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ABSTRACT

An important open question in neuroeconomics is how the brain represents the value of
offers in a way that is both abstract (allowing for comparison) and concrete (preserving the
details of the factors that influence value). Here we examine neuronal responses to risky and safe
options in five brain regions that putatively encode value in male macaques. Surprisingly, we
find no detectable overlap in the neural codes used for risky and safe options, even when the
options have identical subjective values (as revealed by preference) in any of the regions. Indeed,
responses are not just uncorrelated but occupy distinct (semi-orthogonal) encoding subspaces.
Notably, however, these subspaces are linked through a linear transform of their constituent
encodings, a property that allows for comparison of dissimilar option types. This encoding
scheme allows these regions to have their cake and eat it too: they can encode the detailed factors
that influence offer value (here, risky and safety) but also directly compare dissimilar offer types.
Together these results suggest a neuronal basis for the qualitatively different psychological
properties of risky and safe options and highlight the power of population geometry to resolve

outstanding problems in neural coding.
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SIGNIFICANCE STATEMENT

To make economic choices, we must have some mechanism for comparing dissimilar
offers. We propose that the brain uses distinct neural codes for risky and safe offers, but that
these codes are linearly transformable. This encoding scheme has the twin advantages of
allowing for comparison across offer types while preserving information about offer type, which
in turn allows for flexibility in changing circumstances. We show that responses to risky and safe
offers exhibit these predicted properties in five different reward-sensitive regions. Together,
these results highlight the power of population coding principles for solving representation

problems in economic choice.
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INTRODUCTION

We are often faced with the need to choose between options that differ qualitatively. To
make such choices, it is helpful to have access to an abstract representation of the value of each
option. Much of neuroeconomics is predicated on the assumption that such representations must
exist and, in particular, that they exist in the form of specialized abstract value neurons (Platt
and Glimcher, 1999; Padoa-Schioppa and Assad, 2006; Kennerley et al., 2009; Lau and
Glimcher, 2008; Peters and Buchel, 2010; Kolling et al., 2016). Such neurons would, by
definition, have firing rates that covary monotonically with the values of offers regardless of
their other qualities. That is, two options with identical subjective values would elicit the same
firing rate response in an abstract value neuron even if they differed in other ways. For example,
if asked to evaluate a Ferris wheel ride and an equally valued cupcake, a value neuron will
necessarily have the same response to both. One advantage of the abstract neuron
representational system is that a downstream decoder can produce good choices simply by
identifying the neuron or neurons that encode the highest value and selecting the appropriate
choice. However, while such an encoding scheme has its advantages, it has a major weakness — it
is inflexible in situations where the relative importance of these features changes.

More broadly, the abstract value neuron idea is out of step with modern thinking on how
information is coded in populations of neurons. While the “neuron doctrine” is focused on the
idea that information explicitly encoded in the firing rates of single neurons, the “population
doctrine” emphasizes the flexible and expressive power of neuronal populations (Saxena and
Cunningham, 2019; Ebitz and Hayden, 2021). From the perspective of populations, abstraction
can come from geometry; specifically, from transformable subspaces (Elsayed et al., 2016; Tang

et al., 2020; Yoo and Hayden, 2020; Libby and Buschman, 2021). This way of generating
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abstraction has the major advantage of allowing a population of neurons to simultaneously carry
detailed about the features of the offers and to have an abstract representation of value.

We hypothesized that neurons in core value regions use the population approach to
representing value. To test this hypothesis, we studied encoding of risky and safe options in a
two-option risky choice task. Psychologists have established that our minds treat risky and safe
options differently. We have a strong preference for safe options (Holt and Laury, 2002;
Kacelnik and Bateson, 2013; Heilbronner, 2017), risky options differentially activate
motivational and emotional factors (Loewenstein et al., 2001; Slovic et al., 2004 and 2007,
Lerner et al., 2015), and risk differs qualitatively from certainty among dimensions like the
prospect of learning and satisfaction of curiosity (Binde, 2013; Heilbronner and Hayden, 2013;
Wang and Hayden, 2021). Population geometric encoding would allow for value comparison
while also maintaining information that allows risk and surety to be treated differently. It is well
established that neural responses in core value regions scale with the probability (and thus the
subjective value) of risky offers (Kennerley et al., 2009; So and Stuphorn, 2010; Raghuraman
and Padoa-Schioppa, 2014; McCoy and Platt, 2005; Strait et al., 2014; Azab and Hayden, 2017).
Perhaps surprisingly, little of this research has addressed the critical question of whether risky
and safe offers use the same coding scale, and none of it has used a dense sampling of
probability space needed to retrospectively identify equally valued risky and safe offers and test
how their codes are related.

We examined responses of neurons in five core reward areas in a gambling task (Figure
1A). We found that responses of single neurons to safe offers are not just distinct but are
unrelated to responses evoked by risky offers. Instead, risky and safe offers are encoded by

overlapping sets of neurons using distinct and semi-orthogonal subspaces. At the same time,
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these subspaces are mutually transformable. These results are consistent with the hypothesis that
the brain’s core value regions strategically use subspace orthogonalization to flexibly partition
different offer types in a way that allows for value comparison. More generally, these results

endorse the utility of population perspectives in tackling classic problems in neuroscience.
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MATERIALS AND METHODS

Surgical procedures. Subjects were male macaques. All procedures were approved by
either the University Committee on Animal Resources at the University of Rochester or the
TACUC at the University of Minnesota. Animal procedures were also designed and conducted in
compliance with the Public Health Service’s Guide for the Care and Use of Animals. All of the
animals were handled according to approved institutional animal care and use committee
(IACUC) protocols (#2005-619 38127A) of the University of Minnesota. The protocol was
approved by the Committee on the Ethics of Animal Experiments of the University of Minnesota
(NIH permit number: A3456-01). All surgery was performed under controlled anesthesia. Six
male rhesus macaques (Macaca mulatta) served as subjects. A small prosthesis for head fixation
was used. Subjects were habituated to laboratory conditions and then trained to perform
oculomotor tasks for liquid rewards. We place a Cilux recording chamber (Crist Instruments)
over the area of interest (see Behavioral Tasks for breakdown). We verified positioning by
magnetic resonance imaging with the aid of a Brainsight system (Rogue Research). Animals
received appropriate analgesics and antibiotics after all procedures. Throughout both behavioral
and physiological recording sessions, we kept the chamber clean with regular antibiotic washes,
and we sealed them with sterile caps.

