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Abstract 39 
Language influences cognitive and conceptual processing, but the mechanisms through which 40 

such causal effects are realized in the human brain remain unknown. Here, we use a brain-constrained 41 
deep neural network model of category formation and symbol learning and analyze the emergent 42 
model-internal mechanisms at the neural circuit level. In one set of simulations, the network was 43 
presented with similar patterns of neural activity indexing instances of objects and actions belonging 44 
to the same categories. Biologically realistic Hebbian learning led to the formation of instance-specific 45 
neurons distributed across multiple areas of the network, and, in addition, to cell assembly circuits of 46 
‘shared’ neurons responding to all category instances – the network correlates of conceptual 47 
categories. In two separate sets of simulations, the network learned the same patterns together with 48 
symbols for individual instances (‘proper names’) or symbols related to classes of instances sharing 49 
common features (‘category terms’). Learning category terms remarkably increased the number of 50 
shared neurons in the network, thereby making category representations more robust while reducing 51 
the number of neurons of instance-specific ones. In contrast, proper-name learning prevented 52 
substantial reduction of instance-specific neurons and blocked the overgrowth of category-general 53 
cells. Representational Similarity Analysis further confirmed that the neural activity patterns of 54 
category instances became more similar to each other after category-term learning, relative to both 55 
learning with proper names and without any symbols. These network-based mechanisms for concepts, 56 
proper names and category terms explain why and how symbol learning changes object perception and 57 
memory, as revealed by experimental studies. 58 

Significance Statement 59 

How do verbal symbols for specific individuals (Micky Mouse) and object categories (house 60 
mouse) causally influence conceptual representation and processing? Category terms and proper 61 
names have been shown to respectively promote category formation and instance learning, potentially 62 
by respectively directing attention to category-critical and object-specific features. Yet the 63 
mechanisms underlying these observations at the neural circuit level remained unknown. Using a 64 
mathematically precise deep neural network model constrained by properties of the human brain, we 65 
show category-term learning strengthens and solidifies conceptual representations, whereas proper 66 
names support object-specific mechanisms. Based on network-internal mechanisms and unsupervised 67 
correlation-based learning, this work offers neurobiological explanations for causal effects of symbol 68 
learning on concept formation, category building and instance representation in the human brain.  69 
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Introduction 70 
Most signs and symbols are used to speak about objects and actions. This led philosophers and 71 

logicians to propose that the referential link between symbol and world is most essential for meaning 72 
and semantics (Wittgenstein, 1922; Frege, 1948). Yet there are quite different relationships between 73 
symbols and their related real-world entities. One most essential difference exists between ‘proper 74 
names’ used to speak about a single object or individual (e.g., “Mickey Mouse”) and ‘category terms,’ 75 
which can refer to members of an entire class or conceptual category (e.g., “house mouse”). Such 76 
differences between referential symbols are well-described at the semantic level, but not understood in 77 
terms of their underlying mechanisms in mind and brain. 78 

The need for mechanistic neurobiological models of symbols and their meaning comes from 79 
reports about causal influences of language on perception, attention, and memory. It had long been 80 
speculated and recently been confirmed that, when human subjects learn words for objects, language 81 
may help humans to attend to and distinguish between them (Majid et al., 2004; Whorf and Carroll, 82 
2007; Miller et al., 2018; Vanek et al., 2021). Experimental research in infants showed that learning 83 
‘labels’ for objects increases their attention to these objects (Baldwin and Markman, 1989), which 84 
further establishes an attention-catching function of language. However, this general insight requires 85 
further specification to capture the different effects of category terms and proper names. In particular, 86 
learning a new symbol for a category of objects makes infants attend to the shared features of these 87 
objects and facilitates their learning of the conceptual category (Gelman and Markman, 1986, 1987; 88 
Plunkett et al., 2008); the latter even holds if the objects show little perceptual similarity (Graham et 89 
al., 2013). On the other hand, the category building function of language is absent when object-90 
specific proper names are learned. In this case, the infant’s attention is directed not towards the 91 
common category features of objects, but to idiosyncratic and object-specific features instead (Scott 92 
and Monesson, 2009; LaTourrette and Waxman, 2020). In summary, category-term learning directs 93 
attention to shared features of objects (Waxman and Booth, 2001; Dewar and Xu, 2007; Althaus and 94 
Mareschal, 2014; Althaus and Plunkett, 2016), whereas unique proper-name learning highlight 95 
idiosyncratic and object-specific features (Best et al., 2010; Barnhart et al., 2018; Pickron et al., 2018; 96 
LaTourrette and Waxman, 2020). These specific and replicable effects of proper names and category 97 
terms on perception and attention have been explained in terms of different ‘strategies’ applied by the 98 
learner. A neurobiological explanation of why these specific effects occur is still missing. 99 

Why and how can proper names and category terms direct attention to specific versus shared 100 
features of category members? To develop a mechanistic explanation, we used a brain-constrained 101 
deep neural network designed according to the area structure and connectivity of major areas relevant 102 
for language and conceptual processing (Garagnani et al., 2007; Tomasello et al., 2018; Pulvermüller 103 
et al., 2021). Six “areas” of the model simulated processes in superior temporal and inferior frontal 104 
perisylvian language areas and six extrasylvian model areas simulated inferior temporo-occipital 105 
visual ‘where’ processing stream and dorsolateral prefrontal and motor cortices (Figure 1A). In the No 106 
symbol (NoS) condition, the model learned activity patterns each representing 1 of 60 instances of 107 
objects or actions belonging to 10 different categories. In learning-with-symbols conditions, the model 108 
learned additional activity patterns representing word forms of proper names (PN) or category terms 109 
(CT) (Figure 1B-C, 2A). After learning, the model was tested by activating previously trained instance 110 
patterns of each category and, in addition, new patterns for novel instances belonging to the same 111 
categories (Figure 2B). We documented the neural and cognitive effects of proper names and category 112 
terms on instance and category learning in the model. In-depth analyses of the emerging activation 113 
patterns and representations were provided by using Representational Similarity Analysis (RSA) 114 
(Kriegeskorte et al., 2008) and by classifying neurons into instance-specific and category-general ones.   115 
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Materials and Methods 116 

Participants 117 
 The current work does not contain experiments with human participants or animal subjects. 118 

Neurobiological constraints 119 
In contrast to many neural network models, the brain-constrained model applied aimed at 120 

biological plausibility by applying a range of structural and functional constraints (Tomasello et al., 121 
2018; Henningsen-Schomers and Pulvermüller, 2022; for review, see Pulvermüller et al., 2021) 122 
realizing: 123 

(1) neurophysiological dynamics of spiking pyramidal cells (Connors et al., 1982; Matthews, 124 
2001), 125 

(2) synaptic weights under the modification of unsupervised Hebbian-type learning (i.e., 126 
synaptic plasticity and learning were modified according to the biologically plausible 127 
unsupervised Hebbian principles that incorporated both long-term potentiation and long-128 
term depression) (Artola and Singer, 1993), 129 

(3) local and global activity regulation (Braitenberg, 1978; Yuille and Geiger, 1995) based on 130 
local and area-specific inhibition mechanisms (Knoblauch and Palm, 2002), 131 

(4) excitatory and inhibitory within-area local connectivity (including sparse,  random, and 132 
initially weak excitatory links whose probability falls off with distance) (Kaas, 1997; 133 
Braitenberg and Schüz, 1998), 134 

(5) between-area global connectivity built on neuroanatomical evidence, and 135 
(6) built-in uncorrelated white noise in neurons of (a) all areas during training and testing 136 

mimicked spontaneous baseline neuronal firing and (b) additional noise in neurons of 137 
areas not stimulated by patterns during training, which simulated uncorrelated sensory or 138 
motor activity unrelated to instances or symbols (Rolls and Deco, 2010).  139 

Table 2 supplies the model specifications and parameters chosen in this current work.  140 

Model description 141 
We applied a brain-constrained deep neural network model including spiking model neurons 142 

and twelve model areas to model sensorimotor, conceptual and linguistic mechanisms in the left-143 
hemispheric language-dominant fronto-temporo-occipital regions of the human brain, as described in 144 
previous studies by Tomasello et al., 2018; Henningsen-Schomers and Pulvermüller, 2022. 145 

Anatomical architecture and connectivity 146 
To distinguish between sub-parts of neural networks from their target cortical structures of the 147 

real human brain, all model areas are marked by an asterisk before (e.g., *A1, *V1). The architecture 148 
modelled three areas representing the ventral visual system (i.e., primary visual cortex (*V1), 149 
temporo-occipital area (*TO), anterior-temporal area (*AT)) and three areas representing the 150 
dorsolateral action system (i.e., dorsolateral fronto-central motor (*M1L), premotor cortex (*PML), 151 
prefrontal cortex (*PFL)). These formed the extrasylvian region for sensorimotor processing where 152 
semantic information was stored. Another 6 areas of the perisylvian region for word-form processing 153 
housed articulatory-phonological and acoustic-phonological information. These areas involved the 154 
three areas of the auditory system (i.e., primary auditory cortex (*A1), auditory belt (*AB), parabelt 155 
areas (*PB)) and three inferior frontal articulatory and prefrontal areas (i.e., inferior primary motor 156 
cortex (*M1i), premotor cortex (*PMi), prefrontal cortex (*PFi)), respectively. Between-area 157 
connections were reciprocal and connected next neighbor areas, second-next neighbors (see Schomers, 158 
2017) and long-distance corticocortical links supported by neuroanatomical evidence in the literature 159 
(Table 1). 160 

