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Supplemental Information 
Peters, Hackeman, Goldreich 

 
Bayesian Adaptive Psychophysical Method 
Our implementation of the psi method of Kontsevich and Tyler (1999) is described in 
detail in Goldreich et al. (2009).  Briefly, we modeled d-prime as a power function of 
groove width, x, 
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and each participant’s psychometric function as a mixture of a cumulative normal curve 
and a lapse rate term: 
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We used the psi method to conduct the grating orientation task, presenting in each trial 
the groove width that maximized expected information gain. We modified the algorithm 
by treating not only a (threshold) and b (slope) but also δ (lapse rate) as unknown 
parameters. Using uniform prior probabilities over a range of a (0.5 – 3.0), b (0.01 – 
10.0), and δ (0.01 – 0.10) values, we calculated the joint posterior probability density 
function (PDF) for the participant’s psychometric function (a, b, δ) and marginalized this 
over b and δ to generate the posterior PDF for the a-parameter, the threshold stimulus 
level corresponding to 76% correct response probability (d-prime = 1). 
 
 
Statistical Analysis 
For conventional statistical analyses (t-test, correlation, ANCOVA, regression), we used 
as the dependent measure the mode of each participant’s a-parameter posterior PDF, a 
point estimate of grating orientation threshold. 
 
For Bayesian analyses, we computed Bayes factors (marginal likelihood ratios) for each 
of three alternative models compared to a null model. An advantage of the Bayesian 
approach is that it naturally embodies an Occam factor penalty against unprofitably 
complex models (Sivia and Skilling, 2006). 
 
To enhance the power of the Bayesian analysis, models 1, 2, and 3 (see below) 
specified one-sided effects (e.g., women have lower thresholds than men; finger size 
correlates positively with threshold), all four models utilized not simply the point-estimate 
threshold for each participant but the participant’s entire sequence of correct and 
incorrect responses at the groove widths tested, and all models incorporated robust 
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outlier-resistance.  The models, and methods for computing their likelihoods, are 
described below.  
 
 
Null model (M0) 
According to the null model, all participants (regardless of sex or finger size) belong to 
the same Gaussian population distribution, characterized by a single mean tactile acuity 
and standard deviation. The expected 76% threshold (a-parameter) for each participant, 
then, is  
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where C1 is the (unknown) population mean. 
 
To determine the probability of the data according to this model, we first find the 
probability of each participant’s data (correct and incorrect responses at each groove 
width), di, according to the model with a particular C1 and σ: 
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Note that, as mentioned above, we do not use the mode of a participant’s a-parameter 
posterior PDF as the datum for that participant.  Rather, recognizing that the 
participant’s a-parameter is not known with certainty, we marginalize (integrate) over all 
possible values of the a-parameter. This procedure enhances the power of the analysis, 
effectively giving more inferential weight to participants with sharper a-parameter PDFs 
(i.e., participants who responded most consistently during the experiment). 
 
The first term on the right side of equation (1) is 
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Recall that the (a, b, δ) triplet specifies a specific psychometric function, or probability of 
a correct response at any groove width, x: Pcx.  In equation (2), we find the probability of 
the participant’s data given a particular a-parameter by marginalizing over b and δ. 
Because we use a uniform prior on (a, b, δ), P(b, δ | a) is constant and subsumed in the 
proportion sign.  P(di | a, b, δ) is determined by a binomial calculation on the 
participant’s nr right and nw wrong answers at each groove width, x. 
 
The second term on the right side of equation (1) is 
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Equation (3) uses a robust (outlier-resistant) mixture model to calculate the probability of 
any a-parameter given M0 with specific C1 and σ. This model assumes that about 10% 
of participants may be outliers, and applies a large standard deviation (2 mm) to the 
outlier component of the mixture. The effect of this procedure is to protect inferences 
about model parameter values from being unduly influenced by occasional outlier 
participants. 
 
Having evaluated Equation (1) for each participant’s data, we next determine the 
probability of the entire data set, D, consisting of all participants’ data (D = {di} ) 
according to the model with a particular C1 and σ: 
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Equation (4) assumes conditional independence among the participants’ data, given C1 
and σ. 
 
Finally, we calculate the marginal likelihood of the Model: 
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Note that model M0 assumes a uniform prior probability on (C1, σ), which is simply the 
inverse of the number of (C1, σ) pairs considered by the model. 
 
 
Sex model (M1) 
According to the sex model, male and female thresholds belong to different Gaussian 
populations, the male mean being higher than the female mean, each with (shared) 
standard deviation σ. The expected 76% threshold (a-parameter) for participant i, then, 
is  
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where C2 is the (unknown) effect of sex on threshold, and g is a dummy variable: 
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The model considers only positive values for C2; that is, the model assumes that men 
have higher thresholds on average than women. 
 
