RT Journal Article SR Electronic T1 Chronic quinolinic acid lesions in rats closely resemble Huntington's disease JF The Journal of Neuroscience JO J. Neurosci. FD Society for Neuroscience SP 1649 OP 1659 DO 10.1523/JNEUROSCI.11-06-01649.1991 VO 11 IS 6 A1 Beal, MF A1 Ferrante, RJ A1 Swartz, KJ A1 Kowall, NW YR 1991 UL http://www.jneurosci.org/content/11/6/1649.abstract AB We previously found a relative sparing of somatostatin and neuropeptide Y neurons 1 week after producing striatal lesions with NMDA receptor agonists. These results are similar to postmortem findings in Huntington's disease (HD), though in this illness there are two- to threefold increases in striatal somatostatin and neuropeptide Y concentrations, which may be due to striatal atrophy. In the present study, we examined the effects of striatal excitotoxin lesions at 6 months and 1 yr, because these lesions exhibit striatal shrinkage and atrophy similar to that occurring in HD striatum. At 6 months and 1 yr, lesions with the NMDA receptor agonist quinolinic acid (QA) resulted in significant increases (up to twofold) in concentrations of somatostatin and neuropeptide Y immunoreactivity, while concentrations of GABA, substance P immunoreactivity, and ChAT activity were significantly reduced. In contrast, somatostatin and neuropeptide Y concentrations did not increase 6 months after kainic acid (KA) or alpha-amino-3- hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA) lesions. At both 6 months and 1 yr, QA lesions showed striking sparing of NADPH-diaphorase neurons as compared with both AMPA and KA lesions, neither of which showed preferential sparing of these neurons. Long-term QA lesions also resulted in significant increases in concentrations of both 5-HT and 5- hydroxyindoleacetic acid (HIAA), similar to findings in HD. Chronic QA lesions therefore closely resemble the neurochemical features of HD, because they result in increases in somatostatin and neuropeptide Y and in 5-HT and HIAA. These findings strengthen the possibility that an NMDA receptor-mediated excitotoxic process could play a role in the pathogenesis of HD.