In the current neural network model, the fundamental information processing units are 161 
artificial neuron-like elements, or cells. Each modelled area comprised two layers of 625 e-cells and 162 
625 i-cells that mimicked an (excitatory) pyramidal spiking neuron and a cluster of (inhibitory) 163 
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interneurons hosted within the same cortical column in the cortical area. A more elaborate description 164 
of the firing behavior of such neurons could be found in Garagnani et al. (2017), Tomasello et al. 165 
(2018), Henningsen-Schomers and Pulvermüller (2022).  166 

Activity patterns applied to the networks 167 
 60 ‘grounding patterns’ were defined as sensorimotor activation patterns thought to represent 168 
specific sensory-motor experiences of 60 different objects or “instances”. Groups of 6 instances 169 
overlapped in their neuronal grounding patterns and were taken as representations of different 170 
instances of the same concept (e.g., different robots). Note that the images of robots and cat faces for 171 
category members are to be taken purely for illustrative purposes here – the actual training patterns of 172 
the models consisted of sets of activated neurons with no systematic relationship to images of robots 173 
or cat faces. A category comprised three trained instances and three novel instances not presented 174 
during training; all six instance patterns were used for network testing (Figure 2A-B). Each category 175 
instance was neuronally coded as a set of perceptual and motor neuron activations in the primary 176 
visual and hand-motor areas of the brain-constrained network. These instance-related grounding 177 
patterns were activated either on their own or together with additional patterns of neuronal activation 178 
in the network’s articulatory and auditory cortices, which were thought to implement symbol forms, 179 
that is, verbal labels or spoken word forms. These “word form patterns” were used either as proper 180 
names and therefore specifically with only one grounding pattern, or as category terms and therefore 181 
the same word form pattern co-occurred with all 3 trained grounding patterns of one category. To 182 
control the effect of non-linguistic factors, a third class of trained grounding patterns was learnt 183 
without concordant auditory-articulatory activation. Thus, we generated three classes of simulated 184 
stimulation patterns: (i) instance-related grounding patterns applied to *V1/*M1L (Figure 1B-left), (ii) 185 
category term patterns to *A1/*M1i, (Figure 1B-middle) and (iii) proper name patterns to *A1/*M1i 186 
(Figure 1B-right). Sensorimotor experiences of instances were simulated with conceptual grounding 187 
patterns, (i), and symbol-related auditory-articulatory activity were simulated using word form 188 
patterns, (ii) and (iii). 189 

For visualization and better conceptual understanding of the use of activity patterns, see 190 
Figure 1B-C. Instances belonging to the same category were simulated by similar grounding patterns, 191 
following Henningsen-Schomers and Pulvermüller (2022).: within-category instances had grounding 192 
patterns that shared 50% of their feature neurons and differed from each other in the other half; 193 
grounding patterns simulating instances from different categories had no neuronal overlap. For each 194 
grounding pattern (i), a subset of twelve out of 625 potential cells per area were randomly chosen, 195 
consisting of six unique neurons and six shared neurons. Shared neurons simulated features 196 
characterizing all instances patterns of a category; they simulated shared conceptual features of all 197 
category members (category-critical feature, e.g., members of the first category are robots in the same 198 
height and are equipped with one camera, one speaker, two antennae, a power button, two metal legs, 199 
and a pair of shoes; members of the second category are cats and have round-shaped head, eyes, nose, 200 
mouth, ears, and whiskers (Figure 1B-left). Unique neurons simulated the ‘idiosyncratic’, fully 201 
instance-specific visuomotor features; each of the corresponding feature neurons was only available in 202 
one instance pattern (e.g., robots vary in the body shape and color, orientation of antennas, leg forms, 203 
position of power button, shoes color). In sum, each category possessed 36 unique neurons from its six 204 
exemplars and six shared neurons. For word form patterns, category term patterns (ii) of within-205 
category instances consisted of the same twelve neurons, which were co-activated with each of the 3 206 
learnt grounding patterns of a category (e.g., to simulate the artificial words fos for all instances of the 207 
robot category, and coxt for all instances of the cat category) (Figure 1B-middle); each proper name 208 
pattern (iii) comprised twelve neurons, which were co-activated with one specific grounding pattern 209 
(e.g., xub, vit, hek for the three instances of the robot category, respectively) (Figure 1B-right). The 210 
choice of cells for pattern generation was pseudorandomized and constrained by the following criteria: 211 
First, within-category neurons had to be non-adjacent to each other. This prevented coactivation 212 
merely due to close distance. Second, no grounding patterns from two different categories shared any 213 
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neuron. Last, for each instance, the grounding patterns in *V1 and *M1L followed the same principles 214 
but were not identical. The same rules applied for the grounding patterns in *A1 and *M1i. 215 

Experiment design 216 
The current simulations involved three phases: model initialization, training phase, and testing phase, 217 
which were carried out on the high-performance computing system of Freie Universität Berlin 218 
(Bennett et al., 2020). During training, there were 3 different stimulation conditions, (1) where 219 
grounding patterns were learnt without symbol (No symbol or control condition), (2) where all 220 
grounding patterns of each category were presented together with the same word form pattern 221 
(Category term condition), and (3) where each grounding pattern was co-presented with its own 222 
specific word form pattern (Proper name condition). Thus, during learning, a stimulation pattern 223 
included two activation patterns (to *V1 and *PFL) when it was learnt outside symbol context (Figure 224 
1C-top) or, a quadruplet including the two instance-related patterns plus two word form-related ones 225 
(to A1 and PFi) when learnt in symbol context (Figure 1C-bottom). Each test trial began with the 226 
presentation of a grounding pattern of an instance (projected to the two sensorimotor model areas V1 227 
and M1L). 228 

Model initialization 229 
One crucial step prior to training was model initialization, which randomized all synaptic links 230 

(and their corresponding weights) between within-area cells and between cells from connected areas. 231 
Twelve sets of such synaptic links and weights (i.e., 12 different instantiations of the randomly 232 
initialized neural network) were chosen, each set was then triplicated (cf. Schomers et al., 2017), and 233 
each of these three copies entered one of the three training conditions – either No symbol,  Category 234 
term or Proper name. The use of distinct model instantiations can be seen as analogous to a within-235 
subject study design with 12 subjects. We chose to implement 3 separate sets of simulations for the 3 236 
conditions to avoid any possible interference effects between concepts and symbols that may emerge 237 
during training. Note, for example, that the relatively large representations that formed for category 238 
terms might have interfered with further learning or may even have suppressed the activation of 239 
conceptual representations without symbols. This configuration yielded a controlled ‘within-subject’ 240 
design with training condition being a three-level repeated-measures factor (No symbol, Category 241 
term, and Proper name). For the additional simulations performed to balance the number of word form 242 
presentations, there were 4 levels. 243 

Training phase  244 
The neural network model was repeatedly presented with 30 instances from ten categories. To 245 

mimic visuo-motor percepts associated with an instance, the extrasylvian primary sensorimotor areas, 246 
*V1 and *M1L, were each presented with its grounding pattern (i) for 16 time steps. Following the 247 
experiment by LaTourrette and Waxman (2020) where instances were called either by a consistent 248 
label or by distinct labels each, our within-category trained instances were either paired with the same 249 
category term, by their distinct proper names, or they were not labeled at all. To mimic symbols in the 250 
Category term and Proper name conditions, we presented to the primary perisylvian areas *A1 and 251 
*M1i word form pattern (ii) and (iii), respectively, for 16 time steps (Figure 1C-bottom, 2A). Hence, in 252 
different ‘learning trials’, the word form patterns of category terms were co-presented with one of 253 
three different grounding patterns from one category, whereas those of proper names co-occurred with 254 
only one specific grounding pattern. There were no word form patterns presented in the baseline No 255 
symbol condition to control for the effect of either type of linguistic labels compared to learning 256 
without ones (Figure 1C-top, 2A). 257 

Because activity at the end of a trial might affect learning in the next trial, the network was 258 
allowed to deactivate after each stimulated learning trial. To this end, we separated every two 259 
consecutive pattern stimulations by a waiting interval during which only the uncorrelated white noise 260 
mimicking spontaneous baseline neuronal firing was supplied to all areas (see principle 6 in Model 261 
description – Neurobiological constraints). The goal was to reset the global network (i.e., all excitatory 262 
and inhibitory cells displayed a membrane potential of zero) before a new grounding pattern was 263 
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inputted to the neural network model. This interstimulus interval (ISI) was terminated only after the 264 

network activity had returned to its baseline value (thresh = 0.18, see table 2). As a result, the training 265 
order was not influential in this experiment. 266 

To balance learning conditions (NoS, CT, PN), each experiential grounding pattern 267 
representing an instance was presented 2,000 times in one set of simulations. However, because each 268 
category term pattern was co-presented with 3 different instance patterns, whereas proper name 269 
patterns co-occurred with only one, this design leads to an imbalance of the number of learning trials 270 
during which individual word form patterns were presented (3 times higher for category term than for 271 
proper name presentations) (Figure 2C-top). Therefore, a second evaluation of learning trials was 272 
performed and analyzed for which the number of word form pattern activations was balanced. In this 273 
case, there were 1,000 learning trials in the Category term condition (CL_1x; each instance was 274 
presented together with a category term in 1,000 training trials, resulting in a total of 3,000 training 275 
trials per category terms) and 3,000 trials in the Proper name condition (PN_3x; each instance was 276 
presented together with a proper name in 3,000 training trials, resulting in a total of 3,000 training 277 
trials per proper name). For the control No symbol conditions, two comparison values were calculated, 278 
after 1,000 (NoS_1x) and 3,000 (NoS_3x) trials (i.e., each instance was presented without symbol in 279 
1,000 and 3,000 training trials, respectively) (Figure 2C-bottom). These different sub-designs are 280 
summarized graphically in Figure 2C. 281 

