RT Journal Article SR Electronic T1 Postsynaptic Secretion of BDNF and NT-3 from Hippocampal Neurons Depends on Calcium–Calmodulin Kinase II Signaling and Proceeds via Delayed Fusion Pore Opening JF The Journal of Neuroscience JO J. Neurosci. FD Society for Neuroscience SP 10350 OP 10364 DO 10.1523/JNEUROSCI.0692-07.2007 VO 27 IS 39 A1 Richard Kolarow A1 Tanja Brigadski A1 Volkmar Lessmann YR 2007 UL http://www.jneurosci.org/content/27/39/10350.abstract AB The mammalian neurotrophins (NTs) NGF, BDNF, NT-3, and NT-4 constitute a family of secreted neuronal growth factors. In addition, NTs are implicated in several forms of activity-dependent synaptic plasticity. Although synaptic secretion of NTs has been described, the intracellular signaling cascades that regulate synaptic secretion of NTs are far from being understood. Analysis of NT secretion at the subcellular level is thus required to resolve the role of presynaptic and postsynaptic NT secretion for synaptic plasticity. Here, we transfected cultures of dissociated rat hippocampal neurons with green fluorescent protein-tagged versions of BDNF and NT-3, respectively, and identified NT vesicles at glutamatergic synapses by colocalization with the cotransfected postsynaptic marker PSD-95 (postsynaptic density-95)-DsRed. Depolarization-induced secretion of BDNF and NT-3 was monitored with live cell imaging. Direct postsynaptic depolarization with elevated K+ in the presence of blockers of synaptic transmission allowed us to investigate the signaling cascades that are involved in the postsynaptic NT vesicle secretion process. We show that depolarization-induced postsynaptic NT secretion is elicited by Ca2+ influx, either via L-type voltage-gated calcium channels or via NMDA receptors. Subsequent release of Ca2+ from internal stores via ryanodine receptors is required for the secretion process. Postsynaptic NT secretion is inhibited in the presence of KN-62 ([4(2S)-2-[(5-isoquinolinylsulfonyl)methylamino]-3-oxo-3-(4-phenyl-1-piperazinyl)propyl] phenyl isoquinolinesulfonic acid ester) and KN-93 (N-[2-[[[3-(4-chlorophenyl)-2-propenyl]methylamino]methyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide), indicating a critical dependence on the activation of α-calcium–calmodulin-dependent protein kinase II (CaMKII). The cAMP/protein kinase A (PKA) signaling inhibitor Rp-cAMP-S impaired NT secretion, whereas elevation of intracellular cAMP levels was without effect. Using the Trk inhibitor k252a, we show that NT-induced NT secretion does not contribute to the NT release process at synapses, and BDNF does not induce its own secretion at postsynaptic sites. Release experiments in the presence of the fluorescence quencher bromphenol blue provide evidence for asynchronous and prolonged fusion pore opening of NT vesicles during secretion. Because fusion pore opening is fast compared with compound release, the speed of NT release seems to be limited by diffusion of NTs out of the vesicle. Together, our results reveal a strong dependence of activity-dependent postsynaptic NT secretion on Ca2+ influx, Ca2+ release from internal stores, activation of CaMKII, and intact PKA signaling, whereas Trk signaling and activation of Na+ channels is not required.