RT Journal Article SR Electronic T1 A Null Mutation for the α3 Nicotinic Acetylcholine (ACh) Receptor Gene Abolishes Fast Synaptic Activity in Sympathetic Ganglia and Reveals That ACh Output from Developing Preganglionic Terminals Is Regulated in an Activity-Dependent Retrograde Manner JF The Journal of Neuroscience JO J. Neurosci. FD Society for Neuroscience SP 8555 OP 8566 DO 10.1523/JNEUROSCI.1983-05.2005 VO 25 IS 37 A1 Siamak Rassadi A1 Arjun Krishnaswamy A1 Brigitte Pié A1 Russell McConnell A1 Michele H. Jacob A1 Ellis Cooper YR 2005 UL http://www.jneurosci.org/content/25/37/8555.abstract AB In vertebrates, synaptic activity exerts an important influence on the formation of neural circuits, yet our understanding of its role in directing presynaptic and postsynaptic differentiation during synaptogenesis is incomplete. This study investigates how activity influences synaptic differentiation as synapses mature during early postnatal life. Specifically, we ask what happens to presynaptic terminals when synapses develop without functional postsynaptic receptors and without fast synaptic transmission. To address this issue, we investigated cholinergic nicotinic synapses in sympathetic ganglia of mice with a null mutation for the α3 nicotinic ACh receptor gene. Disrupting the α3 gene completely eliminates fast excitatory synaptic potentials on postganglionic sympathetic neurons, establishing a crucial role for α3-containing postsynaptic receptors in synaptic transmission. Interestingly, the preganglionic nerve terminals form morphologically normal synapses with sympathetic neurons, and these synapses persist without activity in postnatal animals. Surprisingly, when stimulating the preganglionic nerve at physiological rates, we discovered a significant decrease in ACh output from the presynaptic terminals in these α3–/– sympathetic ganglia. We show that this decrease in ACh output from the presynaptic terminals results, in part, from a lack of functional high-affinity choline transporters. We conclude the following: (1) fast synaptic transmission in mammalian SCG requires α3 expression; (2) in the absence of activity, the preganglionic nerve forms synapses that appear morphologically normal and persist for several weeks; and (3) to sustain transmitter release, developing presynaptic terminals require an activity-dependent retrograde signal.