Testing phase 282 
In the current experiment, we implemented a version of an old-new recognition task with the 283 

use of new instances. For each of the ten categories we presented to the neural network six testing 284 
instances: three trained instances and three novel instances (Figure 2B). In total, we used 30 285 
previously learnt instances and 30 new instances. However, no actual old-new pairing took place 286 
because we presented trained and novel instances to the neural network in separate test trials.  287 

Memory performance of the network model was assessed in the absence of linguistic cues, 288 
i.e., without stimulating the perisylvian primary areas *A1 or *M1i. To stimulate the experience of 289 
individual instances, the extrasylvian primary areas *V1 and *M1L were activated for 2 time steps 290 
with pure (i.e., free of any white noise) grounding patterns (i) and subsequentially deactivated towards 291 
the baseline for 28 time steps. We recorded network responses 30 time steps from the onset of this 292 
stimulation. Global resetting between two consecutive trials was conducted in the same manner as the 293 
training phase. Hence, the test order was not of interest.  294 

Data analysis 295 
Grounding pattern production, data processing, and data analysis were performed using 296 

Python 3.9.7, matplotlib 3.4.3 (Hunter, 2007), NumPy 1.20.3 (Harris et al., 2020), pandas 1.3.4 297 
(Reback et al., 2022), SciPy 1.7.1 (Virtanen et al., 2020), seaborn 0.11.2 (Waskom, 2021). In the 298 
current work, statistical significances were based on a conservative p-value threshold of . 005 299 
suggested by Di Leo and Sardanelli (2020). We used rstatix 0.7.0 (Kassambara, 2021) in the R 300 
software environment (R Core Team, 2021) for statistical analyses. 301 

When testing stimuli were presented to the primary sensorimotor areas, some of the 625 302 
excitatory neurons per area fired in response to their conceptual grounding patterns. As described in 303 
Procedure, we recorded all their responses during 30 time steps from stimulation. Let 𝜙(𝑒, 𝑡) denote 304 

the output of an excitatory cell 𝑒 at time 𝑡, such that 𝜙 only takes up the value 0 or 1 and 𝑡 only allows 305 

discrete values up to 30 (corresponding to thirty possible simulation time steps); let 𝜏𝐹𝑎𝑣𝑔 = 5 be a 306 

time constant, the estimated instantaneous firing rate 𝜔𝐸(𝑒, 𝑡) of cell 𝑒 at time 𝑡 can be calculated 307 
based on the following equation: 308 

𝜏𝐹𝑎𝑣𝑔 ∙
𝑑𝜔𝐸(𝑒,𝑡)

𝑑𝑡
= −𝜔𝐸(𝑒, 𝑡) + 𝜙(𝑒, 𝑡) Eq. (1) 309 
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Solving Eq. (1) for 𝜔𝐸(𝑒, 𝑡) returns the cell’s latest spiking activity (firing rate). We estimated 310 

the mean firing rate based on 𝑡 = 𝑡30 and used this value for the subsequent RSAs. For details about 311 
relevant calculation steps, see Appendix of Henningsen-Schomers and Pulvermüller, (2022). 312 

Previous research found that several of the extra-sylvian areas targeted by the deep neural 313 
model (including, for example, *V1 and *AT) are important for processing instance- and concept-314 
related information (see, for example, Binder et al., 2005; Martin, 2007; Ralph et al., 2017; 315 
Henningsen-Schomers et al., 2023). Therefore, the current data analyses and statistical testing focused 316 
on the extrasylvian region of the deep neural network. This decision was motivated by the main aim of 317 
addressing possible causal influences of symbol learning on the perceptual processing of instances of 318 
concepts and on conceptual processing itself.  319 

Representational similarity analysis 320 
The estimated mean firing rate of 625 neurons in response to a testing instance reflected how 321 

this instance was represented in neural network. To understand how differently the neural network 322 
represented within- and between-category instances, we calculated the dissimilarity in firing patterns 323 
for every pair of the 60 instances. Pairwise dissimilarities computed in terms of Euclidean distance 324 
were organized in a 60 × 60 representational dissimilarity matrix (RDM) (Figure 3A): Each cell in the 325 
matrix reflected the dissimilarity between the firing patterns of two instances. In total, there were 36 326 
RDMs across three training conditions and twelve areas.  327 

We defined two classes of pairwise dissimilarities, including between-category dissimilarity 328 
(𝐷𝑖𝑠𝑠𝑖𝑚𝐵) and within-category dissimilarity (𝐷𝑖𝑠𝑠𝑖𝑚𝑊). A second way to define similarity types is 329 
based on the type of instances under study, that is, dissimilarity between two trained instances 330 

(𝐷𝑖𝑠𝑠𝑖𝑚𝑇𝑇), between two novel instances (𝐷𝑖𝑠𝑠𝑖𝑚𝑁𝑁), and between a trained and a novel instance 331 

(𝐷𝑖𝑠𝑠𝑖𝑚𝑇𝑁). For example, within-category dissimilarity could be classified as either dissimilarity 332 

among trained instances 1 – 3 (𝐷𝑖𝑠𝑠𝑖𝑚𝑊−𝑇𝑇), among novel instances 4 – 6 (𝐷𝑖𝑠𝑠𝑖𝑚𝑊−𝑁𝑁) or between 333 

trained and novel instances (𝐷𝑖𝑠𝑠𝑖𝑚𝑊−𝑇𝑁) (Figure 3A). 334 

Category learning. Category learning was defined as evaluated through the ability to (1) 335 
distinguish differences between categories and (2) group together category members. We assessed 336 
how different types of symbols impacted upon category learning performance based on (1) the 337 

dissimilarity between two between-category trained instances (𝐷𝑖𝑠𝑠𝑖𝑚𝐵−𝑇𝑇), and (2) the dissimilarity 338 

between two within-category trained instances (𝐷𝑖𝑠𝑠𝑖𝑚𝑊−𝑇𝑇) (Figure 3A). Successful category 339 

learning occurred when two instances from two distinct categories were considered as dissimilar (high 340 
𝐷𝑖𝑠𝑠𝑖𝑚𝐵−𝑇𝑇) and/or when two within-category instances were considered as similar (low 341 

𝐷𝑖𝑠𝑠𝑖𝑚𝑊−𝑇𝑇). If, as previously claimed, applying category terms invites one to encode the 342 
commonalities among instances and thereby facilitates categorization, the deep neural network should 343 
represent within-category instances similarly while highlighting the dissimilarities between instances 344 
of different categories. In the Category term condition, we expected between-category dissimilarities 345 
to be greater than within-category dissimilarities 𝐷𝑖𝑠𝑠𝑖𝑚𝐵−𝑇𝑇𝐶𝑇

> 𝐷𝑖𝑠𝑠𝑖𝑚𝑊−𝑇𝑇𝐶𝑇
. By contrast, we 346 

proposed two scenarios for the Proper name condition. In the first scenario, if proper names focus the 347 
neural network models on encoding only unique features and inhibit the encoding of category-critical 348 
features, no traces of category learning will be observable, and the representations of individual 349 
instances will be highly dissimilar regardless of their categorical membership (𝐷𝑖𝑠𝑠𝑖𝑚𝐵−𝑇𝑇𝑃𝑁

≈350 

𝐷𝑖𝑠𝑠𝑖𝑚𝑊−𝑇𝑇𝑃𝑁
). However, because within-category instances shared 50% of their activated neurons 351 

in the extrasylvian primary areas *V1 and *M1L, the neural network could base on such similarities to 352 
form category representation. In this second scenario, proper names are not sufficient to override 353 
category learning; the neural network would house not only the unique representations of the instances 354 
but also the commonalities of those belonging to the same category. Like the Category term condition, 355 
the test data would as well show signs of category learning (𝐷𝑖𝑠𝑠𝑖𝑚𝐵−𝑇𝑇𝑃𝑁

> 𝐷𝑖𝑠𝑠𝑖𝑚𝑊−𝑇𝑇𝑃𝑁
). 356 

Taking into account such intrinsic perceptuomotor similarities among instances from the same 357 
category, category learning was evaluated not only across symbol (i.e., category term or proper name) 358 
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learning conditions but also in control conditions (i.e., training without symbols). For example, a 359 
superior causal influence of category terms on category learning performance would be expressed 360 
through a significantly higher 𝐷𝑖𝑠𝑠𝑖𝑚𝐵−𝑇𝑇𝐶𝑇

 and lower 𝐷𝑖𝑠𝑠𝑖𝑚𝑊−𝑇𝑇𝐶𝑇
 relative to training with proper 361 

names and also relative to training without symbols. 362 

Generalization. Assuming the neural network had encoded the commonalities between 363 
within-category trained instances and formed category knowledge with the help of these shared 364 
features, they might have as well represented novel instances as members of that category when 365 
exposed to the category-critical features in these novel instances. Generalization performance would 366 
then be reflected by how similarly within-category trained instances and within-category novel 367 
instances stimulated the deep neural network. To evaluate the generalization performance of the neural 368 
network on novel instances, pairwise dissimilarities between two trained instances (𝐷𝑖𝑠𝑠𝑖𝑚𝑊−𝑇𝑇) as 369 

well as between a trained and a novel instance (𝐷𝑖𝑠𝑠𝑖𝑚𝑊−𝑇𝑁) were extracted. In the testing phase the 370 

chance was low that the neural network readily applied category knowledge earned from thousands of 371 
training trials onto a novel instance in the first and only exposure. In the case of poor generalization 372 
performance, the activation pattern of within-category novel instances would be dissimilar from that of 373 

the within-category trained instances (i.e., increasing 𝐷𝑖𝑠𝑠𝑖𝑚𝑊−𝑇𝑁). Our criterion for a successful 374 

generalization after learning with symbols was that 𝐷𝑖𝑠𝑠𝑖𝑚𝑊−𝑇𝑁 should be as low as 𝐷𝑖𝑠𝑠𝑖𝑚𝑊−𝑇𝑇 375 