Recording sites. We approached our brain regions through standard recording grids (Crist
Instruments) guided by a micromanipulator (NAN Instruments). All recording sites were selected
based on the boundaries given in the Paxinos atlas (Paxinos et al., 2000). In all cases we sampled
evenly across the regions. Neuronal recordings in OFC were collected from subjects P and S
(Yoo and Hayden, 2020); recordings in vmPFC were collected from subjects B and H (Strait et

al., 2014); recordings in pgACC were collected from subject B and V (Maisson et al., 2021);
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recordings from PCC were collected from subject P and S (Wang et al., 2021); and recording in
VS were collected from subject B and C (Strait et al., 2016). For details, see Figure 1B:

We defined OFC 13 as lying within the coronal planes situated between 28.65 and 34.05
mm rostral to the interaural plane, the horizontal planes situated between 3 and 6.5 mm from the
brain’s ventral surface, and the sagittal planes between 5 and 14 mm from the medial wall. The
coordinates correspond to area 13m in Paxinos et al. (2000).

We defined vimPFC 14 as lying within the coronal planes situated between 29 and 44
mm rostral to the interaural plane, the horizontal planes situated between 0 and 9 mm from the
brain’s ventral surface, and the sagittal planes between 0 and 8 mm from the medial wall. These
coordinates correspond to area 14m in Paxinos et al. (2000).

We defined pgACC 32 as lying with the coronal planes situated between 30.90 and 40.10
mm rostral to the interaural plane, the horizontal planes situated between 7.30 and 15.50 mm
from the brain’s dorsal surface, and the sagittal planes between 0 and 4.5 mm from the medial
wall (Figure 1B). Our recordings were made from central regions within these zones, which
correspond to area 32 in Paxinos et al. (2000).

We defined PCC 29/31 as lying within the coronal planes situated between 2.88 mm
caudal and 15.6 mm rostral to the interaural plane, the horizontal planes situated between 16.5
and 22.5 mm from the brain’s dorsal surface, and the sagittal planes between 0 and 6 mm from
the medial wall. The coordinates correspond to area 29/31 in Paxinos et al. (2000).

We defined VS as lying within the coronal planes situated between 20.66 and 28.02 mm
rostral to the interaural plane, the horizontal planes situated between 0 and 8.01 mm from the
ventral surface of the striatum, and the sagittal planes between 0 and 8.69 mm from the medial

wall. Note that our recording sites were targeted towards the nucleus accumbens core region of
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the VS.

We confirmed recording location before each recording session using our Brainsight
system with structural magnetic resonance images taken before the experiment (0.5 voxels). We
confirmed recording locations by listening for characteristic sounds of white and gray matter
during recording, which in all cases matched the loci indicated by the Brainsight system with an
error of ~1 mm in the horizontal plane and ~2 mm in the z-direction.

Electrophysiological techniques. Either single (FHC) or multi-contact electrodes (V-
Probe, Plexon) were lowered using a microdrive (NAN Instruments). Individual action potentials
were isolated on a Plexon (Dallas, TX) or Ripple (Salt Lake City, UT). Neurons were selected
for study solely based on quality of isolation; we never preselected based on task-related
response properties. All collected neurons for which we managed to obtain at least 300 trials
were analyzed; no neurons that surpassed our isolation criteria were excluded from analysis.

Eye-tracking and reward delivery. Eye position was sampled at 1,000 Hz by an infrared
eye-monitoring camera system (SR Research). Stimuli were controlled by a computer running
Matlab (Mathworks) with Psychtoolbox and Eyelink Toolbox. Visual stimuli were colored
rectangles on a computer monitor placed 57 cm from the animal and centered on its eyes (Fig.
14). A standard solenoid valve controlled the duration of juice delivery. Solenoid calibration was
performed daily.

Behavioral tasks. Six macaques performed in the risky choice task. Both tasks made use
of vertical rectangles indicating reward amount and probability. We have shown in a variety of
contexts that this method provides reliable communication of abstract concepts such as reward,
probability, delay, and rule to monkeys (Hayden et al., 2010; Blanchard et al., 2014).

Risky choice task. The task presented two offers on each trial. A rectangle 300 pixels tall
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and 80 pixels wide represented each offer (11.35° of visual angle tall and 4.08° of visual angle
wide; Fig. 24). Two parameters defined gamble offers, stakes and probability. Each gamble
rectangle was divided into two portions, one red and the other either gray, blue, or green. The
size of the color portions signified the probability of winning a small (125 pL, gray), medium
(165 pL, blue), or large reward (240 pL, green), respectively. We used a uniform distribution
between 0 and 100% for probabilities. The size of the red portion indicated the probability of no
reward. Offer types were selected at random with a 43.75% probability of blue (medium-stakes)
gamble, a 43.75% probability of green (high-stakes) gambles, and a 12.5% probability of gray
options (safe offers).

On each trial, one offer appeared on the left side of the screen and the other appeared on
the right. We randomized the sides of the first and second offer. Both offers appeared for 400 ms
and were followed by a 600 ms blank period. After the offers were presented separately, a central
fixation spot appeared, and the subject fixated on it for 100 ms. Next, both offers appeared
simultaneously and the animal indicated its choice by shifting gaze to its preferred offer and
maintaining fixation on it for 200 ms. Failure to maintain gaze for 200 ms did not lead to the end
of the trial but instead returned the monkey to a choice state; thus subjects were free to change
their mind if they did so within 200 ms (although in our observations, they seldom did so).
Following a successful 200-ms fixation, the gamble was resolved, and the reward was delivered.
We defined trials that took > 7 sec as inattentive trials and we did not include them in the
analyses (this removed ~1% of trials). Outcomes that yielded rewards were accompanied by a
visual cue: a white circle in the center of the chosen offer. All trials were followed by an 800 ms
intertrial interval with a blank screen.

Estimation of subjective value equivalence. We calculated the indifference point between

10
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safe and risky offers. For each subject, independently, we fitted a sigmoidal function to the

distribution of choices (safe or risky) across the full range of risky offer probabilities.

a
fx) = b+ ebx

where x = the probability associated with the risky offer, and f{(x) = the likelihood of choosing
the safe offer; a (the maximum value of the curve) and b (the growth rate; steepness) are
coefficients of the function, estimated by the fitting procedure for maximizing R’. Using the
fitted sigmoidal function, we then estimated the value of x needed to produce a safe choice
likelihood of 0.5; that is, a risky offer choice is equally likely as a safe choice. This is called the
indifference point. We performed this analysis separately for medium- and high-stakes gambles,
and separately for each subject. Note that these curves are the result of a fitting procedure that
has greater error in fitting the asymptotes. This is due to the small number of variant trials at
these asymptotes that the algorithm is highly sensitive to outliers at these values.

Statistical methods. We constructed peristimulus time histograms by aligning spike
rasters to the presentation of the first offer and averaging firing rates across multiple trials. We
calculated firing rates in 20 ms bins, but we analyzed them in longer (500 ms) epochs. Some
statistical tests of neuronal activity were only appropriate when applied to single neurons
because of variations in response properties across the population. We have used this epoch in all
our past research on this and similar tasks (Strait et al., 2014, 2015, 2016; Azab and Hayden,
2017,2018, 2020). We have found that this epoch provides a good characterization of functional
responses and allows for fair comparison across brain regions. We used it here for those reasons
and because adherence to a single pre-planned epoch of interest reduces the likelihood of
inadvertent “p-hacking”.

