Slow speech condition, 19.5 minutes duration, Figure 1A). With 342 
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this high number of events per condition, we were able to see clear and robust effects based on data from 343 

12 participants (Stefanics et al. 2010, see Methods page 10 for details on power calculation). Stimuli were 344 

split into 26 utterances of 10-69 seconds duration (30 – 210 s in Slow speech condition), with additional 345 

silence periods inserted between them. This allowed us to estimate an auditory evoked response to speech 346 

onset from the data, without altering the original temporal dynamics of the stimulus within sentences. 347 

In a first step, we characterized the temporal dynamics of acoustic landmark events in our speech 348 

stimulus, focusing on peaks in the rate of envelope change (peakRate, n = 2106 per condition, Figure 1A) 349 

and on peaks in the envelope (peakEnv, n = 2106 per condition, black in Figure 1A). In the regular speech 350 

condition, the average frequency of landmarks (similar for peakRate and peakEnv) was 5.7 Hz (SD = 2.9 351 

Hz, Figure 1B), as is typical in natural speech (Ding et al., 2017). In the slow speech condition, the 352 

average frequency of landmarks was 1.9 Hz (SD = 1 Hz, similar for peakRate and peakEnv), shifting the 353 

peak of the envelope power spectrum to the delta band. Slowing did not impair participants’ 354 

comprehension, as probed by multiple choice comprehension questions after each story (3-4 questions per 355 

story, chance-level per question: 50 %; accuracy in regular speech: mean = 83%, SD = 13%; accuracy in 356 

slow speech: mean = 90%, SD = 9.5%; t(11) = -1.85, p = 0.09; Figure 1C).  357 

 358 

Acoustic edges drive MEG evoked responses 359 

We first asked which landmark in the speech envelope drives evoked responses and phase locking to the 360 

envelope in regular speech. To focus our analyses on sensors that capture auditory sensory processing, we 361 

selected ten sensors with the largest M100 response to speech onsets after silence periods from each 362 

hemisphere for all further analyses (Figure 1D). The M100 response showed the typical dipole pattern in 363 

each hemisphere (Chait et al., 2004). First, we examined the characteristics of evoked responses (band-364 

pass filtered 1-40 Hz and averaged in the time domain) locked to peakRate and peakEnv landmark events. 365 

While peakEnv closely follows on peakRate in regular speech, the interval between them varies. Thus, 366 

aligning to the incorrect landmark should lead to (1) a reduced magnitude of the averaged evoked neural 367 

signal due to smearing, and (2) shifts in response onset times away from the acoustic event. We found 368 
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transient evoked responses with both alignments (Figure 1E). Crucially, the evoked response was of 369 

larger magnitude when aligned to peakRate than to peakEnv (peak magnitude: t(11) = 5.9, p < 0.001). 370 

Moreover, this response started after peakRate events, but before peakEnv events (response latency 371 

relative to the event for peakEnv: -12.5 ms; peakRate: +50 ms, determined as the first significant time 372 

point in a cluster-based permutation test against 0). Together, these analyses indicated that peakRate 373 

events, that is, acoustic edges, rather than peakEnv events, that is, envelope peaks, triggered the evoked 374 

response in MEG, in line with previous results (Brodbeck et al., 2018; Doelling et al., 2014; Gross et al., 375 

2013; Oganian & Chang, 2019). 376 

 377 

Cerebro-acoustic phase coherence between speech envelope and MEG 378 

To confirm that cortical speech envelope tracking was present in our data (Peelle & Davis, 2012), we 379 

calculated the cerebro-acoustic phase coherence (CAC) between neural responses and the speech 380 

envelope in frequency bands below 10 Hz. CAC is typically increased at the frequency corresponding to 381 

the speech rate (Pefkou et al., 2017), which in our data corresponds to the frequency of peakRate in each 382 

rate condition (regular: 5.7 Hz, slow: 1.9 Hz). Indeed, speech rate had opposite effects on CAC in these 383 

two frequency bands (repeated-measures ANOVA, interaction F(1, 11) = 31.20, p < 0.001, 𝜂 = 0.30, 384 

Figure 1F). At 5.7 Hz, CAC was higher for regular speech (t(11) = 5.6, p < 0.001, 𝜂 = 0.42), while at 1.9 385 

Hz it was higher for slow speech (t(11) = 3.4, p = 0.006, 𝜂 = 0.29). Moreover, CAC was overall higher 386 

at lower frequencies (F(1, 11) = 16.44, p < 0.001, 𝜂  = 0.39), as is typical for this measure (Cohen, 2014). 387 