(𝐷𝑖𝑠𝑠𝑖𝑚𝑊−𝑇𝑁 ≈ 𝐷𝑖𝑠𝑠𝑖𝑚𝑊−𝑇𝑇). In other words, their absolute dissimilarity difference 𝐷𝑖𝑠𝑠𝑖𝑚𝐷𝑖𝑓𝑓 =376 
|𝐷𝑖𝑠𝑠𝑖𝑚𝑊−𝑇𝑁 − 𝐷𝑖𝑠𝑠𝑖𝑚𝑊−𝑇𝑇| must remain lower than when the deep neural network was trained 377 
without symbols.  378 

Cell assembly analysis  379 
Motivated by the notion of cell assemblies (see, e.g., Hebb, 1949; Braitenberg, 1978; Fuster, 380 

2005), that is, strongly interlinked sets of neurons forming as a consequence of correlated neuronal 381 
activity and potentially carrying a main role in cognitive brain processing, we conducted cell assembly 382 
analyses to discover possible neuronal correlates of grounding instances, concepts and symbols along 383 
with instance-specific and category-critical neurons after repeated exposure to instances and their 384 
category terms or proper names. We extracted cell assemblies (CAs) activated by each of the 60 385 
grounding patterns used as testing instances based on the criterion described in previous work 386 
(Garagnani and Pulvermüller, 2016; Henningsen-Schomers and Pulvermüller, 2022). Grounding 387 
patterns in the testing phase tended to coactivate several excitatory neurons (e-cells) in an area, with at 388 
least one being maximally responsive (non-response was under the threshold 0.01). To be part of a 389 
CA, the firing rate of a given e-cell had to exceed 75% of the firing rate of the maximally responsive 390 
cell of the same area. We then computed the number of unique, instance-specific and overlapping, 391 
conceptual neurons among CAs for trained instances of the same category: neurons were classified 392 
according to whether they were activated by just one grounding patterns or whether they responded to 393 
two or three instances (thus being pair or triple-shared between the learnt instances of a concept). 394 
Unique neurons were conceptualized as neurons which encoded specific, ‘idiosyncratic’ features of an 395 
instance; shared neurons could be understood as those that encoded common features shared by at 396 
least two instances and thus characteristic of their category. The specialized encoding of category-397 
critical features could be indicated by a higher proportion of shared neurons per area, while traces of 398 
instance-specific features would be reflected by a larger proportion of unique neurons.  399 

Representations are transformed through different levels of processing, i.e., from the primary 400 
areas to secondary areas, and the central “connector hub” areas of the model. We quantified such 401 
transformation as the change (i.e., gain/loss) in the number of unique and shared CA-cells in the 402 
extrasylvian central areas (AT, PFL) comparative to the extrasylvian primary areas (V1, M1L). Gains in 403 
a type of neuron, for example, shared neurons, are indicative of intensive encoding of concept related 404 
commonalities on the course of processing, while loss of shared neurons in the central areas implies 405 
that reduced encoding of idiosyncratic features and hence instance-related information. Percentage 406 
gain was calculated as the difference between the number of neurons in the central and primary areas, 407 
as a percentage with respect to the number of neurons in the primary areas: 408 
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𝐺𝑎𝑖𝑛 =
𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑙 − 𝑛𝑝𝑟𝑖𝑚𝑎𝑟𝑦

𝑛𝑝𝑟𝑖𝑚𝑎𝑟𝑦
× 100 409 

Representations of category-critical features. A range of previous neurocomputational 410 
studies show, that, when brain-like networks learn concepts and word meanings, they form cell 411 
assemblies that are spread out across sensorimotor and more central areas of the network. The density 412 
of shared semantic neurons in the most central connector hubs is greatest due to their high connectivity 413 
degree and thus ample convergence of activity on these areas, resulting in especially strong activation, 414 
in particular for shared semantic neurons (for discussion, see Garagnani et al., 2017; Tomasello et al., 415 
2018). Relative to instance-specific neurons, shared semantic neurons are activated more frequently 416 
during semantic learning, which predicts that these will recruit the largest number of additional cell 417 
assembly; these would therefore be semantic, too, and primarily located in the central hub regions. If a 418 
labeling condition specifically invites the neural network to encode category-relevant features, we 419 
expect (1) more shared neurons than unique neurons in the extrasylvian areas and (2) a greater gain in 420 
shared neurons in the central semantic areas compared to the primary areas. Category learning might 421 
still occur even in the presence of proper names because within-category similarities also characterize 422 
sensorimotor experiences. If such information is sufficient, there should be traces of shared neurons in 423 
the central, multimodal areas as well. Additionally, category terms should activate shared neurons 424 
more than proper names. 425 

Representations of instance-specific features.  When a neural network represents instances 426 
as unique entities, it shall reveal specific traces of each instance in the extrasylvian areas, especially in 427 
the semantic hubs. In an extreme case where category learning is hindered and the neural network only 428 
encodes the uniqueness of instances, there should be (1) more unique than shared neurons in the 429 
extrasylvian areas and (2) a gain only in unique neurons in the central areas with respect to the primary 430 
areas. Importantly, instances with proper names are expected to activate significantly more unique 431 
neurons than categorically labelled instances. 432 

We gather from all twelve model instantiations the CAs in response to all 30 trained instances 433 
of 10 categories and classify CA-cells by their uniqueness to each instance (versus sharedness). To 434 
facilitate readers’ understanding about the results, we offer an interactive illustration of these CAs on 435 
our web application at (https://phucthuun.shinyapps.io/CL_PN/). This web application enables one to 436 
compare the differential effects of category terms versus proper names in representing category-437 
critical and instance-specific features of within-category and across-category instances. 438 

  439 
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Results 440 

Representational similarity analysis 441 
Figure 3B gives a first impression of the instance and category learning performance after 442 

2,000 training trials. In the Category term condition, instances from the same category activated the 443 
neural network similarly, whereas instances from different categories led to substantially more 444 
dissimilar activation patterns across the different areas of the network (i.e., firing patterns were highly 445 
dissimilar, as color-coded by dark blue and pink). Category knowledge was reflected in a relatively 446 
reduced dissimilarity (light blues), which appears as homogenous within each category, contrasting 447 
with those between categories, especially in the central areas (semantic hubs). Training the deep neural 448 
network without the aid of symbols or with proper names reduced the networks’ ability to distinguish 449 
instances between categories: activity pattern dissimilarities between instances from different 450 
categories were much more substantial in the Category term condition than in the Proper name 451 
condition (color-coded with shades of intermediate blue). In contrast, within-category similarities and 452 
generalization performance in the Category term condition were superior, as indicated by the more 453 
homogeneous (light) blue shade across all 6 instances (trained and not-trained) from the same 454 
category, relative to the other two conditions, where different shades of light blue are clearly visible. 455 

Category learning 456 
To evaluate category learning performance after 2,000 learning trials, within-category 457 

dissimilarity (𝐷𝑖𝑠𝑠𝑖𝑚𝑊−𝑇𝑇) and between-category dissimilarity between activity patterns elicited by 458 

grounding patterns of trained instances (𝐷𝑖𝑠𝑠𝑖𝑚𝐵−𝑇𝑇) were used. Figure 4A describes a global 459 
tendency of the deep neural network, across its twelve areas and three training conditions, to identify 460 
within-category instances as more similar and between-category instances as more dissimilar to each 461 
other. This feature is explained by the grounding patterns presented, which were similar across 462 
category instances, but not between. However, between-category dissimilarity is relatively enhanced 463 
in central areas, a feature not explained by the stimulations. In the next step, dissimilarity values were 464 
averaged for the six extrasylvian areas. The two-factorial repeated measures (3 × 2) – ANOVA with 465 

training condition (No symbol/Category term/Proper name) and dissimilarity type 466 
(𝐷𝑖𝑠𝑠𝑖𝑚𝑊−𝑇𝑇/𝐷𝑖𝑠𝑠𝑖𝑚𝐵−𝑇𝑇) confirmed the main effect of both factors (𝐹(2,22) = 2777.647, 𝑝 <467 

.001, 𝜂2 = 0.982 and 𝐹(1,11) = 11155.611, 𝑝 < .001, 𝜂2 = 0.996, respectively) as well as their 468 

interaction effect (𝐹(2,22) = 6113.987, 𝑝 < .001, 𝜂2 = 0.986) on the dissimilarity between instances 469 

within these extrasylvian areas. Figure 4B illustrates category-related activation performance of the 470 
deep neural network in the extrasylvian areas of the three learning conditions: the neural network 471 
successfully grouped together instances from the same category while distinguishing between 472 
instances from the same vs. from two different categories. Pairwise comparisons with Bonferroni 473 
correction were computed to observe the effect of training condition on each level of dissimilarity type 474 

and vice versa. The results showed that 𝐷𝑖𝑠𝑠𝑖𝑚𝑊−𝑇𝑇 was significantly lower than 𝐷𝑖𝑠𝑠𝑖𝑚𝐵−𝑇𝑇 in all 475 

three conditions (𝑝𝑠 < .001); same category-membership was thus manifest as relatively enhanced 476 

activation similarity in all conditions and across areas. The 𝐷𝑖𝑠𝑠𝑖𝑚𝑊−𝑇𝑇 in the Category term 477 

condition (𝑀=0.229, SD=0.005) and the Proper name condition (𝑀=0.264, SD=0.004) was 478 

significantly smaller (i.e., greater similarity) than that in the control No symbol condition (𝑀=0.29, 479 
SD=0.006), and they were also significantly different from each other, with greatest similarities after 480 
category term labelling (𝑝s < .001). Relative to the control No symbol condition, the deep neural 481 

network responded similarly to trained instances coming from the same category when it was trained 482 
with symbols and such performance was above baseline. Importantly, the benefit of category terms 483 
was superior to both training without symbols and with proper names. Likewise, the deep neural 484 
network returned the highest 𝐷𝑖𝑠𝑠𝑖𝑚𝐵−𝑇𝑇  (𝑀=1.48, SD=0.018) for the Category term condition (𝑝s <485 

