PT - JOURNAL ARTICLE AU - Lindfors, Päivi H. AU - Võikar, Vootele AU - Rossi, Jari AU - Airaksinen, Matti S. TI - Deficient Nonpeptidergic Epidermis Innervation and Reduced Inflammatory Pain in Glial Cell Line-Derived Neurotrophic Factor Family Receptor α2 Knock-Out Mice AID - 10.1523/JNEUROSCI.4065-05.2006 DP - 2006 Feb 15 TA - The Journal of Neuroscience PG - 1953--1960 VI - 26 IP - 7 4099 - http://www.jneurosci.org/content/26/7/1953.short 4100 - http://www.jneurosci.org/content/26/7/1953.full SO - J. Neurosci.2006 Feb 15; 26 AB - Most unmyelinated nociceptive neurons that mediate pain and temperature sensation from the skin bind isolectin B4 (IB4)-lectin and express Ret, the common signaling component of glial cell line-derived neurotrophic factor (GDNF) family. One of these factors, neurturin, is expressed in the epidermis, whereas its GDNF family receptor α2 (GFRα2) is expressed in the majority of unmyelinated Ret-positive sensory neurons. However, the physiological roles of endogenous neurturin signaling in primary sensory neurons are poorly understood. Here, we show that the vast majority (∼85%) of IB4 binding and P2X3 purinoreceptor-positive neurons, but virtually none of the calcitonin gene-related peptide (CGRP) or vanilloid receptor transient receptor potential vanilloid 1-positive neurons in mouse dorsal root ganglion (DRG) express GFRα2. In GFRα2 knock-out (KO) mice, the IB4-binding and P2X3-positive DRG neurons were present but reduced in size, consistent with normal number but reduced caliber of unmyelinated axons in a cutaneous nerve. Strikingly, nonpeptidergic (CGRP-negative) free nerve endings in footpad epidermis were >70% fewer in GFRα2-KO mice than in their wild-type littermates. In contrast, the density of CGRP-positive epidermal innervation remained unaffected. In the formalin test, the KO mice showed a normal acute response but a markedly attenuated persistent phase, indicating a deficit in inflammatory pain response. Behavioral responses of GFRα2-KO mice to innocuous warm and noxious heat were not blunted; the mice were actually markedly hypersensitive to noxious cold in tail immersion test. Overall, our results indicate a critical role for endogenous GFRα2 signaling in maintaining the size and terminal innervation of the nonpeptidergic class of cutaneous nociceptors in vivo.