No other frequency band showed a significant effect of speech rate on CAC (all Bonferroni-corrected p > 388 

0.05). Overall, this result replicates previous findings of cortical speech envelope tracking in frequency 389 

bands corresponding to the speech rate of the stimulus. However, as this measure is calculated across the 390 

entire stimulus time course, it cannot capture local temporal dynamics in the neural phase, driven by 391 

phase resets at acoustic edges. To evaluate local temporal and spectral patterns of neural phase-locking 392 

following peakRate events, we calculated inter-event phase coherence (IEPC) across peakRate events in 393 
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the speech stimulus. In contrast to prior studies of CAC, which quantified phase consistency across time, 394 

IEPC is calculated across single event occurrences (i.e., single trials) for each time point. IEPC thus 395 

enables tracking of the temporal dynamics of phase locking (Gross et al., 2013).  396 

 397 

Oscillator and evoked response models predict distinct patterns of phase alignment to slowed 398 

natural speech 399 

 400 

[Figure 2 about here] 401 

 402 

To obtain a quantitative estimate of neural phase patterns predicted by oscillatory entrainment and evoked 403 

response mechanisms, we implemented computational models of neural envelope tracking as predicted by 404 

both processes (see methods for a full description of both models). The input to both models was the 405 

acoustic stimulus reduced to peakRate events: a continuous time-series down-sampled to match the MEG 406 

sampling frequency and containing non-zero values corresponding to peakRate magnitudes at times of 407 

peakRate events, and 0 otherwise. The oscillator model was implemented as a coupled oscillator 408 

dynamical system with a non-decaying amplitude attractor point, that followed phase resetting whenever 409 

the input was different from 0 (at peakRate events), at a magnitude determined by an entrainment 410 

parameter (Breska & Deouell, 2017). A preliminary analysis verified that indeed an oscillator whose 411 

endogenous frequency corresponds to the average rate of the speech stimulus would be best suited to 412 

entrain to the speech stimulus. The evoked response model was designed as a linear convolution of the 413 

peakRate event time series with a stereotypical evoked response, which was extracted from the actual 414 

MEG data using a time-lagged linear encoding model (rather than simulated to have an ideal shape) 415 

(Holdgraf et al., 2017; Oganian & Chang, 2019). To both models, we added 1/f shaped noise, as is 416 

observed in neurophysiological data, and a temporal jitter around peakRate event occurrence to each 417 

model. See methods for a full description of both models. Both models output a predicted neural response 418 

time series (Fig. 2A), from which we extracted predicted spectral and temporal patterns of inter-event 419 



      

  19

phase coherence (IEPC) in the theta-delta frequency ranges following peakRate events for each condition 420 

(Fig. 2B).  421 

To identify distinct predictions of the two models, we focused on two aspects of the overall predicted 422 

pattern of IEPC. First, we quantified the spectral shape of predicted responses, by examining the average 423 

IEPC pattern in the first oscillatory cycle after peakRate events. We found that in regular speech, both the 424 

evoked response model and the oscillatory model predicted a transient increase in theta IEPC following 425 

peakRate events (Figure 2B+C, left). However, their predictions for the slow speech condition diverged 426 

significantly (Figure 2B+C, middle). The oscillator model predicted a single peak in IEPC around the 427 

oscillator frequency in IEPC (Figure 2B, right). In contrast, the evoked response model predicted two 428 

IEPC peaks, around 5.7 Hz and around 1.9 Hz, reflective of the shape of the evoked response (the higher 429 

frequency peak) and its frequency of occurrence (i.e., the frequency of peakRate events, the lower 430 

frequency peak), respectively (Figure 2C, right). We verified this by manually morphing the shape of the 431 

evoked response and the frequency of evoked responses, which shifted the location of the upper and 432 

lower IEPC peaks, respectively.   433 

Second, we examined the temporal extent of IEPC predicted by each model. A key feature of an 434 

oscillatory entrainment mechanism, that is central to the cognitive functions ascribed to oscillatory 435 

models, is that the endogenous oscillator will continue to reverberate after phase reset beyond the 436 

duration of a single oscillatory cycle, resulting in increased phase alignment for a prolonged time window 437 