.001), while 𝐷𝑖𝑠𝑠𝑖𝑚𝐵−𝑇𝑇 in the Proper name condition (𝑀=0.706, SD=0.01) was not significantly 486 

different from that in the No symbol condition (𝑀=0.749, SD=0.045) (𝑝 = 0.01), after application of 487 

the Bonferroni-corrected significance threshold of . 005. Compared to the No symbol condition, 488 
training with proper names only gradually hindered the discrimination of between-category instances 489 
but left the separation of within-category instances unaffected. By contrast, both aspects of category 490 
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learning were present with the aid of category terms, reduced within- and enhanced between-category 491 
similarities.  492 

The simulations performed to control for the number of word form presentations during 493 
learning were evaluated using a two-factorial repeated measures (4 × 2) – ANOVA with training 494 
condition (now 4 levels, NoS_1x/NoS_3x/CT_1x/PN_3x) and dissimilarity type 495 

(𝐷𝑖𝑠𝑠𝑖𝑚𝑊−𝑇𝑇/𝐷𝑖𝑠𝑠𝑖𝑚𝐵−𝑇𝑇). This confirmed the main effect of both factors (𝐹(1.67,18.35) =496 

1113.758, 𝑝 < .001, 𝜂2 = 0.964 and 𝐹(1,11) = 7485.295, 𝑝 < .001, 𝜂2 = 0.993, respectively) as 497 

well as their interaction effect (𝐹(1.65,18.10) = 1961.497, 𝑝 < .001, 𝜂2 = 0.973) on the 498 

dissimilarity between instances within extra-sylvian areas. Pairwise comparisons with Bonferroni 499 
correction were computed to observe the effect of training condition on each level of dissimilarity type 500 
and vice versa. In essence, 𝐷𝑖𝑠𝑠𝑖𝑚𝐵−𝑇𝑇 in the Category term condition was significantly higher than 501 

that in the Proper name and both No symbol control conditions (𝑝𝑠 < .001) (Figure 4C); category-502 
term learning increased the dissimilarity across conceptual categories relative to no-symbol learning 503 
and proper-name learning. The reverse effect, greater dissimilarity values for proper names than 504 
category terms, was found within categories. These observations were therefore valid even when 505 
proper names were ‘shown’ to the model three times more than category terms during learning. 506 

Generalization 507 
To evaluate the generalization performance of the deep neural network on novel instances, 508 

pairwise dissimilarities between two trained instances (𝐷𝑖𝑠𝑠𝑖𝑚𝑊−𝑇𝑇) as well as between a trained and 509 

a novel instance (𝐷𝑖𝑠𝑠𝑖𝑚𝑊−𝑇𝑁) were used. Figure 5A illustrates the tendency of the deep neural 510 
network to represent two trained instances of the same category as more dissimilar, whereas the 511 
representations of a novel and a trained instance from the same category were less dissimilar (lighter-512 
shaded columns were mostly higher than darker-shaded columns). In the six extrasylvian areas, a 513 

3 × 2 – ANOVA was computed with training condition (No symbol/Category term/Proper name) and 514 

type of within-category dissimilarity (𝐷𝑖𝑠𝑠𝑖𝑚𝑊−𝑇𝑇/𝐷𝑖𝑠𝑠𝑖𝑚𝑊−𝑇𝑁) as repeated measures factors. Both 515 

the main effects of training condition (𝐹(2,22) = 465.217, 𝑝 < .001, 𝜂2 = 0.956) and dissimilarity 516 

type (𝐹(1,11) = 7711.618, 𝑝 < .001, 𝜂2 = 0.939) were significant. For these two factors, there was 517 

also a significant interaction (𝐹(2,22) = 635.788, 𝑝 < .001, 𝜂2 = 0.707) (Figure 5B). The 518 

Greenhouse-Geisser sphericity correction to the violated sphericity assumption (𝑝 = .024) for training 519 

conditions (𝑝[𝐺𝐺] = 2.38 × 10−11) confirmed this result.  Two-sided pairwise comparisons with 520 

Bonferroni correction showed that 𝐷𝑖𝑠𝑠𝑖𝑚𝑊−𝑇𝑁 in the Category term (𝑀 = 0.214, 𝑆𝐷 = 0.004) and 521 

in the Proper name conditions (𝑀 = 0.220, 𝑆𝐷 = 0.003) were significantly lower than that in the 522 

control No symbol condition (𝑀 = 0.249, 𝑆𝐷 = 0.004) (𝑝s < .001), but they did not differ 523 

significantly from each other (𝑝 = .01) (Figure 5B). 𝐷𝑖𝑠𝑠𝑖𝑚𝑊−𝑇𝑁 was significantly lower than 524 

𝐷𝑖𝑠𝑠𝑖𝑚𝑊−𝑇𝑇 in all three conditions (𝑝s < .001) (Figure 5B), which means that within-category 525 
trained instances were represented as less similar to each other than when each of them was compared 526 
with a novel instance from the same category. In other words, trained instances resulted in neuronal 527 
response patterns that were more similar to those caused by novel instances than those caused by 528 
trained instances from the same category, a finding easily explained by the lack of learning of the 529 
idiosyncratic features of novel instances. A further set of pairwise comparisons using Bonferroni 530 
correction revealed that the absolute 𝐷𝑖𝑠𝑠𝑖𝑚𝐷𝑖𝑓𝑓 in the No symbol condition (𝑀 = 0.041, 𝑆𝐷 =531 

0.016) was significantly higher than 𝐷𝑖𝑠𝑠𝑖𝑚𝐷𝑖𝑓𝑓 in the Category term condition (𝑀 = 0.016, 𝑆𝐷 =532 

0.012) (𝑝 < .001) but not significantly different from that in the Proper name condition (𝑀 =533 

0.044, 𝑆𝐷 = 0.02) (𝑝 = .009). In other words, category-term learning resulted in the most similar 534 
processing of learnt and not-learnt instances and thus to the greatest degree of generalization. 535 

Results from the additional simulations controlling for the number of word form presentations 536 
during learning (i.e., four training conditions NoS_1x, NoS_3x, CT_1x, PN_3x, see Methods) also 537 
confirmed that generalization was maximal for novel members of categories for which category term 538 
had been learned (Figure 5C). The mere exposure to instances or learning proper names showed little 539 
generalization relative to category learning. 540 
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These results investigating brain-constrained neural network correlates of conceptual 541 
generalization sit well with well-known observations that language-learning children often generalize 542 
– or even overcategorize – category terms to novel items. In case of overgeneralization to an item, 543 
subsequent learning may establish a novel category to which the item belongs. While our results offer 544 
a mechanistic perspective on generalization, a detailed simulation of overgeneralization and 545 
reclassification learning is left for future study. 546 

Cell assembly analysis 547 
Figure 6A illustrates the tendency of the deep neural network to encode fewer unique neurons 548 

(U-shaped function across areas) and more shared neurons (inverted U-shaped function) in the extra-549 
sylvian central areas than in the extra-sylvian primary areas. In the first step, the number of unique 550 
neurons and shared neurons activated by each instance were calculated and averaged across two 551 
training conditions. The repeated measures  3 × 2 – ANOVA with training condition (No 552 
symbol/Category term/Proper name) and neuron type (unique/shared) confirmed the significant main 553 

effects (𝐹(2,22) = 902.098, 𝑝 < .001, 𝜂2 = 0.926 and 𝐹(1,11) = 13966.410, 𝑝 < .001, 𝜂2 =554 

0.998, respectively), and a significant interaction involving both factors (𝐹(2,22) = 5027.907, 𝑝 <555 

.001, 𝜂2 = 0.985). The supplementary 2× 2 – ANOVA with training condition with symbols 556 
(Category term/Proper name) and neuron type (unique/shared) returned comparable results with 2 557 

significant main effects (𝐹(1,11) = 1009.255, 𝑝 < .001, 𝜂2 = 0.951 and 𝐹(1,11) = 23994.328, 𝑝 <558 

.001, 𝜂2 = 0.998, respectively), and a significant interaction involving both factors (𝐹(1,11) =559 

4593.789, 𝑝 < .001, 𝜂2 = 0.986). Pairwise comparisons with Bonferroni correction revealed that 560 

category terms made the neural network reactivate more shared neurons (𝑀 = 11.242, 𝑆𝐷 = 0.127) 561 

than unique neurons (𝑀 = 2.861, 𝑆𝐷 = 0.051) (𝑝 < .001). This also applied for training with proper 562 

names (shared neurons: 𝑀 = 7.963, 𝑆𝐷 = 0.222; unique neurons: 𝑀 = 3.89, 𝑆𝐷 = 0.064) and 563 

training without symbol (shared neurons: 𝑀 = 8.029, 𝑆𝐷 = 0.194; unique neurons: 𝑀 = 4.493, 𝑆𝐷 =564 

0.08) ( 𝑝s < .001) (Figure 6B). Compared to this control condition, the number of unique instance-565 

specific neurons was moderately reduced by proper names, but radically so by category terms (𝑝 <566 

.001), whereas the number of shared, conceptual-category neurons remained unchanged after proper-567 

name learning (𝑝 = .447), but increased dramatically with category term acquisition (𝑝 < .001). The 568 

latter is clear evidence for a facilitatory effect of language, more specifically, of category-term 569 
learning, on conceptual category formation in brain-constrained deep neural networks. 570 