Shuffle analysis: to understand the values of correlations that we would obtain by chance,

11
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in the absence of a true effect, is it useful to repeat our analysis on dummy data. To do so, we
performed a specific control procedure developed by Elsayed et al. (2016). In this analysis, we
wished to preserve the features of each neuron without removing that information, so we
shuffled across time, meaning that we randomly sorted the spikes to occur at random times, but
maintained their linkage to the neuron that generated them. This procedure then gave dummy
data that we performed our correlation analyses on. More specifically, we shuffled the data from
across all three of the previously computed response matrices (safe, matched-medium, and
matched-large) and computed the alignment index between pairs of shuffled sets. Because the
data are randomized, any alignment index at or below this dummy threshold would be
considered at least semi-orthogonal. We then, following standard logic of bootstrap analyses,
repeated this process over 1000 randomizations. Then, to test for significance, we computed the
99% confidence interval across iterations; a value outside of this range can therefore be said to
be significant at p < 0.005 (given that our t-test is assumed to be one-tailed).

Population overlap. We adapted a previously published procedure (Azab and Hayden,
2017). For each neuron, we isolated both medium- and high-stakes risky offers with subjectively
equal values to the respective subject. For each trial, we computed the average firing rate across
a 500 ms window, starting from 100 ms after the appearance of the first offer (see above). We
then regressed the firing rates on the corresponding offer probability on each trial to produce a
beta weight representing that neurons degree of linear encoding of offer probability. For safe
offers, we were limited by the fact that there is only a single probability value (100%) for safe
offers. Therefore, we also computed the average firing rate from a 500 ms window that preceded
the start of the trial by 100 ms. For each trial, we computed the difference between the offer

response and the pre-trial response, to represent the degree of linear encoding for the safe offer

12
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type. Finally, we performed a correlation between the absolute value of the safe offer encoding
and the absolute value of the risky offer beta weights. We plotted the two encoding weights
against each other and computed the line of best fit, given the correlation coefficient.

Decoding analysis. We built a pseudo-population of pseudo-trials. First, we isolated
neural responses to the safe offers and the equivalent risky offers. Then, we collapsed the firing
rates for each trial into an average for the 500 ms offer 1 epoch. We randomly selected 1000
samples for each neuron, under both risk conditions, resulting in two n X 1000 matrices (one for
each offer type; safe vs. risky), where n represents the number of neurons recorded from each
region. We used an elastic-net logistic GLM to decode safe versus risky trials. Elastic-net offers
regularization over the decoding weights, including both L1 and L2-norms of both Lasso and
Ridge regression, respectively. Elastic-net GLMs can provide parameter estimates with reduced
bias and variance when there is collinearity in the predictors (Zou and Hastie, 2003).
Specifically, the Lasso regularization has the effect of shrinking weakly contributing predictors
to 0. The ridge regularization has the effect of reducing the size of all predictors. The elastic-net
represents a mixture of both these costs in determining GLM parameters. We fit the GLM across
1000 within-sample bootstraps. On each iteration, a randomly selected subset, constituting half
of each original safe vs. risky offer type pseudo-population, was used to fit the model and the
other half was used for cross-validation. The resulting cross validation provided a measure of
accuracy with which the elastic-net logistic regression model was able to decode safe vs. risky
offer types from the cross-validation set of firing rates.

We performed this entire procedure on 1000 bootstrapped iterations of randomly
constructed pseudo-populations. We averaged the accuracy across these out-of-sample

bootstrapped cross-validations and calculated the standard error across iterations. This procedure

13
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270  was performed independently for safe vs. medium-risky and safe vs. high-risky, and was

271 performed independently for each subject. Finally, the entire procedure was performed on

272 shuffled data, to confirm that the expected prediction accuracy for a binary decoder of

273  randomized data would be 50%. To do this, each original pseudo-population was instead

274  comprised of a randomly selected trial, regardless of the offer type. Additionally, each pseudo-
275  trial was randomly assigned a label as one of the possible offer types. We then compared the
276  average decoding accuracy between safe-risky and the shuffled data, using a standard two-

277  sample t-test, with Bonferoni corrections.

278 Subspace alignment. We followed the procedure described in Elsayed et al., 2016.

279  Specifically, for each structure, we separated offers and neural responses by their risk profile
280 (safe and equivalent risky offer of medium- and high-stakes), as described previously. For each
281  neuron, we identified two factors to incorporate into a single condition: time and offer position.
282  Time included the same 500 ms period following the onset of offer 1 and preceding the onset of
283  offer 2. Time was segmented into 20 ms bins. For each 20 ms bin, we computed the mean firing
284  rate across trials on which the offer was positioned on either the left or right of the screen. Thus,
285  we constructed a condition (time X offer position) X neuron matrix of mean firing rates; that is, a
286 50 X n-neurons matrix. One such matrix was constructed for safe offers, one for medium, and
287  one for high-stakes risky offers of equivalent value. Firing rates in prefrontal areas of macaques
288  tend to be sparse. So, we smoothed these matrices using a gaussian filter, with a sigma equal to
289  one. We smoothed across columns in the matrix; in other words, we smoothed each neurons
290 individually. We then normalized the smoothed matrices, by computing the z-score within each
291  cell, to account for differences in encoding scaling between neurons.

292 Next, we performed a principal component analysis, using eigenvalue decomposition, on
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the safe response matrix, providing a transformation matrix into which we projected both the
safe response matrix and each of the risky response matrices. We computed the explained
variance due to each of the principal components. We performed the same process of
dimensionality reduction for each of the risky offers, projecting both the safe response and
corresponding risky response data into the resulting principal component spaces (medium- and
high-stakes risky response each into their own principal component spaces). To determine if the

subspaces were aligned, we computed an alignment index:

_ Tr (DrTisky CsafeDrisky)

idx — —di .
fil1 dim Usafe(l)

where Tr() is the sum along the diagonal entry, sel-dim = the number of selected principal
components (or ten, in the current study), Drigy are the set of top sel-dim eigenvectors, Care is the
covariance matrix for the safe responses, (i) is i-th singular value of Cqge. Essentially, the
variance explained in safe responses by the top ten principal components of the risky responses
is normalized against the sum of the variance explained by the top ten principal components of
the safe responses. Note that we also performed this calculation using both the top 4 and top 7
principal components. This control did not change the results of the significance tests, and so
they are not reported.