(Haegens & Zion Golumbic, 2018; Helfrich et al., 2019; Meyer et al., 2019). In our data, this should be 438 

expressed as an increase in IEPC extending beyond a single oscillatory cycle after peakRate events. In 439 

contrast, if phase locking is the result of evoked responses to peakRate events, the increase in IEPC 440 

should be limited to the duration of an evoked response. To quantify this, we focused our analysis on the 441 

first two cycles after peakRate events. To prevent interference from subsequent phase-resetting events, we 442 

only included peakRate events that were not followed by another peakRate event in this interval (n=114). 443 

Importantly, such events were distributed throughout the speech stimulus and not limited to sentence or 444 

phrase ends. As in regular speech rate the duration of the evoked response (~350 ms, Figure 1E) extends 445 
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across two putative cycles at the speech rate frequency (~350 ms at 5.7 Hz), which would not allow to 446 

dissociate the two models, we focused this analysis on the slow speech condition. We then examined the 447 

time course of IEPC in a range of frequencies surrounding 1.9 Hz, the frequency of the putative oscillator 448 

that best entrains to the slow speech rate. As expected, we found divergent predictions: the oscillator 449 

model predicts that IEPC remains increased for multiple oscillatory cycles (Figure 2D). In contrast, the 450 

evoked response model predicts that the increase in IEPC is temporally limited to the duration of a single 451 

evoked response (Figure 2E). Taken together, this model comparison identified two divergent predictions 452 

for IEPC patterns in slow speech: The spectral distribution of IEPC and its temporal extent. Next, we 453 

performed these identical analyses on our neural data and compared the patterns in the data with the 454 

models’ predictions. 455 

 456 

Spectral pattern of Delta-Theta phase-locking to acoustic edges is best described by the evoked 457 

response model    458 

 459 

[Figure 3 about here] 460 

 461 

We next turned to testing the two divergent predictions of the two models against MEG data, starting with 462 

predictions for spectral distribution. Based on the models’ predictions (Fig. 2 and Fig. 3A), we first took a 463 

hypothesis-based approach, testing whether average IEPC values in predefined time-frequency ROIs 464 

increased: within a single oscillatory cycle post peakRate event in the theta (4-8 Hz) and delta (1 – 3Hz) 465 

ranges (Fig. 3B). In regular speech, we found significant IEPC increase (from theoretical baseline based 466 

on Von-Mises distribution) in the theta band (t(11) = 6.9, p < .001, d=2.1), but not the delta band (p > .5), 467 

consistent with both models (Fig. 3A). We then turned to the slow speech condition, where the 468 

predictions of the two models diverge. We found two spectral peaks in IEPC to peakRate events in slow 469 

speech, with a significant increase from baseline in the theta band (t(11) = 8.5, p < .001, d=3.1) and in the 470 

delta band (t(11) = 5.2, p < .001, d = 1.9). This pattern is in line with the predictions of the evoked 471 
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response model but not of the oscillator entrainment model (Fig 3A), as the latter cannot explain the 472 

increased theta IEPC. To verify that these findings did not reflect the specific predefined time-frequency 473 

ROIs, we complemented the ROI analysis with a data-driven 2D cluster-based permutation test. This 474 

analysis found one cluster in the theta band in the regular speech condition and a large cluster 475 

encompassing both theta and delta bands in the slowed speech condition (p < 0.001; Fig. 3C, white 476 

borders). 477 

Finally, we directly compared how the predictions of both models fit with the spectral IEPC pattern in the 478 

data (Fig. 3D for spectral patterns and Fig. 3E for model comparisons). As expected, the difference 479 

between models was not significant in the regular speech condition (oscillatory model: mean r = 0.86, 480 

evoked response model mean r = 0.81, t(11) = 1.9, p = 0.06). Crucially, in the slowed speech condition, 481 

the evoked response model captured the IEPC dynamics significantly better than the oscillatory model 482 

(model comparison t (11) = 3.8, p = 0.002), with a large effect size (d = 1.1, post-hoc beta = 0.93). This 483 

was because while both models captured the delta-band peak in IEPC, only the evoked response model 484 

captured the IEPC dynamics in higher frequencies (oscillatory model: mean r = 0.46, evoked response 485 

model mean r = 0.7).  Overall, the results of this analysis favor the evoked response model over the 486 

oscillatory model. 487 

 488 

Temporal extent of Delta phase locking is limited to a single cycle after peakRate events. 489 

 490 

[Figure 4 about here] 491 

 492 

We then examined the temporal extent of increased IEPC following peakRate events in the slowed speech 493 

condition. The oscillator model predicted that neural IEPC would remain elevated for at least oscillatory 494 

cycle, whereas the evoked response model predicted a transient increase in IEPC and return to baseline 495 

within 500 ms after the phase reset (Fig. 4A). We calculated IEPC for the MEG data on the same 496 

peakRate events as for the model simulations (duration of at least two cycles to subsequent peakRate 497 
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events), which allowed us to test for continuous entrainment without interference by a subsequent event.  498 

