RT Journal Article SR Electronic T1 The Representation of S-Cone Signals in Primary Visual Cortex JF The Journal of Neuroscience JO J. Neurosci. FD Society for Neuroscience SP 10337 OP 10350 DO 10.1523/JNEUROSCI.1428-10.2010 VO 30 IS 31 A1 Elizabeth N. Johnson A1 Stephen D. Van Hooser A1 David Fitzpatrick YR 2010 UL http://www.jneurosci.org/content/30/31/10337.abstract AB Recent studies of middle-wavelength-sensitive and long-wavelength-sensitive cone responses in primate primary visual cortex (V1) have challenged the view that color and form are represented by distinct neuronal populations. Individual V1 neurons exhibit hallmarks of both color and form processing (cone opponency and orientation selectivity), and many display cone interactions that do not fit classic chromatic/achromatic classifications. Comparable analysis of short-wavelength-sensitive (S) cone responses has yet to be achieved and is of considerable interest because S-cones are the basis for the primordial mammalian chromatic pathway. Using intrinsic and two-photon imaging techniques in the tree shrew, we assessed the properties of V1 layer 2/3 neurons responsive to S-cone stimulation. These responses were orientation selective, exhibited distinct spatiotemporal properties, and reflected integration of S-cone inputs via opponent, summing, and intermediate configurations. Our observations support a common framework for the representation of cone signals in V1, one that endows orientation-selective neurons with a range of chromatic, achromatic, and mixed response properties.