RT Journal Article SR Electronic T1 The Brain Dynamics of Rapid Perceptual Adaptation to Adverse Listening Conditions JF The Journal of Neuroscience JO J. Neurosci. FD Society for Neuroscience SP 10688 OP 10697 DO 10.1523/JNEUROSCI.4596-12.2013 VO 33 IS 26 A1 Julia Erb A1 Molly J. Henry A1 Frank Eisner A1 Jonas Obleser YR 2013 UL http://www.jneurosci.org/content/33/26/10688.abstract AB Listeners show a remarkable ability to quickly adjust to degraded speech input. Here, we aimed to identify the neural mechanisms of such short-term perceptual adaptation. In a sparse-sampling, cardiac-gated functional magnetic resonance imaging (fMRI) acquisition, human listeners heard and repeated back 4-band-vocoded sentences (in which the temporal envelope of the acoustic signal is preserved, while spectral information is highly degraded). Clear-speech trials were included as baseline. An additional fMRI experiment on amplitude modulation rate discrimination quantified the convergence of neural mechanisms that subserve coping with challenging listening conditions for speech and non-speech. First, the degraded speech task revealed an “executive” network (comprising the anterior insula and anterior cingulate cortex), parts of which were also activated in the non-speech discrimination task. Second, trial-by-trial fluctuations in successful comprehension of degraded speech drove hemodynamic signal change in classic “language” areas (bilateral temporal cortices). Third, as listeners perceptually adapted to degraded speech, downregulation in a cortico-striato-thalamo-cortical circuit was observable. The present data highlight differential upregulation and downregulation in auditory–language and executive networks, respectively, with important subcortical contributions when successfully adapting to a challenging listening situation.