We found that IEPC was elevated above baseline for a single cycle following peakRate events, but 499 

returned to baseline immediately after (Fig. 4B, cluster-based permutation test against theoretical baseline 500 

based on Von-Mises distribution). Notably, this pattern, including the latency of peak IEPC, closely 501 

followed the predictions of the evoked response model. Indeed, direct test of the fit of the models’ 502 

predictions to the MEG data revealed strong significant correlation with the evoked response model 503 

(mean r = 0.59), but not with the oscillator model (mean r = -0.18). This was also reflected in a large 504 

significant effect in the direct comparison between models (t(11) = 3.11, p = 0.009 , effect size d =0.9 , 505 

post-hoc power beta = 0.8).  506 

Finally, we explicitly tested in a hierarchical multiple regression model (data ~ OSC-model + ER-model) 507 

whether the oscillatory model would explain variance in the data beyond the variance explained by the 508 

evoked response model.  Second level analyses on betas across participants showed a significant effect 509 

for the ER-model (t(11) = 3.34, p = .003), but no significant addition to the explained variance by the 510 

oscillatory entrainment model (t(11) = -0.8, p =.2). Note, that this is in line with the negative correlation 511 

between data and the oscillatory model, which is due to the reduction in IEPC in the MEG data in the 512 

second oscillatory cycle, whereas IEPC remains high in the oscillatory model. 513 

This analysis thus illustrates the transient nature of neural phase locking to peakRate events, which is 514 

more consistent with an evoked response mechanism of speech envelope tracking, rather than with an 515 

oscillatory entrainment model. Collectively, our findings disagree with an oscillatory entrainment 516 

account, which postulates an oscillatory phase-reset after an event, followed by continuous oscillatory 517 

reverberation. A more parsimonious account of our results is that the low-frequency phase locking to the 518 

speech envelope in MEG is driven by evoked responses to peaks in the envelope rate of change 519 

(peakRate). Furthermore, our analysis shows that IEPC to peakRate events reflects the superposition of 520 

two different sources: (1) local responses to individual peakRate events and (2) the rate of occurrence of 521 

responses to peakRate events. Our analyses also demonstrate that the shift in IEPC frequency bands with 522 

changes in speech rate may be the product of a time-frequency decomposition of a series of evoked 523 
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responses, rather than a shift in the frequency of an entrained oscillator. This finding is a powerful 524 

illustration of the importance of explicit computational modeling of alternative neural mechanisms.  525 

In the past, it has been suggested that evoked responses are reduced at slower speech rate, where 526 

peakRate magnitudes are smaller, limiting the usability of the evoked response model. In a final analysis 527 

we thus tested whether IEPC to peakRate is normalized to account for changes in speech envelope 528 

dynamics induced by changes in speech rate. 529 

 530 

Speech rate normalization of peakRate IEPC 531 

 532 

[Figure 5 about here] 533 

 534 

The perceptual ability to adapt to variation in the speech signal resulting from changes in the speech rate, 535 

i.e., the number of syllables produced per second, is referred to as speech rate normalization. Changes in 536 

speech rate results in acoustic changes in the speech signal, including slower amplitude increases at 537 

acoustic edges, that is lower peakRate magnitudes (Figure 5A, B). We had previously found that 538 

responses to peakRate monotonically scale with peakRate magnitude, being larger for faster changes in 539 

the speech amplitude (Oganian & Chang, 2019). Efficient envelope tracking across speech rates would 540 

thus require remapping of neural responses to peakRate magnitude, to account for this overall reduction. 541 

Here, we assessed the effect of speech rate on the magnitude of theta IEPC to peakRate events. In the 542 

slowed speech, stimuli peakRate magnitudes were 1/3 of those in regular speech (Figure 5C). If no 543 

normalization occurs, IEPC magnitudes in slow speech should reflect absolute peakRate values, resulting 544 

in an overall reduction in IEPC (Figure 5F, dark dots). In contrast, if theta IEPC to peakRate is invariant 545 

to speech rate, it should reflect peakRate values relative to the contextual speech rate, resulting in similar 546 

