PT - JOURNAL ARTICLE AU - Zaira Ortega AU - Miguel Díaz-Hernández AU - Christa J. Maynard AU - Félix Hernández AU - Nico P. Dantuma AU - José J. Lucas TI - Acute Polyglutamine Expression in Inducible Mouse Model Unravels Ubiquitin/Proteasome System Impairment and Permanent Recovery Attributable to Aggregate Formation AID - 10.1523/JNEUROSCI.5673-09.2010 DP - 2010 Mar 10 TA - The Journal of Neuroscience PG - 3675--3688 VI - 30 IP - 10 4099 - http://www.jneurosci.org/content/30/10/3675.short 4100 - http://www.jneurosci.org/content/30/10/3675.full SO - J. Neurosci.2010 Mar 10; 30 AB - The presence of intracellular ubiquitylated inclusions in neurodegenerative disorders and the role of the ubiquitin/proteasome system (UPS) in degrading abnormal hazardous proteins have given rise to the hypothesis that UPS-impairment underlies neurodegenerative processes. However, this remains controversial for polyglutamine disorders such as Huntington disease (HD). Whereas studies in cellular models have provided evidence in favor of UPS-impairment attributable to expression of the N-terminal fragment of mutant huntingtin (N-mutHtt), similar studies on mouse models failed to do so. Furthermore, we have recently shown that the increase in polyubiquitin conjugates reported in the brain of N-mutHtt mice occurs in the absence of a general UPS-impairment. In the present study we aim to clarify the potential of N-mutHtt to impair UPS function in vivo as well as the mechanisms by which neurons may adapt after prolonged exposure to N-mutHtt in genetic models. By combining UPS reporter mice with an inducible mouse model of HD, we demonstrate for the first time polyglutamine-induced global UPS-impairment in vivo. UPS-impairment occurred transiently after acute N-mutHtt expression and restoration correlated with appearance of inclusion bodies (IBs). Consistently, UPS recovery did not take place when IB formation was prevented through administration of N-mutHtt aggregation-inhibitors in both cellular and animal models. Finally, no UPS-impairment was detected in old mice constitutively expressing N-mutHtt despite the age-associated decrease in brain proteasome activity. Therefore, our data reconcile previous contradictory reports by showing that N-mutHtt can indeed impair UPS function in vivo and that N-mutHtt aggregation leads to long lasting restoration of UPS function.