With respect to the gain/loss of neurons in the extrasylvian central areas relative to the primary 571 
ones, our repeated-measure 3 × 2 – ANOVA with two factors training condition (No symbol/Category 572 
term/Proper name) and neuron type (unique/shared) confirmed both main effects on the percentage 573 

change of neurons and their interaction to be significant (𝐹(2,22) = 55.17837, 𝑝 < .001, 𝜂2 =574 

0.5519424, 𝐹(1,11) = 6471.54090, 𝑝 < .001, 𝜂2 = 0.9954, and 𝐹(2,22) = 1484.43893, 𝑝 <575 

.001, 𝜂2 = 0.966, respectively). According to the subsequent pairwise t-tests, the deep neural 576 

networks gained shared neurons but lost unique neurons in the central areas, which held true for all 577 
conditions (𝑝s < .001) (Figure 6D, upward dotted lines represent positive gains in shared neurons and 578 
downward solid lines mean negative gains in unique neurons). On the three levels of training 579 
condition, the gain in shared neurons and the loss in unique neurons in the Category term condition 580 
were significantly larger than that in the Proper name and No symbol conditions (𝑝s < .001) (Figure 581 

6D). Proper names did not significantly increase the gain in shared neurons (𝑝 = .1) but led only to a 582 

moderate loss of unique neurons, as compared to the control training condition (𝑝s < .001). These 583 

results further confirm that training with category terms magnified both the gain in shared semantic 584 
neurons in central areas and the loss of unique instance-specific neurons there. The simulations 585 
performed for balancing the number of word form presentations during proper-name and category-586 
term learning also confirmed these observations (Figure 6C, E). Therefore, the overgrowth of shared 587 
neurons in category-term learning does not depend on an abundant number of word form presentations 588 
and cannot be explained by adding word form information to instance-related information. 589 
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Both RSA and CA-analyses were also conducted for the whole model architecture (6 590 
extrasylvian and 6 perisylvian model areas). The data replicated the results indicating category 591 
learning (Figure 4-1, Table 4-1), generalization (Figure 5-1, Table 5-1), and representations of 592 
category-critical as well as instance-specific features (Figure 6-1, Table 6-1).  593 
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Discussion 594 
When sensorimotor patterns simulating the processing of similar objects or actions from 595 

different categories were presented, the brain-constrained network applied in the current study showed 596 
successful conceptual category learning. Category learning outside symbol context was manifest in 597 
greater similarities of activity patterns elicited by different instances of the same category as compared 598 
with between-category pattern similarities. Importantly, compared with training of instances per se, 599 
concurrent learning of category instances and symbols had a substantial effect on both categorial and 600 
instance-specific processes. Category-term learning led to an additional increase in dissimilarities 601 
between activity patterns across conceptual categories, while making category members substantially 602 
more similar to each other. In contrast, proper-name learning did not change between-category 603 
similarities and led to a relatively minor similarity increase between members of the same category. 604 
The model gave evidence of generalization to novel members of learned categories and showed that 605 
such generalization was maximal for novel members of categories for which category terms had been 606 
learned. Meticulous analyses of neuronal activity patterns suggest that the enhancement of within-607 
category similarities and between-category dissimilarities in context of category symbols is due to an 608 
increase in the number of cells responding to all category members. Likewise, relative persistence of 609 
instance-specific neurons with proper-name learning underlies the maintained activation differences 610 
between category instances observed in this case. All observed effects regarding pattern dissimilarities 611 
and neuronal microstructure were greatly pronounced in the central ‘connector hub’ areas of the brain-612 
constrained model applied, as compared with primary areas. Table 3 summarizes major observations 613 
in the current data and the corresponding learning aspects these observations reflect. 614 

Relationship to experimental and neurocomputational research 615 
Our results can be used to address observations delivered by neurocognitive and 616 

neurobehavioral experiments. Neuropsychological evidence highlights the role of the prefrontal cortex 617 
in categorical representation (for review see Kéri, 2003). Prefrontal areas (PFi and PFl) are part of the 618 
four central areas of our model, where conceptual neurons constituting category representations 619 
emerged most numerously. This is explained by the high degree of convergence of neural activity on 620 
these areas, which are not only located in the centre of the model architecture but also show the 621 
highest connectivity degrees. Due to ample activity converging on these connector hub areas, their 622 
frequently activated shared semantic neurons can most efficiently recruit other neurons, which 623 
therefore take on similar response properties (Doursat and Bienenstock, 2006). This mechanism may 624 
contribute to why these areas act as ‘semantic hubs’ and house neurons reflecting category 625 
membership (e.g., PF and AT, see Miller et al., 2002; Seger and Miller, 2010; Garagnani and 626 
Pulvermüller, 2016; Tomasello et al., 2017). On the other hand, the higher density of instance-specific 627 
neurons in the primary visual/motor model area relative to the centre is evidence for exemplar learning 628 
in the sensorimotor cortices (Bowman et al., 2020; Kéri, 2003) – a type of category learning that is 629 
based on the representations of specific category instances (Nosofsky, 1988) and should be 630 
independent of signs and symbols. Here, solid evidence for category formation was obtained even in 631 
the control condition where only sensorimotor patterns were presented to the model without symbols. 632 
In line with neural data (Freedman et al., 2001; Seger and Miller, 2010), experimental evidence shows 633 
that perceptuomotor similarities among category members are sufficient to trigger category learning in 634 
preverbal infants (Sloutsky and Fisher, 2004; de Heering and Rossion, 2015) and animals (Güntürkün 635 
et al., 2018; Pusch et al., 2023).  636 

When learning conceptual instances in context of category terms, infants show most 637 
pronounced category building and an attention bias towards shared features of category members 638 
(Waxman and Markow, 1995; Dewar and Xu, 2007; Althaus and Mareschal, 2014). In contrast,  639 
encountering proper names for individual instances focuses their attention relatively more to object-640 
specific features (Barnhart et al., 2018; Pickron et al., 2018; La Tourette & W, 2020). In the current 641 
network model, symbol association raises the number of neurons involving in the processing of a 642 
given sensorimotor pattern. This can be interpreted as biased attention to the object or action for which 643 
the pattern codes and thus explains why label learning generally increases attention to object features. 644 
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Furthermore, as category-term learning increases the number of category-critical shared semantic 645 
neurons in the network, at the cost of reducing the number of instance-specific ones, the pre-observed 646 
greater attention to shared features has a direct model correlate, along with the label-related tendency 647 
to build stronger category representations. Infants’ attentional focusing on instance-specific features of 648 
objects is in line with the relative preservation of instance-specific neurons in the model of proper-649 
name learning. Thus, the opposing effects of proper name and category-term learning, which, 650 
respectively, drive attention towards instance-specific and category general features of objects, are 651 
captured by the current model. 652 

A range of neurocomputational studies previously explored the putative brain basis of 653 
cognitive processes (e.g., Deco and Rolls, 2005; Rolls and Deco, 2015; Palm, 2016), including 654 
conceptual category learning and the influence of language on object perception (Rogers and 655 
McClelland, 2014; Henningsen-Schomers and Pulvermüller, 2022). For example, Westermann and 656 
Mareschal (2014) demonstrated, using a fully distributed parallel processing model, that learning a 657 
category label made the neural patterns of category members more similar to each other, whereas 658 
different categories moved away from each other in representational space. Our RSA in models 659 
mimicking cortical area structure and connectivity, along with within-area excitatory and inhibitory 660 
connectivity, achieved the same result. In addition, we determined the neuron-level mechanisms and 661 
contributions of different model areas to this result and, in particular, revealed the model-central 662 
connector hub areas as the loci where the differences between categorical and instance-specific 663 
mechanisms as well as those between the shared- vs. specific-feature promoting roles of instance-664 
specific and category labels are most pronounced. As to our knowledge, the contrast between activity 665 
patterns and neuronal correlates of proper names and category terms has not been addressed by 666 
previous computational work. 667 

Model explanation 668 

The present simulations offer explanations of the observed phenomena based on neuroscience 669 
principles. Of special relevance here are the biological learning mechanisms applied, which include 670 
unsupervised Hebbian synaptic strengthening of connections between co-activated neurons and 671 
weakening of links between cells firing independently of each other. This principle explains why 672 
category labels primarily interlink with the shared neurons of instance representations belonging to the 673 
same category. The reason lies in the highest correlation values, as instance-specific neurons are silent 674 
when the category term is used together with other category instances. This implies some weakening 675 
of connections between the category terms’ and the instance-specific neurons, based on the ‘anti-676 
Hebbian’ “neurons out-of-sync delink” rule. The opposite difference applies to proper names, whose 677 
neural correlates strongly connect to instance-specific neurons but weaken their links with the 678 
category-critical shared neurons whenever a different category member co-occurs with its own and 679 
thus different name. Effects are most clearly present in the central areas of the network where the 680 
neural correlates of words and entities are equally manifest so that their correlation structure can easily 681 
be mapped. 682 

Limitations and future direction 683 
The current simulations use idealized instance and category learning conditions. The 684 

activation patterns representing conceptual instances and word forms were chosen to be non-685 
overlapping, except for the neurons coding for shared features. These are idealizations considering 686 
both the features of word forms and those of objects and actions could be shared across categories (cf. 687 
phonological e.g., “cat”-“hat” or perceptual color/shape similarities). Such similarities are irrelevant to 688 
category membership and hence were omitted to keep the simulation well-controlled. Secondly, only a 689 
small number of conceptual features were realized and a small set of shared features determined 690 
concept membership. This situation may hold for some concrete terms but not for others and certainly 691 
not for abstract concepts (Henningsen-Schomers et al., 2022). Furthermore, proper names and 692 
category terms were acquired by different networks to allow straightforward separation and evaluation 693 
of the mechanistic side of different label types – although label types are normally co-present in the 694 
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same mind and brain. In future, it is desirable to complement this work by simulations of more 695 
realistic conceptual categories and to build one model in which interaction/interference effects 696 
between different learning conditions are possible. 697 