IEPC magnitudes in both speech rate conditions (Figure 5F, light dots).  547 

An evaluation of IEPC after peakRate events, split by peakRate magnitude quantiles, showed comparable 548 

theta IEPC in both speech rate conditions (Figure 5D-E), such that average theta IEPC was more robust 549 
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for larger peakRate magnitudes across both rate conditions (the main effect of peakRate quantile: b = 550 

0.01, SD = 0.001, t = 1.4, 𝜒 = 55.0, p = 10-13). Crucially, they did not differ between regular and slow 551 

speech (Interaction effect: b = 0.003, SD = 0.005, t = 0.6, n.s., Figure 5G), as expected in case of speech 552 

rate normalization (Figure 5F, dark dots). The same pattern was observed for the magnitude of peak 553 

evoked responses (Fig. 5H). Thus, the magnitude of phase reset induced by peakRate depended on its 554 

magnitude relative to the local speech rate context, allowing for the flexible encoding of peakRate 555 

information at different speech rates.  556 

 557 

Evoked low-frequency power following peakRate events  558 

 559 

[Figure 6 about here] 560 

 561 

Evoked increase in power is a marker of evoked neural responses and is used to distinguish between 562 

evoked responses and oscillatory activity. In addition to calculating the ERP to peakRate events, we thus 563 

also tested whether band-passed power would increase after peakRate events. However, we found no 564 

significant effects of peakRate on evoked power in theta or delta bands (p > 0.05, cluster-based 565 

permutation test, data not shown). Our hypothesis that this was due to higher susceptibility of power 566 

measures to noise was confirmed in a simulation of the evoked response model (see below).  567 

We hypothesized that this lack of increase in power in theta or delta bands following peakRate events 568 

might reflect the high susceptibility of power increases to noise. To assess the effect of noise onto power 569 

and phase measures, we tested the evoked response model at noise levels of 1 to 10 relative to response 570 

magnitude. We evaluated the effect of noise onto power and IEPC in the theta band (4-8Hz) in the 571 

window of a single cycle for a given frequency band after event onset. The effects of noise on power and 572 

IEPC were compared using two-sided paired t-tests at each noise level (n = 20 simulated responses), with 573 

Bonferroni correction for the number of comparisons. As predicted, we found continuously large effect 574 
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sizes for IEPC even at high levels of noise, whereas the effect size for power deteriorated rapidly with the 575 

addition of noise.  576 

 577 
Discussion 578 

 579 

We evaluated local temporal dynamics in MEG neural representation of the continuous speech envelope 580 

against the predictions of oscillatory entrainment and evoked response models, derived from explicit 581 

computational models of both processes. In line with previous work, we found that acoustic edges 582 

(peakRate events) drove evoked responses and phase locking over auditory cortical areas (Brodbeck et 583 

al., 2018; Hertrich et al., 2012; Oganian & Chang, 2019). Critically however, only the evoked response 584 

model captured the spectral and temporal extent of phase-locking to acoustic edges: a transient local 585 

component in the theta range, reflective of the evoked response, and – spectrally distinct in slow speech - 586 

a separate global component, which captured the frequency of acoustic edges in the stimulus. An analysis 587 

of temporally sparse acoustic events further supported the evoked response model: phase locking was 588 

transient and limited to the duration of the evoked response. This contradicts the pattern predicted by 589 

entrainment models, namely sustained oscillatory phase locking at the speech rate (Helfrich et al., 2019; 590 

Peelle & Davis, 2012). Finally, we found that the magnitude of the evoked phase reset to acoustic edges 591 

reflected the speech-rate-normalized amplitude slope at the acoustic edge, offering novel evidence for 592 

speech rate normalization. Our results establish acoustic edges as the basis for the representation of the 593 

speech envelope across methodologies and provide additional support against the representation of 594 

envelope peaks in the human speech cortex. Overall, our findings suggest that neural phase locking 595 

induced by evoked responses to acoustic edges is the primary source of speech envelope tracking in the 596 

theta-delta band. 597 

Neural phase resetting may be fully explained by the superposition of evoked responses or additionally 598 

also contain the entrainment of endogenous oscillatory activity. To distinguish between neural responses 599 

reflective of each, we derived the spectral and temporal patterns of phase locking to acoustic edges using 600 
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simulations of both mechanisms. Model predictions diverged in the slowed speech condition: Spectrally, 601 

the evoked response model predicted two spectral peaks in phase reset, in both theta and delta ranges, 602 

whereas oscillatory models predicted delta phase locking only. Temporally, the evoked response model 603 

predicted only transient phase locking at the speech rate, whereas oscillatory entrainment predicted 604 

reverberation: a persisting oscillation for at least 2 cycles after phase-reset (Helfrich et al., 2019). Note, 605 

that the precise temporal extent of IEPC in the oscillator model depends on the decay parameter. 606 