In the Results, we described the difficulty associated with interpreting alignment indices
given the structure of the data, and the corresponding need to use shuffling procedures to
determine the effective upper and lower limits of measured alignment. To implement this
procedure, we tested whether the safe and risky subspaces were more or less orthogonal, relative
to randomly sampling within the space of this fixed correlation structure. We concatenated all
safe and risky offer data into a single matrix. We then computed the covariance matrix and

15
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performed an eigenvalue decomposition for the covariance matrix. We then randomly sampled

subspaces that were aligned to the fixed correlation structure of the response space, as follows:

ortho(U \/S_v)
Vi P —
ST

where U and S are the eigenvectors and eigenvalue matrices, respectively, of the
computed covariance matrix. A matrix (v) was drawn from a normal distribution with a mean =
0.0 and variance = 1.0. Orth() computes the orthonormal basis of the projected matrix. This
process essentially maintains the neuronal covariance structure of the original covariance matrix
used for the eigenvalue decomposition. We repeated this process across 1000 iterations and
computed the alignment index for each, according to the above description. We then calculated

the average alignment index and the 99% confidence intervals across the 1000 iterations.
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RESULTS
Behavior

On each trial of the risky choice task, a macaque (Macaca mulatta) subject chose
between two offers that varied in magnitude and probability (Figure 1A, Strait et al., 2014, see
Methods). Safe offers (12.5% of offers) provided a small volume of juice (125 uL) with 100%
certainty. Risky offers provided either a medium (165 uL, 43.75% of offers) or large (240 uL,
43.75% of offers) volume of juice with a defined probability (0-100%, 1% increments). The
offer types for the two offers were generated at random and independently on each trial. Our
dataset consists of responses from six subjects in 315 recording sessions and consists of 211,884
trials (average 672.6 trials per session). Target regions for neural recordings are illustrated in
Figure 1B and anatomical boundaries are provided in the Methods.

Subjects consistently performed at a high level, were modestly risk-seeking, and did not
differ from each other qualitatively (Figure 1C). Details of species-typical behavior in this task
are given elsewhere (in most detail in Farashahi et al., 2018 and 2019). Results of these analyses
are not repeated here, except to confirm, as we have previously shown, that subjects’ behavior is
quite stable and consistent within subjects, both across and within sessions, and across subjects
and sessions (Figure 1D-F). Indeed, all subjects showed the same behavioral patterns we have
observed using this task in past studies.

All analyses in this paper make use of subjective values instead of expected values. To
identify the relative values of safe offers, we computed the risky-safe indifference point. We
calculated, separately for each subject and separately for medium and large stakes offers, the
likelihood that the subject would choose the safe offer as a function of the probability associated

with the risky offer. We then calculated indifference using a standard approach in which we fit
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the resulting data with a sigmoid curve and calculated the point at which the best-fitting curve
crossed the indifference line (see Methods).

As in all of our past studies using this task, all subjects were risk-seeking. The cross-
subject average indifference point for medium-stakes risky offers corresponded to an offer
probability of 0.33 &+ 0.05 (standard deviation). A risk-neutral subject would have had an
indifference point at 0.76. The average indifference point for high-stakes risky offers
corresponded to an offer probability of 0.11 = 0.04. A risk-neutral subject would have had an
indifference point of 0.52. As we have observed many times, preferences were highly consistent
across many contexts. For example, indifference points are similar for the first and second offers
(offer 1: medium: 0.34; high: 0.11; offer 2: medium: 0.22; high = 0.11), for offers made early
and late in the session (early: medium: 0.29; high: 0.09; late: medium: 0.31; high: 0.13), and
when risky offers appear on the left or right (left: medium: 0.27, high: 0.11; right: medium: 0.36,
high: 0.12). Data for an example subject are shown in Figure 1D-F. Data for individual subjects

are shown in Figure 2.

Lack of pupil size effects

Because our central research goal is to ascertain the influence of offer type on neural
activity, we wanted to ensure that our effects were not due to attention or arousal. We therefore
examined the relationship between two proxies for attention, looking at time and pupil size in
four of our subjects (subjects B, H, P, and S; these are the subjects for which we had pupil size
recorded). We found no detectable relationship. Specifically, during the offer 1 epoch, subjects
fixated the first offer for 198.5 ms if it was risky and for 199.1 ms if it was safe. These two are

not different (p=0.85 for the group, p-values were the same or higher for all four subjects).
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During the offer 2 epoch, subjects fixated the second offer for 222.4 ms if it was risky and for
220.9 ms if it was safe (again, these are not different, p=0.73). During the choice epoch, we
calculated the total looking time and, again, found no differences (302.7 ms for chosen risky and
302.5 for chosen safe, p = 0.93). Nor were any of the individual subjects’ fixation time
differences statistically significant for any of these measures (p > 0.05 in all cases). These results
do not appear to be dependent on our choice of epoch; we used longer analysis (1 sec) epochs for
each of these analyses and found qualitatively matched results.

During the offer 1 epoch, the pupil size did not differ for risky and safe options in any of
the four subjects (p=0.10 for subject S and p > 0.5 for the other three subjects). Specifically,
relative to the baseline value (defined as 0), risky offer-evoked pupil size was -0.92 z-score units
(for all subjects averaged); the corresponding value for safe offers was 0.93 z-score units.
Likewise, during the offer 2 epoch, relative to the baseline value (again, defined as 0), risky
offer-evoked pupil size was -0.81 z-score units (for all subjects averaged); the corresponding
value for safe offers was 0.80 z-score units. These are not different for any subject (p = 0.21 for
subject H, p = 0.39 for subject P, p > 0.5 for the other two subjects). Finally, during the choice
epoch, relative to the baseline value of 0, risky choice-evoked pupil size was -0.79 z-score units
(for all subjects averaged); the corresponding value for safe offers was also 0.79 z-score units.

These are not different for any subject (p > 0.5 in all cases).

No special subpopulations for risky-and safe-preferring neurons
We recorded responses of 843 neurons in five brain regions while our subjects performed
the risky choice task: vimPFC (area 14, 156 neurons), OFC (area 13, 157 neurons), pgACC (areca

32, 255 neurons), PCC (area 29/31, 151 neurons), and VS (nucleus accumbens, 124 neurons).
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We recorded in two subjects for all areas, although different subjects were used for the different
areas (see Methods). Detailed analyses of responses to risky offers were reported previously for
vmPFC and VS (Strait et al., 2014 and 2015). We have never previously examined neural
responses to safe offers.

For these and subsequent analyses, we used each individual’s subjective indifference
point. We then defined a range of probabilities (+ 2.5%, total range of 5.0%) and treated all
offers within that range as being subjectively equivalent to the safe value. We subsequently
checked for robustness by repeating the following analyses using a larger range (+ 5%, total
range of 10%) but because we found no qualitative differences, we do not report those results.
We also repeated all analyses using within-session estimates of subjective value (rather than
within-subject, across-session). Again, because we found no qualitative differences, we do not
report those results.

Example neurons vimPFC.70 and pgACC.17 (Figure 3A and B) showed responses to safe
offers whose magnitude could not be predicted from responses to risky offers. Additional sample
cells, from each targeted area, including those that showed positive and negative monotonic
tuning for risky values and, again, unrelated responses to safe offers (Figure 3C-E).

