PT - JOURNAL ARTICLE AU - Shalizi, Aryaman AU - Lehtinen, Maria AU - Gaudillière, Brice AU - Donovan, Nicole AU - Han, Jiahuai AU - Konishi, Yoshiyuki AU - Bonni, Azad TI - Characterization of a Neurotrophin Signaling Mechanism that Mediates Neuron Survival in a Temporally Specific Pattern AID - 10.1523/JNEUROSCI.23-19-07326.2003 DP - 2003 Aug 13 TA - The Journal of Neuroscience PG - 7326--7336 VI - 23 IP - 19 4099 - http://www.jneurosci.org/content/23/19/7326.short 4100 - http://www.jneurosci.org/content/23/19/7326.full SO - J. Neurosci.2003 Aug 13; 23 AB - The temporally specific nature of neurotrophic factor-induced responses is a general feature of mammalian nervous system development, the mechanisms of which remain to be elucidated. We characterized a mechanism underlying the temporal specificity by which BDNF selectively promotes the survival of newly generated, but not mature, granule neurons of the mammalian cerebellum. We found that BDNF specifically induces the extracellular signal-regulated kinase 5 (ERK5)-myocyte enhancer factor (MEF2) signaling pathway in newly generated granule neurons and thereby induces transcription of neurotrophin-3 (NT-3), a novel gene target of MEF2. Inhibition of endogenous ERK5, MEF2, or NT-3 in neurons by several approaches including disruption of the NT-3 gene in mice revealed a requirement for the ERK5-MEF2-NT-3 signaling pathway in BDNF-induced survival of newly generated granule neurons. These findings define a novel mechanism that underlies the antiapoptotic effect of neurotrophins in a temporally defined pattern in the developing mammalian brain.