However, the hallmark prediction of oscillatory models is that phase-locking will continue after phase-607 

reset beyond a single oscillatory cycle, which is the minimal temporal extent that allows for the model’s 608 

proposed functional benefits. It was thus not necessary to include a decay parameter in our models.  609 

In our data, both spectral and temporal patterns of phase locking favored the evoked response model: two 610 

spectral peaks and temporally transient phase locking. Notably, both models generated the low frequency 611 

phase-locking component in the slow speech condition, corresponding to the frequency of acoustic edge 612 

events. While previous work interpreted this component in favor of oscillatory entrainment, our results 613 

show that only its temporal extent distinguishes between the two models (van Bree et al., 2022). Overall, 614 

our analyses show that a linear convolution of evoked responses to discrete acoustic edge events in 615 

speech is sufficient to account for the pattern of neural phase locking to continuous speech. This finding 616 

has major implications for theories of speech perception. For instance, instead of oscillatory resonance, 617 

predictive processing of speech could rely on non-oscillatory temporal prediction mechanisms guided by 618 

statistical learning (Friston et al., 2020; Sohoglu & Davis, 2016).  619 

Speech rate normalization is a central behavioral (Reinisch, 2016; Wade & Holt, 2005) and neural 620 

phenomenon in speech perception. Shifting of the entrained oscillatory frequency to match the input 621 

speech rate was previously proposed as its neural mechanism (Alexandrou et al., 2018b; Kösem et al., 622 

2018). Here, however, we find that the shift of neural phase locking to lower frequencies with speech 623 

slowing is an epiphenomenon of spectral analysis of a series of evoked responses. Instead, the magnitude 624 

of phase locking to acoustic edges was normalized relative to the distribution of peakRate magnitudes at 625 

each rate. Namely, phase locking was comparable across speech rates, despite flatter acoustic edges in 626 
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slow speech. This suggests that the cortical representations of acoustic edges reflect the magnitude of an 627 

edge relative to the contextual speech rate. Such shifting of the dynamic range for acoustic edge 628 

magnitudes constitutes a flexible mechanism that maximizes the sensitivity to speech temporal dynamics 629 

(Diehl et al., 1980; Hirataa & Lambacher, 2004) and might not be limited to speech sounds.  630 

Our approach represents a methodological departure from previous investigations of speech envelope 631 

tracking. Namely, previous studies focused on cerebro-acoustic coherence (CAC), which reflects the 632 

consistency of phase differences between the neural signal and the acoustic stimulus across time (Peelle et 633 

al., 2013). CAC is primarily sensitive to regularities across time, such as the rate of phase resets. In 634 

contrast, we used inter-event phase coherence (IEPC), which focuses on assessing temporally local 635 

similarities in neural phase across repeated occurrences of the same acoustic event (see (Gross et al., 636 

2013) for IEPC to speech onsets). Our approach revealed that both local phase resets and their rate of 637 

occurrence are reflected in IEPC to acoustic edges. In regular speech, both components overlapped, 638 

whereas slowing of the speech signal revealed their distinct sources. 639 

Speech rate manipulations are frequently used to study speech envelope tracking (Ahissar et al., 2001; 640 

Ghitza & Greenberg, 2009; Nourski et al., 2009; Pefkou et al., 2017). Most previous studies used 641 

compressed speech to study temporal boundaries on envelope tracking and intelligibility. In contrast, here 642 

we used slowed speech to spread distinct acoustic envelope features out in time. Notably, our approach 643 

required us to slow the speech signal by a factor of 3, which is rarely encountered in natural speech, 644 

except in clinical populations (e.g. subcortical degeneration), where speech can get very slow (Volkmann 645 

et al. 1992). Crucially as our participants adapted to the slow speech immediately, it is likely that our 646 

stimulus relies on the same perceptual mechanisms that are at play in the regular speech condition. This is 647 

also supported by our intracranial work, where responses to acoustic edges in slow (up to slowing factor 648 

of 4) and regular speech were qualitatively identical (Oganian & Chang 2019).  It is essential to 649 

reconsider previous findings under the evoked response framework. For example, while envelope 650 

tracking and intelligibility deteriorate for speech rates higher than 8 Hz, insertion of brief silence periods 651 

in compressed speech, which returns the effective speech rate to below 8 Hz, improves intelligibility 652 
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(Ghitza & Greenberg, 2009). While this result is typically interpreted as evidence for oscillatory envelope 653 

tracking in the theta range, within an evoked response framework it might be reflective of the minimal 654 

refractory period of neural populations that encode acoustic edges in speech.  655 

