RT Journal Article SR Electronic T1 Catecholaminergic properties of cholinergic neurons and synapses in adult rat ciliary ganglion JF The Journal of Neuroscience JO J. Neurosci. FD Society for Neuroscience SP 3574 OP 3587 DO 10.1523/JNEUROSCI.07-11-03574.1987 VO 7 IS 11 A1 SC Landis A1 PC Jackson A1 JR Fredieu A1 J Thibault YR 1987 UL http://www.jneurosci.org/content/7/11/3574.abstract AB Parasympathetic neurons of the ciliary ganglion are innervated by preganglionic cholinergic neurons whose cell bodies lie in the brain stem; the ganglion cells in turn provide cholinergic innervation to the intrinsic muscles of the eye. Noradrenergic innervation of the iris is supplied by sympathetic neurons of the superior cervical ganglion. Using immunocytochemical and histochemical techniques, we have examined the ciliary ganglion of adult rats for the expression of cholinergic and noradrenergic properties. As expected, the postganglionic ciliary neurons possessed detectable levels of choline acetyltransferase immunoreactivity (ChAT-IR). Unexpectedly, many ciliary neurons also exhibited immunoreactivity for tyrosine hydroxylase (TH-IR). Some had dopamine beta-hydroxylase-like (DBH-IR) immunoreactivity, but none contained detectable catecholamines, even after treatment with nialamide and L-DOPA. A sparse plexus of fibers exhibiting faint TH-IR was present in the irises of acutely sympathectomized rats. The terminals of preganglionic axons in the ciliary ganglion exhibited not only immunoreactivity for ChAT, but also for TH and contained stores of endogenous catecholamine. Neither ciliary neurons nor their preganglionic innervation accumulated detectable stores of exogenous catecholamines. Rats sympathectomized as neonates by treatment with 6- hydroxydopamine subsequently had a greater proportion of neurons possessing detectable TH-IR in the ciliary ganglion; both the TH-IR perikarya and their axons in the iris were more intensely immunofluorescent. TH-IR was present in the ciliary neuron cell bodies of mouse, guinea pig, and ferret. These species, however, lacked detectable TH-IR or catecholamine stores in preganglionic terminals. These observations indicate that mature, functionally cholinergic neurons from 2 different embryonic origins, postganglionic ciliary neurons derived from the neural crest and preganglionic neurons derived from the neural tube, display several catecholaminergic properties.