Following the same calculation sequence as for the null model, we find that: 
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Then, 
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Finger size model (M2) 
According to the finger size model, tactile threshold relates linearly to fingertip surface 
area. The expected 76% threshold (a-parameter) for participant i, then, is  
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where C2 is the (unknown) effect of finger size on threshold, and the variable s, derived 
by linear transformation of finger tip surface area, is equal to -0.5 for the smallest finger 
of the sample and + 0.5 for the largest. The model considers a range of possible values 
for C2, all positive; that is, the model assumes that larger fingers have higher thresholds 
on average than smaller ones. 
 
Following the same calculation sequence as for the previous models, we have: 
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Then, 
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Sex and finger size model (M3) 
According to the sex-and-finger-size model, tactile threshold relates linearly to fingertip 
surface area, but also differs between the sexes. The expected 76% threshold (a-
parameter) for participant i, then, is  
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where C2 is the effect of sex on threshold, and C3 is the effect of finger size on 
threshold. The variables g and s are defined as previously, and the model considers 
only positive values for C2 and C3; that is, the model assumes one-sided effects, in 
which men have higher thresholds on average than women, and larger fingers have 
higher thresholds on average than smaller ones. 
 
Following the same calculation sequence as for the previous models, we have: 
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Then, 
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Parameter Ranges and Sensitivity Analysis 
The parameters within each model were assigned uniform prior probability densities 
over specified ranges (i.e., step-function priors). Calculations were done numerically, 
assigning discrete values for each parameter, evenly distributed within each range. All 
four models considered 15 values for C1, ranging from 1.0 to 2.0 mm, and 15 values for 
σ, ranging from 0.05 to 0.55 mm. 
 
Model 1 considered 21 values for C2, ranging from 0.05 to 0.5 mm. The range 0.05-
0.5mm was chosen based on previous research showing a sex difference in acuity of 
approximately 0.2 mm (Goldreich & Kanics, 2003, 2006). 
 
Model 2 considered 21 values for C2, ranging from 0.05 to 1.4 mm. Because no 
previous studies investigated the effect of finger size on tactile acuity, this range for C2 
was chosen to bracket the previously observed variability in tactile thresholds of 
participants of the same age and sex (Goldreich & Kanics, 2003, 2006). 
 
Model 3 used for C2 the same values as did Model 1, and for C3 the same C2 values as 
did Model 2. 
 
In order to assess the robustness of our results to reasonable variations in these prior 
assumptions, we repeated our analyses using different within-model parameter ranges. 
The Supplemental Table shows the Bayes factors that resulted. Note that in every case 
the finger size model is favored by the data. 
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Supplemental Table.  Sensitivity analysis showing the effect of varying the parameter 
ranges over which the models distributed prior probability. Bayes factors for Models 1, 
2, and 3 relative to the null are reported in each cell.  Model 2, the finger size model, is 
favored by the greatest Bayes factor (bold) in each case. 
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Supplemental Figures 
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Supplemental Figure 1. Skin compliance measurement apparatus and procedure. The 
dominant hand rested in supine position on the platform of a lab jack.  The hand was 
restrained gently with straps, and the index fingernail attached to the platform with 
double-sided tape.  The platform was raised until the index finger skin contacted a 0.5-
inch-diameter smooth circular surface attached to the end of a rotating rod at a distance 
L = 11 cm from the pivot point (P).  A first-surface mirror (Edmund Optics, Barrington, 
NJ) attached to the rod at P reflected a laser beam onto a wall at distance W = 413 cm.  
The height of the lab jack platform was adjusted so that the laser beam projected to 
position zero on the wall.  A mass, M = 50 gm, was then placed in a receptacle 
overlying the finger-contact surface.  Indentation of the skin caused rotation of the rod 
by angle θ.  Since the angle of incidence between the light beam and mirror equaled the 
angle of reflection, rotation of the mirror by θ caused the laser beam to project at angle 
twice θ from the horizontal.  We derived the displacement (d) of the skin, from the height 
of the laser dot (h) on the wall, given the constants L and W: 
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We made five compliance measurements on each participant, waiting each time for six 
seconds after placement of the mass for the skin to reach steady-state indentation.  The 
sensitivity of the system was such that the slight increase in fingertip blood volume 
caused by the heartbeat (the pulse in the fingertip produced by the systolic phase of the 
cardiac cycle) often produced a noticeable decrease in the height, h, of the laser beam 
dot.  In such cases, we took the measurements in the diastolic phase (maximum laser 
dot height of the pulse cycle, corresponding to lowest fingertip blood volume). 
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Supplemental Figure 2. Skin compliance data.  (a) Skin compliance by sex. 
Compliance was not significantly greater in women than in men (unpaired t-test, p = 
0.9). (b) Scatterplot of GOT threshold v. skin compliance.  Contrary to the prediction of 
Hypothesis 1, GOT threshold did not decrease significantly with increasing skin 
compliance (correlation, p = 0.8).  In fact, the non-significant trend was for threshold to 
increase with compliance. Multiple linear regression of GOT threshold (dependent 
variable) against skin compliance and fingertip surface area (independent variables) 
showed a significant effect of fingertip area (p = 0.02) but again no effect of skin 
compliance (p = 0.7). Women: ; men: . 
 