Natural speech does not have a robust temporal rhythmicity (Alexandrou et al., 2018a). Our focus on 656 

envelope tracking for natural speech indicates that in this case, neural signatures of envelope tracking are 657 

well explained by an evoked response model without the need for an oscillatory component. These results 658 

seemingly contradict recent findings of predictive entrainment to music (Doelling et al., 2019). However, 659 

our study employed natural speech with considerable variability in inter-edge intervals, unlike in 660 

rhythmic musical stimuli. Critically, recent neuropsychological work dissociated neural mechanisms for 661 

prediction based on rhythmic streams from predictions in non-rhythmic streams (Breska & Ivry, 2018). 662 

This adds an important caveat to the current debate, suggesting that previous results may perhaps not 663 

extend to natural speech with inherent temporal variability and reduced rhythmicity. The present study 664 

thus calls to reevaluate the role of oscillatory entrainment in natural speech comprehension. However, it 665 

does not preclude the possibility that the introduction of additional rhythmicity to speech, e.g., in poetry 666 

or song, or occasionally more temporally regular everyday speech, particularly in longer utterances, 667 

recruits additional neural processes associated with the processing of rhythms.  668 

Such additional processes might support speech comprehension and could underlie some of the recent 669 

findings obtained with a rhythmic speech stimulus (Ding et al., 2015; ten Oever & Sack, 2015; Zoefel et 670 

al., 2019). On the other hand, while intelligibility and phase patterns are affected by increased speech 671 

rhythmicity or concurrent rhythmic brain stimulation, such findings indicate that oscillations may enhance 672 

speech processing, but not that they are necessary for the representation of the significantly less periodic 673 

natural speech. Therefore, caution needs to be exercised when extending findings from rhythmic stimuli 674 

(e.g., (Ding et al., 2015; Doelling et al., 2019; Zoefel, Archer-Boyd, et al., 2018)) to natural speech.  675 

Overall, our results show that an evoked response model accounts for the main neural signatures of 676 

speech envelope tracking in MEG. This neural representation of acoustic edges informs about speech rate 677 

via inter-event intervals. Moreover, the speech rate normalization of these responses renders this 678 
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mechanism flexibly adaptable to changes in speech rate. Thus, evoked responses to acoustic edges track 679 

the syllabic rate in speech and provide a flexible framework for temporal analysis and prediction during 680 

speech perception. 681 

 682 

Data and code availability 683 

All custom-written analysis code will be publicly available upon publication on github 684 

(https://github.com/ChangLabUcsf/MEG-SlowSpeech). Data will be made available upon request from 685 
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Figure Legends 878 
 879 
 880 

Figure 1. Task design and envelope tracking in neural data A. The acoustic waveform of an example 881 

utterance (‘Tarantino says…”), with syllable boundaries, amplitude envelope, and first temporal 882 

derivative of the envelope superimposed on it. The same utterance is shown at a regular rate (left) and 883 

slowed (right) speech rate. Arrows mark candidate temporal landmark that might induce phase locking 884 

(Black: local peaks in the envelope, peakEnv; Purple: acoustic edges, defined as local peaks in the first 885 

temporal derivative (rate of change) of the envelope, peakRate). See Table 1-1 for transcripts of the entire 886 

speech stimulus. See Sound 1-1 and annotation 1-2 for example stimulus excerpts at two different speech 887 

rates. B. Frequency of occurrence for peakRate/peakEnv events. Dashed vertical lines mark the average 888 

frequency of peakRate events in slow (blue, 1.9 Hz) and regular speech (green, 5.7 Hz).  C. Single-889 

subject (black) and group-average (red) comprehension performance. See Table 1-2 for a list of all 890 

comprehension questions. D. Sensor selection was based on M100 response to utterance onsets. Top: 891 

Group-averaged evoked response across all 20 sensors included in the analysis. Error bars are ± 1 SEM 892 

across subjects. Bottom: Topographic map of a group-averaged M100 response with selected sensors 893 

marked in red. E. Group-averaged evoked response aligned to peakRate and peakEnv events. Dotted lines 894 

mark clusters with p < 0.05 with a cluster-based permutation test against 0. Error bars are ± 1 SEM across 895 

subjects. F. Cerebro-acoustic phase coherence (CAC) between MEG responses and speech envelope 896 