If neural responses to risky and safe offers differ, one reason may be that they make use
of different subpopulations of neurons, ones specialized for risky and safe values. To determine
whether the brain makes use of separate subpopulations of neurons specialized for encoding the
values of safe and risky options, we adapted the approach we developed previously (Azab and
Hayden, 2017 and 2018). Specifically, we have shown that if there are two categorically distinct
populations of neurons, defined by distinct tuned variables (e.g., selectivity for offer 1 and

selectivity for offer 2), then correlating the unsigned regression weights (betas) will produce a
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negative (<0) correlation. Conversely, if the two variables are found in a single population, then
correlating their unsigned betas will produce a positive correlation (Figure 4A). If the variables
are distributed at random in the sample of neurons, then correlation will produce a null result.
Here, to perform this calculation, we regressed probability for each risky option against firing;
for safe options, we computed the response evoked by the presentation of the safe offer by
comparing the safe-evoked response to the pre-trial baseline firing rate (see Methods). We found
that, in the OFC, the degree to which the neural populations encode safe offers was positively
correlated with the extent to which they encode matched risky offers (medium-stakes: r = 0.49, p
< 0.001; high-stakes: r = 0.29, p <0.001; Pearson’s correlation; Figure 4B). We found similar
results in all 5 other areas (p < 0.001, in all cases, Pearson’s correlation; Figure 4C-F).

Note that, due to the non-normality of the data, it is possible that these correlations are
unduly driven by the few outlier datapoints. We therefore repeated these correlations using
Spearman’s correlation. All reported correlations are still significant. Specifically, for the safe vs.
medium, we find values of OFC: p=0.433; p=0.007; vmPFC: p=0.501; p<0.0001; pgACC:
p=0.318; p=0.008; PCC: p=0.498; p<0.001; VS: p=0.544; p<0.001. For the safe vs. high, we
find values of OFC: p=0.288; p=0.01; vmPFC: p=0.401; p<0.008; pgACC: p=0.438; p=0.001;
PCC: p=0.543; p<0.001; VS: p=0.511; p<0.001. These results are consistent with more detailed
studies from our lab using these and similar datasets showing no intrinsic categories in responses

(Blanchard et al., 2018).

Offer type (safe vs. risky) is decodable in all five regions
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Our principal question is how the brain might be able to disambiguate two offers that are
behaviorally indistinguishable but constituted by qualitatively distinct risk features. Neurons in
these regions may — and likely are - tuned for multiple variables (Rigotti et al., 2013; Raposo et
al., 2014; Fusi et al., 2016; Blanchard et al., 2018; Johnston et al., 2020). This fact is important
because if we assume a neuron is only tuned to a single variable, we may under-weight or ignore
its other quite real tunings, which would introduce biases - likely strong ones - into our analysis.
To deal with this problem, we use an elastic-net regression, which is a regularization procedure
that modifies a generalized linear model (GLM) with two regularization terms: the L1 and L2
norms of both Lasso and Ridge regression, respectively. The Lasso term increases sparsity by
penalizing weakly contributing neurons, while the Ridge term increases variance by reducing the
size of all predictors. The elastic net GLM can provide parameter estimates with reduced bias
and variance when there is collinearity in the predictors (Zhou and Hastie, 2003). We used the
model as a logistic decoder to predict whether an offer was safe or risky based on the fitted
model for population firing rates, using a bootstrap approach (see Methods).

We found that in the OFC, the elastic-net was able to decode the safe vs. medium-risky
offer type from population activity with 94.9% accuracy from subject P and 90.4% accuracy in
subject S (safe vs. high risky: 91.2% accuracy in subject P; 87.9% accuracy in subject S). We
found similar results in the other 5 brain areas (Figure 5).

To determine if decoding accuracy was significant, we repeated the process after
shuffling the pseudo-populations by randomly selecting from each offer type and each offer
epoch, and randomly assigning a safe or risky label to the response (see Methods). In OFC, the
decoding accuracy from shuffled data was 49.8% for both subject P and subject S, which

constitutes the expected random 50/50 guess for a binary decoder. Decoding safe vs. medium-
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risky offer type was significantly higher than chance (Students t-test, subject P: t=-861.4, p <
0.001; subject S: t=-1058.8, p < 0.001; even after Bonferoni correction). We found similar

results in all 5 other areas, across subjects and risky offer magnitudes (p < 0.001 in all cases).

Orthogonal response subspaces for value-matched risky and safe offers

The underlying connectivity of neuron ensembles can effectively constrain activity to be
correlated, rendering a low-dimensional subspace (Gallego et al., 2017; Ebitz and Hayden,
2021). Successfully decoding the safe vs. risky identity of equally valued offers could then be
accomplished through their organization into distinct subspaces. We adapted previously used
approaches to characterize the uniqueness of safe and matched-risky subspaces (Elsayed et al.,
2016; Yoo and Hayden, 2020). Specifically, we projected risky offer responses into the safe offer
response subspace and computed the explained variance for each (Figure 6).

When we project data from the risky subspaces (medium and high), they have lower
values than when we project the safe values into the same subspace (Figure 6A), indicating the
presence of coding orthogonality. If the brain used collinear codes for risky and safe offers, then
the two sets of lines would be the same height. Indeed, a plot of the difference between the
average of the two sets of times (Figure 6B) shows that in all cases, these are greater than zero —
if the risky and safe subspaces were collinear, the differences here would be precisely equal to

zero. Note that these data represent the difference between the measured value and the shuffle
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alignment index; this means that data with higher shuffle alignment indices will appear lower as
a result. Indeed, these results should not be taken to imply that the safe vs. high alignments are
consistently greater than the safe vs. medium alignments, even though it appears this way.
However, these plots are made relative to the shuffled values, which have consistent differences
related to the idiosyncratic properties of the statistics of their spike trains. Instead, the only
strong conclusion that can be drawn from these data is that both medium and high risky offers
are consistently encoded in subspaces semi-orthogonal to those of safe offers. Note also that the
projection weights are not necessarily reflective of the amount of orthogonality in a linear sense,
meaning two indices that are close to each other but significantly different are not necessarily
quantitatively similar.

We used these projections to quantify the extent to which subspaces were aligned (Ajux;
see Methods). Purely orthogonal subspaces would have an alignment of 0; collinear ones would
have an alignment of 1.0; semi-orthogonal subspaces would have an intermediate value between
0.0 and 1.0. Note that semi-orthogonal subspaces would be sufficient to produce separate
representations and would satisfy our hypotheses. The alignment analysis indicated that in OFC,
for example, comparisons of safe and medium-stakes risky response subspaces had an alignment
index of Ajgx= 0.231. Safe and high-stakes subspaces had an Ajg = 0.266.

