RT Journal Article SR Electronic T1 Keeping Your Head On Target JF The Journal of Neuroscience JO J. Neurosci. FD Society for Neuroscience SP 11281 OP 11295 DO 10.1523/JNEUROSCI.3415-12.2013 VO 33 IS 27 A1 Shaikh, Aasef G. A1 Wong, Aaron L. A1 Zee, David S. A1 Jinnah, H. A. YR 2013 UL http://www.jneurosci.org/content/33/27/11281.abstract AB The mechanisms by which the human brain controls eye movements are reasonably well understood, but those for the head less so. Here, we show that the mechanisms for keeping the head aimed at a stationary target follow strategies similar to those for holding the eyes steady on stationary targets. Specifically, we applied the neural integrator hypothesis that originally was developed for holding the eyes still in eccentric gaze positions to describe how the head is held still when turned toward an eccentric target. We found that normal humans make head movements consistent with the neural integrator hypothesis, except that additional sensory feedback is needed, from proprioceptors in the neck, to keep the head on target. We also show that the complicated patterns of head movements in patients with cervical dystonia can be predicted by deficits in a neural integrator for head motor control. These results support ideas originally developed from animal studies that suggest fundamental similarities between oculomotor and cephalomotor control, as well as a conceptual framework for cervical dystonia that departs considerably from current clinical views.