Conclusion 698 
 The current study strived to meet the need for a mechanistic model of symbols and their 699 
meaning within a neurobiological computational framework by addressing specific features of proper 700 
names (Mickey Mouse) and category symbols (house mouse). Developmentalists and linguists have 701 
long been proposing that category terms and proper names distinctively impact infants’ locus of 702 
attention towards category-shared and instance-specific object and action features, respectively. By 703 
simulating concept and instance learning in a deep neural network with neurobiologically realistic 704 
architecture and brain-like connectivity, we demonstrate that learning these two different symbol types 705 
had opposing effects on the emergent neuronal cell assemblies representing and processing instances 706 
of a category and the shared conceptual features of that category, which can explain pre-observed 707 
differences in perceptual, attentive and memory processes related to the specific and shared features of 708 
category instances. These explanations were based on unsupervised Hebbian associative learning 709 
mechanism binding neurons involved in correlated processing of instance-specific category-general 710 
information. The current work could thus not only replicate but also offer underlying neuronal 711 
mechanisms and causal neurobiological explanations for well-established observations in cognitive 712 
science.  713 
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Tables 967 
Table 1. Connectivity structure of the modelled cortical areas with neuroanatomical evidence. Table 968 
taken from Tomasello et al. (2018). 969 

Modelled areas References 

Between-area connectivity (black arrows) 

Perisylvian system 

A1, AB, PB Pandya and Yeterian, 1985; Pandya, 1995; Rauschecker and Tian, 

2000 

PFi, PMi, M1i Pandya and Yeterian, 1985; Young et al., 1995 

Extra-sylvian system 

V1, TO, AT  Bressler et al., 1993; Distler et al., 1993 

PFL, PML, M1L Pandya and Yeterian, 1985; Arikuni et al., 1988; Lu et al., 1994; 

Rizzolatti and Luppino, 2001; Dum and Strick, 2002, 2005 

Between system 

AT, PB  Gierhan, 2013 

PFi, PFL Yeterian et al., 2012 

Long distance cortico-cortical connections (purple arrows) 

Perisylvian system    

PFi, PB Meyer et al., 1999 p.19; Romanski et al., 1999a, 1999b; Paus et al., 

2001; Catani et al., 2005 p.200; Parker et al., 2005; Rilling et al., 

2008; Makris and Pandya, 2009 

PB, PMi Rilling et al., 2008; Saur et al., 2008 

AB, PFi Romanski et al., 1999a, 1999b; Kaas and Hackett, 2000; Petrides and 

Pandya, 2009; Rauschecker and Scott, 2009 

Extra-sylvian system    

AT, PFL Bauer and Jones, 1976 p.197; Fuster et al., 1985 p.198; Ungerleider et 

al., 1989; Eacott and Gaffan, 1992; Webster et al., 1994; Parker and 

Gaffan, 1998; Chafee and Goldman-Rakic, 2000 

AT, PML Bauer and Fuster, 1978; Fuster et al., 1985; Pandya and Barnes, 1987; 

Seltzer and Pandya, 1989; Chafee and Goldman-Rakic, 2000 

TO, PFL Bauer and Jones, 1976; Fuster and Jervey, 1981; Fuster et al., 1985; 

Seltzer and Pandya, 1989; Makris and Pandya, 2009 

Between systems 

PB, PFL  Pandya and Barnes, 1987; Romanski et al., 1999a, 1999b 

AT, PFi Pandya and Barnes, 1987; Ungerleider et al., 1989; Webster et al., 

1994; Romanski, 2007; Petrides and Pandya, 2009; Rilling, 2014 

Second-next neighbor “jumping” links (blue arrows) 

Perisylvian system (Rilling et al., 2008, 2012; Thiebaut de Schotten et al., 2012; Rilling and 

van den Heuvel, 2018) 

A1, PB Pandya and Yeterian, 1985; Malcolm P. Young et al., 1994 

PFi, M1i Deacon, 1992; Young et al., 1995b; Guye et al., 2003 

Extra-sylvian system (Thiebaut de Schotten et al., 2012) 

V1, AT Catani et al., 2003; Wakana et al., 2004 

PFL, M1L Deacon, 1992; Young et al., 1995a; Guye et al., 2003 

970 
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Table 2. Parameter values used in the simulations. For details and more elaborate discussion on the 971 
corresponding equations as well as their mathematical implementations, please see Henningsen-972 
Schomers et al. (2022). 973 

Eq. (1) 

Time constant (excitatory cells) 𝜏 = 2.5 (time steps) 

Time constant (inhibitory cells) 𝜏 = 5 (time steps) 

Total input rescaling factor 𝑘1 = 0.01 

Noise amplitude 𝑘2 = 7√(24/∆𝑡) (∆𝑡 = 0.5 ms) 

Global inhibition strength 𝑘𝐺 = 0.80 (time steps) 

Eq. (3) 
Spiking threshold thresh = 0.18 

Adaptation strength 𝛼 = 8.0  
Eq. (4) Adaption time constant 𝜏𝐴𝐷𝐴𝑃𝑇 = 10 (time steps) 

Eq. (5) Rate-estimate time constant 
𝜏𝐹𝑎𝑣𝑔 = 30 (time steps, training) 

𝜏𝐹𝑎𝑣𝑔 = 5 (time steps, testing) 

Eq. (6) Global inhibition time constant 𝜏𝐹𝐺𝐿𝑂𝐵 = 12 (time steps) 

Eq. (7) 

Postsynaptic potential thresholds 
𝜗+ = 0.15 (LTP) 

𝜗− = 0.14 (LTD) 

Presynaptic output activity required for any 

synaptic change 
𝜗𝑝𝑟𝑒 = 0.05 (LTP) 

Learning rate ∆𝑤 = 0.0008 

 974 
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Table 3. Critical and significant observations and the corresponding aspects of learning. 976 

Analysis Learning aspect Observation 

RSA 

Category 

learning 

Successful category learning in all learning conditions 

𝐷𝑖𝑠𝑠𝑖𝑚𝐵−𝑇𝑇 > 𝐷𝑖𝑠𝑠𝑖𝑚𝑊−𝑇𝑇 

Interaction effect of  Symbol type and within/between categories 

𝐷𝑖𝑠𝑠𝑖𝑚𝐵−𝑇𝑇𝐶𝑇
> 𝐷𝑖𝑠𝑠𝑖𝑚𝐵−𝑇𝑇𝑃𝑁

; 𝐷𝑖𝑠𝑠𝑖𝑚𝐵−𝑇𝑇𝐶𝑇
> 𝐷𝑖𝑠𝑠𝑖𝑚𝐵−𝑇𝑇𝑃𝑁

 

𝐷𝑖𝑠𝑠𝑖𝑚𝑊−𝑇𝑇𝐶𝑇
< 𝐷𝑖𝑠𝑠𝑖𝑚𝑊−𝑇𝑇𝑃𝑁

; 𝐷𝑖𝑠𝑠𝑖𝑚𝑊−𝑇𝑇𝐶𝑇
< 𝐷𝑖𝑠𝑠𝑖𝑚𝑊−𝑇𝑇𝑁𝑜𝐿

 

Generalization 

Symbol effect on dissimilarity differences within category 

𝐷𝑖𝑠𝑠𝑖𝑚𝐷𝑖𝑓𝑓𝐶𝑇 < 𝐷𝑖𝑠𝑠𝑖𝑚𝐷𝑖𝑓𝑓𝑁𝑜𝑆 

𝐷𝑖𝑠𝑠𝑖𝑚𝐷𝑖𝑓𝑓𝐶𝑇 < 𝐷𝑖𝑠𝑠𝑖𝑚𝐷𝑖𝑓𝑓𝑃𝑁 

CA 

Analysis 

 
Tendency to encode shared features in all learning conditions 

𝑛𝑆 > 𝑛𝑈 

Representations 

of category-

critical features 

Symbol effect on the number of shared neurons 

𝑛𝑆𝐶𝑇
> 𝑛𝑆𝑃𝑁

; 𝑛𝑆𝐶𝑇
> 𝑛𝑆𝑁𝑜𝐿

 

Gain in shared neurons in central area in all learning conditions 

𝑛𝑆−𝑐𝑒𝑛𝑡𝑟𝑎𝑙 > 𝑛𝑆−𝑝𝑟𝑖𝑚𝑎𝑟𝑦 

Symbol effect on across-area gain of shared neurons 

𝐺𝑎𝑖𝑛𝑆𝐶𝑇
> 𝐺𝑎𝑖𝑛𝑆𝑃𝑁

; 𝐺𝑎𝑖𝑛𝑆𝐶𝑇
> 𝐺𝑎𝑖𝑛𝑆𝑁𝑜𝐿

 

Representations 

of instance-

specific features 

Symbol effect on the number of unique neurons 

𝑛𝑈𝑃𝑁
> 𝑛𝑈𝐶𝑇

; 𝑛𝑈𝑁𝑜𝐿
> 𝑛𝑈𝐶𝑇

 

Loss in unique neurons in central areas in all learning conditions 

𝑛𝑆−𝑐𝑒𝑛𝑡𝑟𝑎𝑙 > 𝑛𝑆−𝑝𝑟𝑖𝑚𝑎𝑟𝑦 

Symbol effect on across-area loss of unique neurons 

𝐿𝑜𝑠𝑠𝑆𝑃𝑁
< 𝐿𝑜𝑠𝑠𝑆𝐶𝑇

 