These numbers do not account for the measurement limits imposed the by structure of the
data. We performed two control procedures, one to determine the practical upper measurable
alignment index, and the other to determine the practical lower measurable alignment index. To
determine the upper limit, we performed a control procedure to measure a threshold below which
indices would be considered at least semi-orthogonal (see Methods; Elsayed et al., 2016). Any

alignment index at or. To do this, we shuffled the data from across all three response matrices
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(safe, matched-medium, and matched-large) and computed the alignment index between pairs of
shuffled sets (see Methods). We repeated this process over 1000 randomizations. Then, to test
for significance, we computed the 99% confidence interval across iterations; a value outside of
this range can therefore be said to be significant at p < 0.005 (given that our t-test is assumed to
be one-tailed). We found that the average shuffled alignment index in OFC was Aj4c = 0.276.
Both the safe-medium and safe-high alignment indexes were below the 99% confidence interval
(0.271 - 0.281) and thus both significant at p < 0.005 (or p < 0.01 with a two-tailed t-test).

To determine the lower limit, we repeated the shuffle procedure, but randomized across
all axes. This analysis approach, in effect, identifies the alignment index we would observe if the
data were entirely orthogonal. In OFC, the alignment index across totally shuffled data was Ajgx
=0.091 £ 0.009 (99% confidence interval). The safe-medium and safe-high alignment indexes
are both quite a bit greater than this noise floor (thus both significant at p < 0.005). In other
words, response subspaces for safe and equally valued risky offers in OFC are less orthogonal
than random data, indicating that they are partially, albeit not completely, aligned. We found
similar results in all structures (below the 99% confidence interval, in all cases; p < 0.005). We
can conclude, then, that these responses have an intermediate level of alignment.

Note that it is worth reading these numbers with a good degree of caution. The space of
orthogonality measures is inherently non-linear — for example, a value of 0.8 is not in any
meaningful sense twice as collinear as a value of 0.4. Indeed, a quantitative interpretation of
these numbers would require strong assumptions about the decoding process used by
downstream structures. Nonetheless, measures of statistical significance here are interpretable
and meaningful. Thus, when we say that the measured values are intermediate, we do not mean

that they lie roughly halfway between orthogonal and collinear; instead, we mean that they are
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neither at one extreme nor the other. Moreover, it is worth pausing to emphasize what can and
cannot be inferred about orthogonality of subspaces from these numbers. On one hand the results
of the significance tests can be interpreted in a conventional way — a significant difference
between and upper and lower bound can be taken as evidence of semi-orthogonality. On the
other hand, the magnitude of the effect comes with several caveats that make interpreting it,
beyond the results of significance tests, difficult. This magnitude depends on, for example, the
signal-to-noise ratio in that population of neurons, their baseline firing rate, and the particular
nature of their distribution.

Finally, we asked how neural responses to medium- and high-states risky offers related to
each other. If the qualitative difference in codes for risky and safe offers reflect, even in part, the
qualitative differences between risk and safety, than two different risk offers should differ less
than the risky and safe offers. We therefore repeated the above analyses on medium- and high-
stakes risky offers. In OFC, we found that the medium- and high-stakes risky responses had an
alignment index of Ajqx= 0.275. This value is significantly greater than the value of the medium-
risky and high-risky indices (0.231 and 0.266, respectively, see above). Moreover, this value is
within the confidence interval for shuffled data (0.271 - 0.281) and is not significantly different
from chance (p ~= 0.29). We found similar effects for the other brain areas. Specifically, in
vmPFC, the difference in Ajq between the both medium-stakes and high-stakes and risky-safe is
positive (0.051 and 0.018 for medium and high; p<0.01 for both; for this and the following, we
used the bootstrap test described above). In pgACC, these numbers were 0.046 and 0.017
(p<0.01 for both); in PCC, the numbers were 0.041 and 0.009 (p<0.01 for both). In VS, the

numbers were 0.038 and 0.007 (p<0.01 for medium and p<0.05 for high).
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Orthogonal risky and safe response subspaces can be transformed to be aligned

Above, we demonstrated that the population subspaces for risky and safe offers are semi-
orthogonal (see cartoon in Figure 7A). A primary question, then, is to what extent can these
subspaces be transformed into a common subspace that would aid in their comparison? Such a
common subspace could provide a mechanism for comparing offers of equal value (Yoo and
Hayden, 2020). We reasoned that if the response subspaces could be transformed such that their
hyperplanes were collinear, then the axis along which they become aligned is most likely the axis
that describes their relative values (Figure 7B).

To investigate whether our data here obey these principles, we performed a canonical
correlation analysis on the subspace loadings (i.e., the principal component projection weights,
see Methods; Gallego et al., 2018; Susillo et al., 2015) for the first three principal components
from the safe and risky offer response matrices. We also randomly shuffled the subspace
loadings 1000 times and performed the same canonical correlation analysis. In OFC, we found
that safe and equally valued medium-stakes offer response subspaces could be significantly
aligned to correlation of r = 0.53 (p = 0.023, bootstrap rank test). Safe and matched-high stakes
risky offer response subspaces reached a maximal correlation of r = 0.61 (p <0.01). We found
similar results across the remaining five brain areas in our dataset (p < 0.05 in all cases, Figure
8). Specifically, we found that in all five brain areas, subspaces are linked. As above, we
repeated these canonical correlation analyses, but for the two risky offers (medium and high
stakes). They are also transformable. Specifically, in OFC, we find a correlation of =0.62 (p =
0.011, bootstrap rank test). In vmPFC, we find a correlation of r=0.69 (p = 0.008, bootstrap rank

test); in pgACC, we find a correlation of r=0.71 (p = 0.007, bootstrap rank test). In PCC, we find
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a correlation of r=0.64 (p = 0.013, bootstrap rank test); finally, in VS, we find a correlation of
r=0.72 (p = 0.007, bootstrap rank test).

One limitation of this analysis is that it is based on neural responses occurring during the
first offer period only. That is, our analysis assumes implicitly that neural responses to the first
offer will be identical to those for the second offer, and that cross-trial subspaces will allow
comparison. This assumption can be tested. We therefore performed an analysis using neural
responses to the second offers. Specifically, we performed a canonical correlation analysis on
safe (offer 1) and equally valued middle-risk (offer 2), on safe (offer 1) and equally valued high-
stakes (offer 2), as well as the reverse. In all cases, we found that the principle of
transformability was preserved. Specifically, in OFC, we find a correlation of r=0.65 (p = 0.009,
bootstrap rank test). In vmPFC, we find a correlation of r=0.68 (p = 0.01, bootstrap rank test); in
pgACC, we find a correlation of r=0.70 (p = 0.006, bootstrap rank test). In PCC, we find a
correlation of r=0.62 (p = 0.016, bootstrap rank test); finally, in VS, we find a correlation of

r=0.67 (p = 0.010, bootstrap rank test).
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DISCUSSION

We find that neural responses to risky and safe offers use distinct codes in five core
reward areas. Our task uses a single safe value and a dense sampling of 99 different risky values
(1-99%), meaning we can use behavior to precisely infer equivalent risky and safe values.
Indeed, we find that risky and safe options are encoded in distinct (semi-orthogonal) ensemble
subspaces. The risky and safe subspaces, while different, are systematically related so that there
is a ready transformation between them; this transformability means that a downstream area can
straightforwardly compare the values of the two offers despite the differences in the codes used
to represent them. We conjecture that this distinct but transformable code can allow the brain to
achieve two conflicting goals, that is, to maintain a separate representation of different offer
types, but also to allow for their direct comparison on a single scale.

