RT Journal Article SR Electronic T1 GABAergic Inhibition Suppresses Paroxysmal Network Activity in the Neonatal Rodent Hippocampus and Neocortex JF The Journal of Neuroscience JO J. Neurosci. FD Society for Neuroscience SP 8822 OP 8830 DO 10.1523/JNEUROSCI.20-23-08822.2000 VO 20 IS 23 A1 Jason E. Wells A1 James T. Porter A1 Ariel Agmon YR 2000 UL http://www.jneurosci.org/content/20/23/8822.abstract AB In the adult cerebral cortex, the neurotransmitter GABA is strongly inhibitory, as it profoundly decreases neuronal excitability and suppresses the network propensity for synchronous activity. When fast, GABAA receptor (GABAAR)-mediated neurotransmission is blocked in the mature cortex, neuronal firing is synchronized via recurrent excitatory (glutamatergic) synaptic connections, generating population discharges manifested extracellularly as spontaneous paroxysmal field potentials (sPFPs). This epileptogenic effect of GABAAR antagonists has rarely been observed in the neonatal cortex, and indeed, GABA in the neonate has been proposed to have an excitatory, rather than inhibitory, action. In contrast, we show here that when fast GABAergic neurotransmission was blocked in slices of neonatal mouse and rat hippocampus and neocortex, sPFPs occurred in nearly half the slices from postnatal day 4 (P4) to P7 neocortex and in most slices from P2 to P7 hippocampus. In Mg2+-free solution, GABAAR antagonists elicited sPFPs in nearly all slices of P2 and older neocortex and P0 and older hippocampus. Mg2+-free solution alone induced spontaneous events in the majority of P2 and older slices from both regions; addition of GABAAR antagonists caused a dramatic increase in the mean amplitude, but not frequency, of these events in the hippocampus and in their mean frequency, but not amplitude, in the neocortex. In the hippocampus, GABAAR agonists suppressed amplitudes, but not frequency, of sPFPs, whereas glutamate antagonists suppressed frequency but not amplitudes. We conclude that neonatal rodent cerebral cortex possesses glutamatergic circuits capable of generating synchronous network activity and that, as in the adult, tonic GABAAR-mediated inhibition prevents this activity from becoming paroxysmal.