Abbreviation: 𝐷𝑖𝑠𝑠𝑖𝑚𝑊−𝑇𝑇/𝐷𝑖𝑠𝑠𝑖𝑚𝑊−𝑇𝑁 = Dissimilarity between a trained instance and another 977 

trained instance/novel instance of the same category; 𝐷𝑖𝑠𝑠𝑖𝑚𝐵−𝑇𝑇 = Dissimilarity between two 978 

trained instances from different categories; 𝐷𝑖𝑠𝑠𝑖𝑚𝐷𝑖𝑓𝑓 = |𝐷𝑖𝑠𝑠𝑖𝑚𝑊−𝑇𝑁 − 𝐷𝑖𝑠𝑠𝑖𝑚𝑊−𝑇𝑇|;  𝑛𝑆 = 979 

number of shared neuron; 𝑛𝑈 = number of unique neuron; CT = Category term; PN = Proper name; 980 

NoS = No symbol.  981 
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Figure legends 987 
Figure 1. A) Area structure and between-area connectivity of the neural network model. Left: 988 
The network model’s 12 cortical areas in the left fronto-temporo-occipital lobes: inferior-frontal 989 
articulatory (red) and superior temporal auditory systems (blue) of the perisylvian areas, and the lateral 990 
frontal hand-motor system (yellow/orange/brown) and visual “what” stream (green) in the extrasylvian 991 
cortex. Right: Connections among the 12 modelled brain areas: direct connections between adjacent 992 
areas (black arrows), second nearest-neighbor areas (blue arrows), and long-distant links (purple 993 
arrows). Figure modified from Tomasello et al. (2018). B) Schematic illustrations of activity 994 
patterns for instances of two categories. The categories are illustrated with images of robots and cat 995 
faces, but note that this is for illustrative purposes. The actual input to the model was not images, but 996 
grounding patterns consisting of sets of activated neurons (see main text for details). Active neurons of 997 
given activity patterns were either shared among instances of the same category (black) or unique to 998 
each instance (color). Each model area included 25 × 25 excitatory neurons, i.e., 625 cells. Left: In 999 
grounding patterns (i) presented to *V1/*M1L, 6 shared active neurons (black) code for the common 1000 
perceptual-semantic features of the category “a” and 6 unique neurons (color) represent instance-1001 
specific perceptuomotor features from each of the category members. Member instances of one 1002 
category activated the same six shared neurons while the instance from another category activated a 1003 
different set of six shared neurons; each instance also activated six unique neurons. Middle: 12 1004 
neurons (black) make up word form pattern for the category term; in the Category term condition, 1005 
member instances co-activated with the same word form pattern (ii) in *A1/*M1i. Right: 12 unique 1006 
neurons (color) represent each proper name of an individual instance, which are activated 1-to-1 with 1007 
these instances in the Proper name condition. Instances were co-activated with distinct different word 1008 
form patterns (iii) in *A1/*M1i regardless of category. C) Simulating no-symbol learning (top), 1009 
category-term learning (bottom-left), and proper-name learning (bottom-right) where no word 1010 
form pattern, word form patterns (ii), and word form pattern (iii) were presented to *A1/*M1i, 1011 
respectively. 1012 

Figure 2. Experiment design used for instance learning and conceptual grounding. A) Training phase 1013 
with 30 object instances from ten categories. The categories are illustrated with images of robots and 1014 
cat faces, but note that this is for illustrative purposes. The actual input to the model was not images, 1015 
but grounding patterns consisting of sets of activated neurons (see main text for details). For each 1016 
trained instance, the grounding pattern (i) was either presented to the network on its own (No symbol) 1017 
or combined with a ‘word form pattern’ of type (ii) (Category term) or type (iii) (Proper name). B) 1018 
Testing phase with a collection of the initially trained 30 instances and 30 novel instances from the 10 1019 
original categories, resulting in 60 testing instances (i.e., 6 per category). C) Training conditions in 1020 
the main simulations (top) and control simulations (bottom) differ in the number of training trials 1021 
(tt) to match the number of instance representations and the number of word form representations, 1022 
respectively. 1023 

Figure 3. A) Schematic extraction of a 𝟔𝟎 × 𝟔𝟎  Representational Dissimilarity Matrix (RDM) 1024 

which represents 12 instances from two different categories and the similarities between any instance 1025 
pair. For illustration, we once again use the categories of robots and cat faces. The schematic 1026 
dissimilarity matrix illustrates how between-category (cells outside the red boundaries) within-1027 
category dissimilarities (cells within the red boundaries) were calculated. Of interest are the (1) within-1028 

category dissimilarity among trained instances (𝐷𝑖𝑠𝑠𝑖𝑚𝑊−𝑇𝑇, lightest blue shade), (2) within-category 1029 

dissimilarity between a trained and a novel instance (𝐷𝑖𝑠𝑠𝑖𝑚𝑊−𝑇𝑁, intermediate blue shade), and (3) 1030 

between-category dissimilarity of two trained instances (𝐷𝑖𝑠𝑠𝑖𝑚𝐵−𝑇𝑇, darkest blue shade). The RDM 1031 
is symmetric about its diagonal (grey) of zeros (representing the non-dissimilarity of each of the 1032 
instances to itself). Only the upper half of the RDM is used for analysis and the lower half could be 1033 
abandoned (black). B) RDMs for each of the twelve model areas in three main simulations: No 1034 
symbol (top row), Category term (middle row), and Proper name (bottom row). Squares indicate the 1035 
degrees to which network activity in the 12 network areas elicited by (12 out of 60) grounding patterns 1036 
in the three learning conditions differed between each other within and between categories and are 1037 
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color-coded from turquoise (no dissimilarity, 𝐷𝑖𝑠𝑠𝑖𝑚 = 0), blue, pink, and to dark red (high 1038 

dissimilarity, 𝐷𝑖𝑠𝑠𝑖𝑚 > 3). 1039 

Figure 4. Bar charts depicting dissimilarities between network activity elicited by trained grounding 1040 
patterns after learning for each of the three training conditions. A) Main simulation: Within-category 1041 
(W-TT) and between-category (B-TT) dissimilarity values across all 30 trained activity patterns were 1042 
averaged for each of the twelve model areas. B-C) Within-category (W-TT) and between-category (B-1043 
TT) dissimilarities across the 30 trained items were averaged for extrasylvian model areas. The three 1044 
training conditions of the main simulations (B) were No symbol (NoS, grey), Category term (CT, 1045 
blue) and Proper name (PN, pink). The four training conditions of the control simulation (C) were No 1046 
symbol with each instance presented over 1,000 (NoS_1x, blue-striped grey) or 3,000 trials (NoS_3x, 1047 
pink-striped grey), Category term where each instance presented over 1,000 trials (CT_1x, blue) and 1048 
Proper name where each instance presented over 3,000 trials (PN_3x, pink). Error bars represent 95% 1049 
confidence intervals of the mean. Circles above the bars represent post hoc pairwise comparisons 1050 
between a reference (circles with filled colored) and a corresponding mean (unfilled circles) after 1051 

Bonferroni correction (critical 𝑝 value = 0.005). 10 comparisons relevant to the main effects of 1052 
training condition and dissimilarity type and for their interaction are illustrated. Asterisks represent 1053 

two-tailed p values: ** 𝑝 < .005, *** 𝑝 < .001, ns: not significant. The results were replicated in the 1054 
whole model architecture (6 extrasylvian and 6 perisylvian model areas); see Figure 4-1 and Table 4-1. 1055 

Figure 5. Bar charts depicting dissimilarities between network activity elicited by trained novel 1056 
grounding patterns after learning for each of the three training conditions. A) Main simulation: 1057 
Within-category dissimilarity values between any two trained instances (W-TT) and between trained 1058 
and novel instances were averaged for each of the twelve model areas. B&C) Within-category 1059 
dissimilarities between any two trained instances (W-TT) and between trained and novel instances (W-1060 
TN) were averaged for extrasylvian model areas. The three training conditions of the main simulations 1061 
(B) were No symbol (NoS, grey), Category term (CT, blue) and Proper name (PN, pink). The four 1062 
training conditions of the control simulation (C) were NoS_1x (blue-striped grey) or NoS_3x (pink-1063 
striped grey), CT_1x (blue) and PN_3x (pink). For further explanation, see Figure 4. The results were 1064 
replicated in the whole model architecture (6 extrasylvian and 6 perisylvian model areas); see Figure 1065 
5-1 and Table 5-1. 1066 

Figure 6. Bar charts depicting average numbers of instance specific (‘unique’) and category-general 1067 
(“shared”) neurons activated by grounding patterns of instances learnt in the three training conditions, 1068 
No symbol (grey), Category term (blue) and Proper name (pink). A) Main simulation: The number of 1069 
activated unique (U) and shared (S) neurons in response to each of the 30 trained instances was 1070 
averaged across all twelve model areas. B &C) The number of activated neurons in response to the 30 1071 
trained grounding patterns was averaged for each of the six extrasylvian areas. D&E) Changes in 1072 
neuronal activation seen between extrasylvian primary areas, where stimulation was given, and the 1073 
‘higher’ more central connector hub areas central to the architecture. Changes in the number of 1074 
activated neurons in response to trained grounding patterns are shown for the three training conditions. 1075 
Unique neurons are shown by solid lines with crossed ends, shared ones by broken lines with 1076 
triangular ends. The three training conditions of the main simulations (B, D) were No symbol (NoS, 1077 
grey), Category term (CT, blue) and Proper name (PN, pink). The four training conditions of the 1078 
control simulation (C) were NoS_1x (blue-striped grey) or NoS_3x (pink-striped grey), CT_1x (blue) 1079 
and PN_3x (pink). For further explanations see Figure 4. The results were replicated in the whole 1080 
model architecture (6 extrasylvian and 6 perisylvian model areas); see Figure 6-1 and Table 6-1. 1081 
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