Typically, neuroeconomic models are concerned with developing theories to explain how
we compare disparate option types (Plassmann et al., 2007; Padoa-Schioppa, 2011; Levy and
Glimcher, 2012). While abstraction is important, the more general problem faced by the brain is
a bit more complex - it must use a system that simultaneously maintains options’ features (so that
they can be used to influence behavior if needed) while also allowing for comparison of
dissimilar features. For example, circumstances may change rapidly so that surety is more or less
valuable; the decision-maker must be able to selectively change the relative value of risky
options. The use of linked but semi-orthogonal subspaces for qualitatively different feature types
allows this goal to be accomplished quickly. Our results, then, support the notion that these
ostensible value regions do contribute to evaluation and comparison processes in choice, but do
so in a way that maintains information about the qualities of the options, in addition to their

values.
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Our results have some bearing on longstanding discussions about the nature of abstract
value representation and their role in facilitating comparison (Padoa-Schioppa, 2011; Montague
and Berns; Hayden and Niv, 2021; Platt and Glimcher, 1999; Padoa-Schioppa and Assad, 2006;
Kennerley et al., 2009; Peters and Buchel, 2010; Kolling et al., 2016; So and Stuphorn, 2010;
Raghuraman and Padoa-Schioppa, 2014; McCoy and Platt, 2005). Traditional neuroeconomics
proceeds from the ‘neuron doctrine,” which, in neuroeconomics, implies that comparison across
offer types requires the existence of neurons whose responses are the same for equally valued
offers of different types. By contrast, the ‘population doctrine’ allows for other forms of
equivalence, including translatable but distinct subspaces (Elsayed et al., 2017; for reviews, see
Saxena and Cunningham, 2019; Ebitz and Hayden, 2021). Equally valued risky and safe offers
are a well-known example of offer types with qualitatively different features that can be readily
compared, and for this reason, have long been the focus of studies about value representation
(Levy et al., 2010; Tobler and Weber, 2014). Thus, our results both raise the possibility of and
add empirical support for the idea that qualitatively different values can be compared in a way
that occurs at the population level and does not require value neurons. To speculate a bit,
subspace orthogonalization may offer more encoding flexibility than single neuron encodings
because they can be rapidly adjusted to context without requiring rewiring or retraining; they
may also be more robust to certain forms of error or degradation.

The concept of neural subspaces originates in motor cortex and can be used to explain
how motor preparation is kept separate from action, so as to allow for fast responding while
preventing precocious movement (Kaufman et al., 2014; Elsayed et al., 2016). We have argued
that the same principles apply to core value regions, and that subspace orthogonalization allows

for the separation of evaluation and comparison processes (Yoo and Hayden, 2020). The present
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results suggest a new use for subspace partitioning - keeping track of two qualitatively different
types of rewards in a format so that the details of their properties (here, risky vs. safe) are
maintained, while also allowing for ready comparison in a downstream structure.

Orthogonalized subspaces are an emergent property of neurons with mixed selectivity.
Mixed selectivity, or the simultaneous tuning to multiple features, is an important property of
neurons in prefrontal and associated regions (Barak et al., 2013; Rigotti et al., 2013; Fusi et al.,
2016). Mixed selectivity is the foundation of many useful properties, including feature binding,
learning, abstraction, and generalization, and code morphing (Bernardi et al., 2020; Parthasarathy
et al., 2017). Notably, a good deal of the analysis of physiological data assumes, either explicitly
or tacitly, that neurons have singular tuning, not mixed selectivity. For example, approaches that
divide neurons into specific categorical types tend to classify those neurons according to which
feature drives them most strongly. By doing so, these approaches zero out those neurons’ tuning
for other parameters, and make the population appear more categorical than it really is. That
work, however, risky misinterpretation of neural data, precisely because of the remarkable power
of mixed selectivity (Fusi et al., 2016).

One highlight of our study is that we were able to directly compare responses in five
brain regions in the same task. This fact means that we can ask questions about the unique
functional properties of each region, such as whether different regions contribute differentially to
evaluation, comparison, and action selection elements of choice. Here, we replicate our past
findings showing that functional properties are largely qualitatively the same (Strait et al., 2015
and 2016; Maisson et al., 2021; Fine and Hayden, 2022). This does not necessarily prove these
areas are strictly overlapping in their functions, nor does it prove that economic functions are

purely distributed. Indeed, there is a quite a good deal of evidence of functional specialization in
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the brain (Wilson et al., 2010; Rushworth et al., 2011; Passingham and Wise, 2012). Instead, we
propose that, to some extent, economic functions are a general feature of prefrontal cortex (and
related structures like PCC and VS), and that, for core economic functions, these regions
function as a hierarchy, rather than as a series of modules (Hunt and Hayden, 2017; Yoo and
Hayden, 2018 and 2021; Fine and Hayden, 2021; Maisson et al., 2021). Moreover, our results
here extend these previous ideas and suggest that these regions not only have similar coding
repertoires but use similar computational algorithms (here, judicious control of subspace) to
implement them.

Warren Weaver (1982) and Lola Lopes (1987) have both argued, in their work on
decision-making and risk, that it is a mistake to assume that two options with the same expected
value (including subjective expected value) are or should be treated the same way by decision-
makers. There are many natural situations in which a risky prospect is quite different from a safe
one, even if they are matched for subjective value. To give some examples, risky options elicit
emotions, and anxieties, promote learning, reward curiosity, generate error signals, require
maintenance of an eligibility trace, may be associated with exploratory rather than exploitative
states, require additional brain computations, and may in some cases differentially elicit
executive control (e.g. Loewenstein et al., 2001; McCoy and Platt, 2005; Slovic et al., 2007; Platt
and Huettel, 2008; Baraseghyan et al., 2013; So and Stuphorn, 2016). For these reasons, risky
and safe options ought to elicit at least somewhat distinct brain responses, even when they are
matched for subjective value. Our results show that in five brain areas, they elicit strikingly
different response patterns. This does not mean that an abstract single-neuron value code does
not exist in the brain; it may be found, for example, in a hierarchically later area, such as dorsal

anterior cingulate cortex (dACC, Cai and Padoa-Schioppa, 2012), or supplementary motor areas
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(So and Stuphorn, 2010). Another possibility, however, is that the brain makes do without an
abstract value subspace, and instead achieves comparison through alternative means (Vlaev et

al., 2012; Yoo and Hayden, 2018; Hayden and Niv, 2021; Walasek and Brown, 2021).
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Figure Captions

