TY - JOUR T1 - Behavioral Stress Modifies Hippocampal Synaptic Plasticity through Corticosterone-Induced Sustained Extracellular Signal-Regulated Kinase/Mitogen-Activated Protein Kinase Activation JF - The Journal of Neuroscience JO - J. Neurosci. SP - 11029 LP - 11034 DO - 10.1523/JNEUROSCI.3968-04.2004 VL - 24 IS - 49 AU - Chih-Hao Yang AU - Chiung-Chun Huang AU - Kuei-Sen Hsu Y1 - 2004/12/08 UR - http://www.jneurosci.org/content/24/49/11029.abstract N2 - The induction of hippocampal long-term synaptic plasticity is exquisitely sensitive to behavioral stress, but the underlying mechanisms are still unclear. We report here that hippocampal slices prepared from adult rats that had experienced unpredictable and inescapable restraint tail-shock stress showed marked impairments of long-term potentiation (LTP) in the CA1 region. The same stress promoted the induction of long-term depression (LTD). These effects were prevented when the animals were given the glucocorticoid receptor antagonist 11β, 17β-11[4-(dimethylamino)phenyl]-17-hydroxy-17-(1-propynyl)-estra-4-9-dien-3-one before the stress. Immunoblotting analyses revealed that stress induced a profound and prolonged extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK1/2 MAPK) hyperphosphorylation through small GTPase Ras, Raf-1, and MAPK kinase 1/2 (MEK1/2). Furthermore, the stress effects were obviated by the intrahippocampal injection of specific inhibitors of MEK1/2 (U0126), protein kinase C (bisindolylmaleimide I), tyrosine kinase (K252a), and BDNF antisense oligonucleotides. These results suggest that the effects of stress on LTP and LTD originate from the corticosterone-induced sustained activation of ERK1/2-coupled signaling cascades. ER -