(upper panel), and the difference between slow and regular speech (∆CAC, lower panel). Data were 897 

filtered in semi-logarithmically spaced bands between 0.3 and 10 Hz for this analysis. Dashed vertical 898 

lines mark the average frequency of peakRate events in each condition, as shown in D. * p < 0.01 in post-899 

hoc t-tests with interaction p < 0.01. Error bars are ± 1 SEM across subjects.   900 

 901 

Figure 2. Spectral and temporal signatures of inter-event phase coherence (IEPC) in oscillatory 902 

entrainment and evoked response models. A. Schematic illustrations of the predicted neural response to 903 

the utterance in Figure 1A using three different models. Top: speech signal. Middle: oscillatory 904 
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entrainment model; Bottom: Evoked response model. B. IEPC patterns predicted by oscillatory 905 

entrainment model for regular and slow speech with a focus on spectral precision. Dashed lines indicate 906 

the frequency of peakRate events in each condition. C. As B for evoked response model. D. Temporal 907 

dynamics of delta-IEPC predicted by oscillatory entrainment model, based on peakRate events that are at 908 

least 1000ms apart from following events (n = 113 events) in the Slow speech condition. E. Same as D 909 

for the evoked response model. 910 

 911 

Figure 3. Spectral patterns of IEPC in MEG data. A. Predictions of oscillatory and evoked response 912 

models for spectral distribution of phase locking to peakRate events. B. Average IEPC magnitudes 913 

observed in regular and slowed speech conditions within time-frequency ROIs in theta and delta bands 914 

one oscillatory cycle post peakRate event. C. IEPC patterns observed in MEG responses to speech at 915 

regular (left) and slowed (middle) rates. D.  Spectral IEPC profile averaged across time corresponds to 916 

predictions of the evoked response models (A, bottom panel). Significance contours in C,D based on 2D 917 

cluster-based permutation testing against pre-event baseline, p<.001. E. Correlation between IEPC time 918 

courses predicted by the models and observed in the neural data. * p < 0.05.  919 

 920 

Figure 4. Delta phase locking is limited to a single oscillatory cycle after peakRate events. A. Delta 921 

IEPC across selected peakRate events that were at least 200 ms away from preceding, and 1000 ms away 922 

from subsequent events. B. Delta IEPC time course. Bottom panel shows the IEPC average across the 923 

delta range. Red horizontal line marks baseline, red dots mark timepoints of significant deviance from 924 

baseline. C. Correlation between IEPC time courses predicted by the models and observed in the neural 925 

data. * p < 0.05. 926 

 927 

Figure 5. Normalization of peakRate IEPC for contextual speech rate. A. Histogram of peakRate 928 

magnitudes in regular speech, with quantile boundaries marked in red. B. Same as A for slow speech C. 929 

Quantile-Quantile plot of peakRate magnitudes in regular and slowed speech stimulus. peakRate values in 930 
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slowed speech stimulus are 1/3 of peakRate values in regular speech stimulus. D. IEPC in 1st, 3rd, 5th 931 

peakRate magnitude quantile. Horizontal lines mark the theta frequency range (4-8Hz). E. Same as D for 932 

slow speech. F. Predicted quantile-quantile plots of theta IEPC in regular and slowed speech with (dark) 933 

or without (light) normalization. G. Quantile-quantile plot of theta-band IEPC (mean, error bars mark ± 1 934 

SEM across subjects) in regular and slow speech. Theta IEPC quantile-quantile values are close to the 935 

diagonal, indicating similar magnitudes of theta IEPC in regular and slowed speech conditions. H. 936 

Quantile-quantile plot of broadband evoked response peak magnitudes (mean, error bars mark ± 1 SEM 937 

across subjects) in regular and slow speech. Quantile-quantile values are close to the diagonal, indicating 938 

similar magnitudes of the broadband evoked response to peakRate events in regular and slowed speech 939 

conditions. 940 

 941 

Figure 6. Effect of noise level on IEPC (black) and power (red) after peakRate events in theta band (4-942 

8Hz) for regular speech. * p < 0.01. 943 

 944 

Extended data legends. 945 

 946 

Table 1-1. Speech stimulus transcription. 947 

Table 1-2. Comprehension questions. 948 

Sound 1 -1. Sound files for an example stimulus at regular and slowed speech rates.  949 

Annotation 1-1. Annotation of content of Sound 1-1 in a praat textgrid format. 950 