Figure 1. Task, targeted structures, behavior, and calculation of equivalent risky and safe
values. (A) Structure of our Risky Choice Task (Strait et al., 2014). Task consists of 400 ms offer
1 presentation, a 600 ms blank period, a 400 ms offer 2 presentation, another 600 ms blank
period, then a fixation spot and, on fixation, reappearance of both offers and choice (indicated by
saccade). For each offer, the magnitude of the associated reward (stakes) is indicated by the
bottom color (green, high or blue, medium) of the stimulus. The probability of being rewarded is
indicated by its size. (B) Anatomical positions of our brain regions of interest: OFC (purple),
vmPFC (purple-pink), pgACC (pink), PCC (gold), and VS (grey). (C) Likelihood of choosing
the first offer as a function of its value relative to the second (specifically, for signed value
difference). Sigmoid fits of raw binary data shown (see Methods). Gray lines: individual
subjects; black line: group average. In this and subsequent panels, a horizontal dashed line
indicates the indifference point (the point at which choices are 50/50). (D) Likelihood of
choosing a safe option as a function of the probability of the risky option for medium (blue) and
high (green) stakes offers. All data were analyzed on a subject-by-subject basis, so only data for
one example subject (subject B) are shown. Other subjects showed similar patterns. Vertical
black lines indicate the probability used as the SV-equivalence point for the subject (the arrow
points to the indifference point for medium- (blue) and high-stakes (green) risky offers). (E)
Same as D, except data are separated for left and right offers. Side of presentation does not affect
choice much. (F) Same as D, except data are separated by trials that were in the first (early) or

second (late) half of a session.
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Figure 2. Indifference points for each of our five subjects individually. Y-axis shows the
probability (from 0% to 100%) associated with a risky offer that is equivalent in subjective
value, as assessed by preference indifference. Data are separated by whether the offer is medium
(left) or high (right) stakes). Subjects generally prefer risky offers, as indicated by the fact that
points tend to be on the lower y-values of the graph. Preferences are lower for high stakes than
for medium stakes, indicating that subjects took account of stakes. Subject indifferent to stakes
would show no difference between the medium and high stakes conditions. Error bars are not

shown because, due to the large number of trials, they are smaller than the bars.

Figure 3. Responses of single neurons. This figure shows the average responses of sample
neurons to safe and risky offers of differing values, as well as the average response similarity
rates. (A) Peristimulus time histogram from mean firing rates of sample neuron vmPFC.70. Each
line indicates the average response across offers of a given risk profile (grey: all safe offers; blue:
all medium-stakes risky offers; green: all large stakes risky offers). The grey shaded box
indicates the 1-second period from which the 500-ms epoch 1 analysis window was extracted,
where the onset of the first offer is time-locked to zero seconds. (B) This is a plot of data
collected from a sample neuron pgACC.17, which showed a response to safe offers that was
statistically different from the response to equivalent risky offers. Depicted are the average
responses to medium-stakes (left; blue) and high-stakes (right; green), separated by probability
ranges of 0.05. The black point indicates the average response of the given neuron to safe offers
(error bars denote the SEM across responses to safe offers). The diagonal black line indicates a

fitted regression line, showing positive monotonic tuning. (C-E) Same as (B) but demonstrating
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sample cell responses to an assortment of medium- and high-stakes offers from across all target

areas.

Figure 4. Overlapping populations encode both safe and risky offers. (A) Conceptual schematic
indicating the analytical approach for identifying functional subpopulations. The right panels
propose the slope of a best fit line describing the encoding formats for each population type. (B)
For OFC (area 13), left panel: scatter plots represent the absolute degree of encoding of safe
offers plotted against that of the medium-stakes risky offers for each neuron (each point
corresponds to data from one neuron). The black line indicates the line of best fit for the
correlation between the absolute degree of encoding of safe and risky offers across neurons. Red
bars indicate the 99% confidence interval for the line of best fit. The inlaid numbers indicate the
Pearson correlation coefficient (r) and the significance (p). Right panel: same as left, but
comparing safe offer encoding and high-stakes risky offer encoding. (C-F) Same as B, but for

vmPFC (area 14), pgACC (area 32), PCC (area 29/31), and ventral striatum, respectively.

Figure 5. Safe and equivalently valued risky offers are readily decoded. Decodability for safe
and risky offers is high in all areas for both medium- and high-stakes gambles. Shuffled data
refers to decodability of randomly assigned safe/risky labels to neural responses that are
completely shuffled across trials and cells. Bars represent the mean decoding accuracy across out
of sample cross-validations Error bars indicate the standard error across cross-validations. The

horizontal grey line indicates the chance decoding accuracy level.

Figure 6. Subspace Alignment between Safe and Equivalent Risky Offers. (A) For each structure,
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we performed a principal components analysis and projected the resulting dimensions for
medium (top row) and high (bottom row) stakes offers onto the corresponding ones for safe
offers. If subspaces for the risky and safe codes were the same (or collinear), then the projections
would match. Instead, the projections for the risky offers (lighter lines) are consistently lower
than the control values (the projections for the safe offers, darker lines). In other words, the fact
that the lighter (risky) lines are lower than the darker (safe) ones indicates that the two types of
offers are encoded in semi-orthogonal subspaces. (B) This finding is summarized in panel B,
which gives a summary of the difference between the average shuffle alignment index and either
the safe-medium (left bar) or the safe-high (right bar) alignment index. Error bars indicate the
standard error across computed differences. Note that these data represent the difference between
the measured value and the shuffle alignment index; this means that data with higher shuffle

alignment indices will appear lower as a result.

Figure 7. Subspace rotational transformations and canonical correlations. (A) A cartoon
demonstrating an example of orthogonal (left) and aligned (right) hyperplanes projected onto the
first three dimensions (cf. Yoo and Hayden, 2020). (B) A procedural schematic demonstrating
the process of linear algebraic rotational transformation, to align subspaces by maximizing the

Pearson’s correlation coefficient via canonical correlation.
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Figure 8. Scatter plots, for each structure, of projections of medium and safe offer responses (top
row) and high and safe offer responses (bottom row) projected into safe offer response
subspaces. Plotted are projections onto the first 2 principal component loadings for the original
(darker circles) and transformed (lighter pluses) projections. The inlaid coefficients are the
Pearson’s correlation coefficients between projections on the first 2 principal component loading
for the original (r1) and transformed (12) responses. The lines denote the best-fit line for the

corresponding correlation coefficients (r1: darker line; 12: lighter line).
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